

© 2021.3

Agenda

1.Don’t we already have a Concurrency TS?
• Why do we need a new one?
• implementation status

2.TS2 Hazard Pointer
• how I learn to love C++ tricks

3.TS2 RCU
• From C to C++ in 2500 days

33

© 2021.4

Concurrency TS1: Don’t we already have a TS?

• Produced in 2015
• Produced by the Concurrency Study Group (SG1) with input from

LEWG, LWG
• Separate document and is not part of ISO C++ Standard
• Goal: Eventual Inclusion into ISO C++ Standard
• Available online: http://wg21.link/n4538
• github : https://github.com/cplusplus/concurrency-ts

4

© 2021.5

What was in Concurrency TS1?

• Improvements to std::future
• Latches and Barriers
• Atomic smart pointers

5

© 2021.6

Since Concurrency TS1?

• Improvements to std::future: some adapted into C++ 17
• Latches and Barriers: Adapted into C++ 20
• Atomic smart pointers: Adapted into C++17

6

© 2021.7

Talking about HP and RCU since 2014

1.Erwin Schrödinger’s Zoo and Werner Heisenberg’s advice
2.Increase uncertainty to get performance and scalability
3.So Procrastinate away! Use Structured Deferral
4.Shared_ptr vs atomic_shared_ptr vs hazard pointers vs Read

Copy Update (RCU)
5.Hazard Pointers
6.Read Copy Update
7.A Concurrency Toolkit for C++

77

© 2021.8

Since 2014, slow as we need to do C++17, 20

• But also we need to learn how to convert from C to C++ interface
• learn new and interesting C++ idioms
• learn new Library conventions
• work with tight schedule
• grow older, kids graduate
• changed jobs, company

8

To TS or not to TS: that is
the question

Whether 'tis nobler in the mind to suffer.
The slings and arrows of outrageous fortune,

Or to take arms against a sea of troubles.
And by opposing end them.

WG 21 Direction Group

The role of TSes from P0939/P2000 Directions
We recommend

● Use TSs for library components.
● Don’t use TSs for a language feature unless the feature is a

mostly self-contained unit.
● Don’t use a TS simply to delay; it doesn’t simplify later

decision making. Have a concrete and articulated criteria for
completion.

TS vs IS: question TS should answer
● Is there an implementation?
● Is it a Library or Language proposal, or involve

both aspects?
● Is the proposal a foundational proposal,

meaning many other C++ aspects/proposal
depend on it, and/or it depends on many other
C++ aspects/proposals?

● Is it independent of aspects of the language.
● Are there competing design proposals?
● Is the proposal complicated or large that you

fear there will be error in design decision
● Is it a research idea?
● Is there substantial invention?
● Can it be staged?
● Is there a subpart that deserves to be in IS
● Is the wording complicated or unconventional

● Will the proposal benefit from early integration
(can be applied to a WP)

● Will you get feedback/testing only after TS
publication or IS publication

● Is there a motivation to slow down a proposal?
● Explicitly state the acceptance criteria for the

TS into IS
● Are you juggling a large number of related or

dependent proposals (other proposals that
depend on this proposal)?

● Are you aiming for user feedback?
● Are you aiming for implementation feedback?
● Is there a scheduling concern to make C++xx

for it or its dependents?

Proposal for DG advisory

● WGs SGs decide on TS or IS route and write proposal supporting direction
● The key question:

○ WHAT ARE we hoping to LEARN through a TS must be clearly specified.
○ WHAT ARE the exit criteria of the TS to IS must be clearly specified.

● Other questions should be asked will follow to support your conclusion.
● The previous page are questions the DG may ask. And you should think about.
● We urge SGs to explicitly poll for this and their supporting reasons
● DG will offer non-binding advisory in some cases as

○ whether TS or IS route is preferred, or have you considered an SG
○ In some cases an SG vs TS vs IS continuum needs to be considered

● Please weigh our opinion as part of your decision process
● direction@lists.isocpp.org.

© 2021.13

What is in Concurrency TS2?
• Several synchronization primitives for locked-free programming on concurrent data

structures. These are cell, hazard ptr and RCU. These extend the existing shared_ptr
and the proposed atomic_shared_ptr which all have safe reclamation facilities. As such
we also propose moving shared_ptr and atomic<shared<ptr>> to this new location. We
suspect this part may be controversial, so would ask for discussion on this topic.

• P1121R3. Hazard Pointers: Proposed Interface
and Wording for Concurrency TS 2.

• P1122R4 - Proposed Wording for Concurrent
Data Structures: Read-Copy-Update (RCU)

13

Concurrency TS2 in future
Concurrency TS2 is an ongoing WIP but might contain the following which has been
making its way through WG21/SG1:
● Data structures such as Concurrent queues, counters,
● Asymmetric fences
● What about executors?
Plan to be in cpluplus github

● https://github.com/cplusplus/concurrency-ts2
Become an IS

● Will it still look like the TS?

14

© 2021.15

Future C++ Std new clause 33
● 33: Concurrency Utilities Library

○ 33.1 General Concepts
■ 33.1.1 Thread Support
■ 33.1.2 Executor Support

● 33.2 Safe Reclamation
○ 33.2.1 Hazard Pointers
○ 33.2.2 RCU
○ 33.2.3 Latest/Snapshot?
○ 33.2.4 Asymmetric fences

15

© 2021.16

To learn or not to learn?

• What did we learn?
• What were the exit criteria?
• What is the exit vehicle?
• Will it still look like the TS in the IS (exit vehicle)?
• What is there still to learn?
• When will we stop learning?
• What is implementation status?
• Did the TS process work for us?

16

© 2021.17

Hazard Pointers in
Concurrency TS2, C++26, and beyond

17

© 2021.18

Hazard Pointers in a Nutshell
Used to protect access to objects that may be concurrently removed.

A hazard pointer is a single-writer multi-reader pointer.

If a hazard pointer points to an object
 before its removal,
 then the object will not be reclaimed
 as long as the hazard pointer remains unchanged

Features:
• Fast and scalable protection
• Supports arbitrarily long protection

18

Protect object A
Set a hazard pointer to point to A
if A is not removed
 then it is safe to use A

Remove and reclaim object A
Remove A
if no hazard pointers point to A
 then it is safe to reclaim A

© 2021.19

Hazard Pointers TS2 Interface
Components:
• Hazard pointers
• Objects protectable by hazard pointers
• Domain(s) to manage hazard pointers and retired objects

19

© 2021.20

Hazard Pointers TS2 Interface
class hazard_pointer_domain {
public:
 hazard_pointer_domain() noexcept;
 explicit hazard_pointer_domain(
 pmr::polymorphic_allocator<byte> poly_alloc) noexcept;
 hazard_pointer_domain(const hazard_pointer_domain&) = delete;
 hazard_pointer_domain& operator=(const hazard_pointer_domain&) = delete;
 ~hazard_pointer_domain();
};

hazard_pointer_domain& hazard_pointer_default_domain() noexcept;

// For synchronous reclamation
void hazard_pointer_clean_up(
 hazard_pointer_domain& domain = hazard_pointer_default_domain()) noexcept;

20

© 2021.21

Hazard Pointers TS2 Interface
template <typename T, typename D = default_delete<T>>
class hazard_pointer_obj_base {
public:
 void retire(
 D d = D(),
 hazard_pointer_domain& domain = hazard_pointer_default_domain()) noexcept;
 void retire(hazard_pointer_domain& domain) noexcept;
};

21

© 2021.22

Hazard Pointers TS2 Interface
class hazard_pointer {
public:
 hazard_pointer() noexcept; // Empty
 hazard_pointer(hazard_pointer&&) noexcept;
 hazard_pointer& operator=(hazard_pointer&&) noexcept;
 ~hazard_pointer();
 [[nodiscard]] bool empty() const noexcept;
 template <typename T> T* protect(const atomic<T*>& src) noexcept;
 template <typename T> bool try_protect(T*& ptr, const atomic<T*>& src) noexcept;
 template <typename T> void reset_protection(const T* ptr) noexcept;
 void reset_protection(nullptr_t = nullptr) noexcept;
 void swap(hazard_pointer&) noexcept;
};

hazard_pointer make_hazard_pointer(
 hazard_pointer_domain& domain = hazard_pointer_default_domain());

void swap(hazard_pointer&, hazard_pointer&) noexcept;

22

© 2021.23

Usage Example
class Foo : public hazard_pointer_obj_base<Foo> { /* Foo members */ };

void read_and_use(const std::atomic<Foo*>& src, Func fn) { // Called frequently
 hazard_pointer h = make_hazard_pointer();
 Foo* ptr = h.protect(src);
 fn(ptr); // ptr is protected
}

void update(std::atomic<Foo*>& src, Foo* newptr) { // Called infrequently
 Foo* oldptr = src.exchange(newptr);
 oldptr->retire();
}

23

© 2021.24

What Did We Learn in 4 Years?
• Open source: github.com/facebook/folly under synchronization/Hazptr.h
• Synchronous reclamation:

• TS2 global cleanup is a powerful but blunt tool.
• Folly (fast and scalable) cohort synchronous reclamation.
• CPPCON 2021: Hazard pointer synchronous reclamation beyond Concurrency TS2

• Integrated link counting:
• Not in TS2. Folly support for linked structures with immutable links (e.g., queues).

Can reclaim nodes of arbitrary depth in one check of hazard pointers.

• Hazard pointers arrays optimizations
• Not in TS2. Folly make_hazard_pointer_arrray<M>(), e.g., 4, 5, 6 ns vs 4, 8, 12 ns

• Optional dedicated thread pool for asynchronous reclamation:
• Robustness against latency spikes and deadlock.

• Domains:
• Robust default domain with expanded capabilities (cohorts, link counting, array optimization).
• No customization needed in Folly so far.

24

© 2021.25

Hazard Pointers Proposal for C++26
Minimalist useful subset of TS2:
• Supports asynchronous reclamation
• Compatible with external link counting and automatic retirement
• Strict subset of TS2 API and wording
• No custom domains (for now)
• No synchronous reclamation (for now)
• Can be extended

25

© 2021.26

Hazard Pointers Proposal for C++26
class hazard_pointer_domain {
public:
 hazard_pointer_domain() noexcept;
 explicit hazard_pointer_domain(
 pmr::polymorphic_allocator<byte> poly_alloc) noexcept;
 hazard_pointer_domain(const hazard_pointer_domain&) = delete;
 hazard_pointer_domain& operator=(const hazard_pointer_domain&) = delete;
 ~hazard_pointer_domain();
};

hazard_pointer_domain& hazard_pointer_default_domain() noexcept;

// For synchronous reclamation
void hazard_pointer_clean_up(
 hazard_pointer_domain& domain = hazard_pointer_default_domain()) noexcept;

26

© 2021.27

Hazard Pointers Proposal for C++26
template <typename T, typename D = default_delete<T>>
class hazard_pointer_obj_base {
public:
 void retire(
 D d = D(),
 hazard_pointer_domain& domain = hazard_pointer_default_domain()) noexcept;
 void retire(hazard_pointer_domain& domain) noexcept;
};

27

© 2021.28

Hazard Pointers Proposal for C++26
class hazard_pointer {
public:
 hazard_pointer() noexcept; // Empty
 hazard_pointer(hazard_pointer&&) noexcept;
 hazard_pointer& operator=(hazard_pointer&&) noexcept;
 ~hazard_pointer();
 [[nodiscard]] bool empty() const noexcept;
 template <typename T> T* protect(const atomic<T*>& src) noexcept;
 template <typename T> bool try_protect(T*& ptr, const atomic<T*>& src) noexcept;
 template <typename T> void reset_protection(const T* ptr) noexcept;
 void reset_protection(nullptr_t = nullptr) noexcept;
 void swap(hazard_pointer&) noexcept;
};

hazard_pointer make_hazard_pointer(
 hazard_pointer_domain& domain = hazard_pointer_default_domain());

void swap(hazard_pointer&, hazard_pointer&) noexcept;

28

© 2021.29

Hazard Pointers Proposal for C++26
template <typename T, typename D = default_delete<T>>
class hazard_pointer_obj_base {
public:
 void retire(D d = D()) noexcept;
};

class hazard_pointer {
public:
 hazard_pointer() noexcept; // Empty
 hazard_pointer(hazard_pointer&&) noexcept;
 hazard_pointer& operator=(hazard_pointer&&) noexcept;
 ~hazard_pointer();
 [[nodiscard]] bool empty() const noexcept;
 template <typename T> T* protect(const atomic<T*>& src) noexcept;
 template <typename T> bool try_protect(T*& ptr, const atomic<T*>& src)
noexcept;
 template <typename T> void reset_protection(const T* ptr) noexcept;
 void reset_protection(nullptr_t = nullptr) noexcept;
 void swap(hazard_pointer&) noexcept;
};

hazard_pointer make_hazard_pointer();

void swap(hazard_pointer&, hazard_pointer&) noexcept;

29

© 2021.30

Hazard Pointers Beyond C++26
• Hazard pointer array optimization

• In heavy use in Folly for ~4 years. Simple.

• Synchronous reclamation
• Folly cohort synchronous reclamation: In heavy use in Folly for 3+ years.
• Global cleanup as in TS2?
• Other variations?
• CPPCON 2021: Hazard pointer synchronous reclamation beyond Concurrency TS2

• Integrated link counting
• In heavy use in Folly for ~4 years. Formal wording may not be simple.

• Domains:
• Custom domain allocators as in TS2?
• WiredTiger Feedback: Separate checking protection from reclamation.
• Folly experience: Robust default domain. No custom domains needed so far.

30

© 2021.31

RCU in Concurrency TS 2

31

© 2021.32

C++ RCU: A Learning Experience

My previous C++ project had been in 1990

My initial attempt at RCU bindings in C++ thus used “virtual”

This resulted in some pointed feedback

32

© 2021.33

Again With Curiously Recurring Template Pattern

Diagnostic-driven development leads to this dubious code:

struct foo: std::rcu_obj_base<foo> {
 int a;
};

33

Actually, RCU will be in an experimental namespace rather than std::, but I am being optimistic!

© 2021.34

Again With Curiously Recurring Template Pattern

Diagnostic-driven development leads to this dubious code:

struct foo: std::rcu_obj_base<foo> {
 int a;
};

But it compiles?

34

© 2021.35

Again With Curiously Recurring Template Pattern

Diagnostic-driven development leads to this dubious code:

struct foo: std::rcu_obj_base<foo> {
 int a;
};

But it compiles? And it works???

35

© 2021.36

Again With Curiously Recurring Template Pattern

Diagnostic-driven development leads to this dubious code:

struct foo: std::rcu_obj_base<foo> {
 int a;
};

But it compiles? And it works???

The magic of CRTP!!!

36

© 2021.37

Mutually Assured Education

• My knowledge of C++ was and is limited
• Others’ knowledge of RCU was and is limited
• Therefore, lots of discussion and code samples

• https://github.com/paulmckrcu/RCUCPPbindings Test/paulmck
• Many thanks to my many teachers, especially those who taught in code:

• Arthur J. O’Dwyer, Daisy Hollman, and Izzy Muerte

• And lots of discussions afterwards
• Too many to fit on a slide, but see authors and contributors to many papers

37

© 2021.38

A Little Bike-Shedding Along the Way

38
Wikimedia Commons User SeppVei

© 2021.39

A Little Bike-Shedding Along the Way

• template<T> replaced museum-piece abstract classes ;-)
• synchronize_rcu() to rcu_synchronize() for consistency
• RAII: rcu_reader to a Cpp17BasicLockable rcu_domain
• Deleters may be invoked directly from a retire call

• Late-breaking news: May need to inform users of this (more on this later)

• Non-intrusive rcu_retire() (now in Linux kernel…)

39

© 2021.40

RCU RAII Readers

• As C++ developers might expect:

void an_rcu_reader()
{
 do_something_before_reader();
 std::unique_lock<std::rcu_domain> rdru(std::rcu_default_domain());
 do_something_within_reader();;
}

void wait_for_rcu_readers()
{
 rcu_synchronize();
}

40

© 2021.41

Author: ADA&Neagoe This file is licensed under the Creative Commons Attribution-ShareAlike license versions 3.0, 2.5, 2.0, and 1.0.

4141

As RCU users might expect:

© 2021.42

RCU RAII Readers

• As C++ developers might expect, but more succinctly:

void an_rcu_reader()
{
 do_something_before_reader();
 std::unique_lock<std::rcu_domain> rdru();
 do_something_within_reader();;
}

• Except that not all the world can live within the confines of an
RCU RAII reader...

42

© 2021.43

RCU Non-RAII Readers

• And another fine example of diagnostic-driven development!
• Function to start an RCU reader:

std::unique_lock<std::rcu_domain> start_deferred_reader()
{
 std::unique_lock<std::rcu_domain> new_rdr(std::rcu_default_domain());
 return std::move(new_rdr);
}

• Function to end an RCU reader:

void end_deferred_reader(std::unique_lock<std::rcu_domain> old_rdr)
{
}

43

© 2021.44

Invoking RCU Non-RAII Readers

• Whenever the spirit std::move()s you:

void an_rcu_reader()
{
 do_something_before_reader();
 auto rdr = std::move(start_deferred_reader()); // rcu_read_lock();
 do_something_within_reader();
 end_deferred_reader(std::move(rdr)); // rcu_read_unlock();
 do_something_after_reader();
}

• But why not just add a pair of curly braces???

44

© 2021.45

LockLockLockLock

Why RCU Non-RAII Readers?

45

Root

Internal Internal

Leaf
Object

Leaf
Object

Leaf
Object

Leaf
Object

RCU

© 2021.46

Why RCU Non-RAII Readers?

• Use RCU to protect a search structure, and locking on objects

void update_object(int key)
{
 auto rdr = std::move(start_deferred_reader()); // rcu_read_lock();
 auto p& = find_object(key);
 if (needs_update(p)) {
 std::lock_guard<std::mutex> guard(p.objmutex);
 end_deferred_reader(std::move(rdr)); // rcu_read_unlock();
 if (needs_update(p))
 do_rcu_unsafe_locked_update(p);
 } else {
 end_deferred_reader(std::move(rdr)); // rcu_read_unlock();
 }
}

46

© 2021.47

Why RCU Non-RAII Readers?

• Use RCU to protect a search structure, and locking on objects

void update_object(int key)
{
 auto rdr = std::move(start_deferred_reader()); // rcu_read_lock();
 auto p& = find_object(key);
 if (needs_update(p)) {
 std::lock_guard<std::mutex> guard(p.objmutex);
 end_deferred_reader(std::move(rdr)); // rcu_read_unlock();
 if (needs_update(p))
 do_rcu_unsafe_locked_update(p);
 } else {
 end_deferred_reader(std::move(rdr)); // rcu_read_unlock();
 }
}

47

RCU

© 2021.48

Why RCU Non-RAII Readers?

• Use RCU to protect a search structure, and locking on objects

void update_object(int key)
{
 auto rdr = std::move(start_deferred_reader()); // rcu_read_lock();
 auto p& = find_object(key);
 if (needs_update(p)) {
 std::lock_guard<std::mutex> guard(p.objmutex);
 end_deferred_reader(std::move(rdr)); // rcu_read_unlock();
 if (needs_update(p))
 do_rcu_unsafe_locked_update(p);
 } else {
 end_deferred_reader(std::move(rdr)); // rcu_read_unlock();
 }
}

48

RCU
Locking

© 2021.49

What Future Learnings Might There Be?

• QEMU developers’ on deleters being invoked from rcu_retire():
• Don’t do that!!! We hate the resulting deadlocks!!!

49

© 2021.50

What rcu_retire() deadlocks???

• If any lock is acquired by any deleter, that lock cannot be held
across any call to .retire() or rcu_retire()!

void hapless_retire_invoker(Foo *p)
{
 std::lock_guard<std::mutex> guard(mymutex);
 rcu_retire(p);
 // Which might invoke deleters.
 // And if any of those deleters acquire mymutex, game over!!!
}

50

© 2021.51

What Future Learnings Might There Be?

• QEMU developers’ on deleters being invoked from rcu_retire():
• Don’t do that!!! We hate the resulting deadlocks!!!
• But some environments don’t have much choice
• Perhaps a static function? If it returns false, no such deadlocks!

bool rcu_deleters_from_retire(rcu_domain& dom = rcu_default_domain()) noexcept;

51

© 2021.52

What Future Learnings Might There Be?

• QEMU developers’ on deleters being invoked from rcu_retire():
• Don’t do that!!! We hate the resulting deadlocks!!!
• But some environments don’t have much choice
• Perhaps a static function? If it returns false, no such deadlocks!

bool rcu_deleters_from_retire(rcu_domain& dom = rcu_default_domain()) noexcept;

• Maybe rcu_retire()? Type trait saying beg/borrow/steal thread? ...

52

© 2021.53

What Future Learnings Might There Be?

• QEMU developers’ on deleters being invoked from rcu_retire():
• Don’t do that!!! We hate the resulting deadlocks!!!
• But some environments don’t have much choice
• Perhaps a static function? If it returns false, no such deadlocks!

bool rcu_deleters_from_retire(rcu_domain& dom = rcu_default_domain()) noexcept;

• Maybe rcu_retire()? Type trait saying beg/borrow/steal thread? ...

• Additional unique_lock/lock_guard constructors for RCU?
• Some users might want a rough count of outstanding deleters
• Multiple instances of rcu_domain? Later...
• And there is still memory_order_consume...

53

© 2021.54

What Future Learnings Might There Be?

• QEMU developers’ on deleters being invoked from rcu_retire():
• Don’t do that!!! We hate the resulting deadlocks!!!
• But some environments don’t have much choice
• Perhaps a static function? If it returns false, no such deadlocks!

bool rcu_deleters_from_retire(rcu_domain& dom = rcu_default_domain()) noexcept;

• Maybe rcu_retire()? Type trait saying beg/borrow/steal thread? ...

• Additional unique_lock/lock_guard constructors for RCU?
• Some users might want a rough count of outstanding deleters
• Multiple instances of rcu_domain? Later...
• And there is still memory_order_consume...

• None of which are on critical path to IS

54

© 2021.55

Final Words

55

© 2021.56

The IRONY: it is not lost on us
SG1 Concurrency SG will have 2 concurrency TSes in the
github repository concurrently

56

© 2021.57

What is in Concurrency TS2?
• Several synchronization primitives for locked-free programming on concurrent data

structures. These are cell, hazard ptr and RCU. These extend the existing shared_ptr
and the proposed atomic_shared_ptr which all have safe reclamation facilities. As such
we also propose moving shared_ptr and atomic<shared<ptr>> to this new location. We
suspect this part may be controversial, so would ask for discussion on this topic.

• P1121R3. Hazard Pointers: Proposed Interface
and Wording for Concurrency TS 2.

• P1122R4 - Proposed Wording for Concurrent
Data Structures: Read-Copy-Update (RCU)

57

BACKUP

