with the C++ standard
Iibrary

Timur Doumler
YW @timur_audio

CppCon
29 October 2021

Real-time programming %

Pulsar PSR B1509-58"
Image credit: NASA/CXC/CTA/P

“Real-time” programming® < '
with the C++ standard

»
library
Timur Doumler
Y @timur_audio
CppCon _
29 October 2021 Pulsar PSR B1509-58

Image credit: NASA/CXC/CTA/P

what do we mean by “real-time”?

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

what do we mean by “real-time”?

what does it have to do with “low latency”?

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

“real-time”’

In order to be considered correcit,
not only does the program have to
produce the correct result,
but it also has to produce it
within a certain amount of time.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

USe Cases

- high-frequency trading
+ embedded devices

+ video games

» audio processing

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

audio processing

audio callback

!

process (buffer& b)
{

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

audio processing

audio callback audio callback audio callback
process(buffer& b) process (buffer& b) process(buffer& b)
{ { {
// write your data // write your data // write your data
// 1nto buffer! // 1nto buffer! // 1nto buffer!
} } }

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 9

audio processing

“real-time thread”

""""1"""""""""""""'T"""""""""""""'?'*” 17f7769
audio callback audio callback audio callback
process(buffer& b) process (buffer& b) process(buffer& b)
{ { {
// write your data // write your data // write your data
// 1nto buffer! // 1nto buffer! // 1nto buffer!
} } }

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 10

audio processing

“real-time thread”

_— > {ime
. ~1-10 ms : '
 —————

audio callback audio callback audio callback

process (buffer& b) process (buffer& b) process (buffer& b)

{ { {

} } }

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

11

“real-time” programming

on a normal, non-realtime OS kernel
(Windows, macQOS, i10S, Linux, Android)

cross-platform (portability!)
on a normal consumer machine
using a normal C++ implementation (msvc, clang, gcc)

only parts of the program are subject to “real-time”
constraints, others (e.g. GUI) are not

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

12

audio callback

!

process(buffer& b)

{
fillwithAudioSamples (buffer);

applyGain(buffer, g);

// are these functions “real-time safe”?

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio 13

“real-time safe code”

The worst-case execution time is
deterministic,
Known in advance,
independent of application data,
shorter than the given deadline.
The code does not fall.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

14

“real-time safe code”

The worst-case execution time is
deterministic,
known in advance, *in principle
independent of application data,
shorter than the given deadline.
The code does not fall.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

15

don't call anything that might block
(non-deterministic execution time + priority inversion!)
don't try to acquire a mutex
don't allocate / deallocate memory
don't do any I/O
don't interact with the thread scheduler
don't do any other system calls
don't call any 3rdparty code if you don't know what it's doing
don't use algorithms with > O(7) complexity
don’t use algorithms with amortised O(1) complexity

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

16

Is this the same as “freestanding C++"?

Proposals by Ben Craig:
P0829: Freestanding Proposal
P1642: Freestanding Library: Easy [utilities], [ranges], and
[iterators]
P2013 Freestanding Language: Optional ::operator new
P2198 Freestanding Feature-Test Macros and Implementatior
Defined Extensions
P2268 Freestanding Roadmap
... more upcoming

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 17

freestanding “real-time safe”

no locks
no floating-
point numbers no OS calls no algorithms
no allocations/deallocations > 0O(1)
no heap no exceptions
no I/O

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

18

“real-time safe”:
“don’t use these things

freestanding:

“‘these things do not exist” on the real-time thread”
no locks
no floating-
point numbers no OS calls no algorithms
no allocations/deallocations > 0O(1)
no heap no exceptions
no I/O

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

19

Which parts of the C++ standard library
are “real-time safe™?

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

20

The C++ standard says nothing about execution time.
The C++ standard doesn't say “f does not allocate memory”
Infer from specification that allocations are not needed
Sometimes, there are useful sentences like “f might invalidate
iterators” or “If there is enough memory, f does X, otherwise...”
The C++ standard doesn’t say "X doesn’t use locks”
It says "X may not be accessed from multiple threads
simultaneously”
Otherwise, it might say “X may not introduce data races”

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 21

Exceptions are not “real-time safe”.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

22

/ero-overhead deterministic exceptions: Throwing values

Document Number: P0709 R4 Date: 2019-08-04
Reply-to: Herb Sutter (hsutter@microsoft.com) Audience: EWG, LEWG

R4: All sections, but esp. the design in §4.3 (allocation failure), are updated with LEWG+EWG Cologne feedback.

Abstract

Divergent error handling has fractured the C++ community into incompatible dialects, because of long-standing
unresolved problems in C++ exception handling. This paper enumerates four interrelated problems in C++ error
handling. Although these could be four papers, | believe it is important to consider them together.

§4.1: “C++” projects commonly ban exceptions, because today’s dynamic exception types violate the zero-
overhead principle, and do not have statically boundable space and time costs. In particular, throw requires
dynamic allocation and catch of a type requires RTTl. — We must at minimum enable all C++ projects to ena-
ble exception handling and to use the standard language and library. This paper proposes extending C++’s ex-
ception handling to let functions declare that they throw a statically known type by value, so that the implemen-
tation can opt into an efficient implementation (a compatible ABI extension). Code that uses only this efficient
exception handling has zero space and time overhead compared to returning error codes.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

23

/ero-overhead deterministic exceptions: Throwing values

Document Number: P0709 R4 Date: 2019-08-04
Reply-to: Herb Sutter (hsutter@microsoft.com) Audience: EWG, LEWG

R4: All sections, but esp. the design in §4.3 (allocation failure), are updated with LEWG+EWG Cologne feedback.

Abstract

Divergent error handling has fractured the C++ community into incompatible dialects, because of long-standing
unresolved problems in C++ exception handling. This paper enumerates four interrelated problems in C++ error
handling. Although these could be four papers, | believe it is important to consider them together.

§4.1: “C++” projects commonly ban exceptions, because today’s dynamic exception types violate the zero-
overhead principle, and do not have statically boundable space and time costs. In particular, throw requires
dynamic allocation and catch of a type requires RTTl. — We must at minimum enable all C++ projects to ena-
ble exception handling and to use the standard language and library. This paper proposes extending C++’s ex-
ception handling to let functions declare that they throw a statically known type by value, so that the implemen-
tation can opt into an efficient implementation (a compatible ABI extension). Code that uses only this efficient
exception handling has zero space and time overhead compared to returning error codes.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

24

Is it "real-time safe” to enter & leave a try block
if you don't throw any exceptions?

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

25

Exception implementation depends on ABI

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

26

Exception implementation depends on ABI

Unwind info in static tables, aka “zero cost exception model”
Itanium ABI (gcc/clang)
MSVC 64-bit
ARM ABI (32-bit and 64-bit)
Unwind info generated at runtime
MSVC 32-bit

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

27

Is it "real-time safe” to enter & leave a try block
if you don't throw any exceptions?

Yes.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

28

— Ben Craliqg: "P1886 Error Speed Benchmarking”

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

29

What STL algorithms are “real-time safe™?

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

30

What STL algorithms are “real-time safe™?

(assuming the element type / iterator type are “real-time safe”)

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 31

What STL algorithms are “real-time safe™?

(assuming the element type / iterator type are “real-time safe”)

The standard doesn't say.

But for almost all of them, an optimal implementation

of the spec doesn't require additional allocations.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 32

Let comp be less{} and proj be identity{} for the overloads with no parameters by those names.

Preconditions: For the overloads 1n namespace std, RandomAccessIterator meets the Cppl7ValueSwap-

pable requirements ([swappable.requirements]) and the type of *first meets the Cppl7MoveConstructible
(Table 28) and Cppl7MoveAssignable (Table 30) requirements.

Effects: Sorts the elements in the range [first, last) with respect to comp and proj.
Returns: 1ast for the overloads in namespace ranges.

Complexity: Let Nbe 1ast - first. If enough extra memory is available, N log (N) comparisons. Otherwise,
at most N log >(N) comparisons. In either case, twice as many projections as the number of comparisons.

Remarks: Stable ([algorithm.stable]).

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 33

std: :stable sort
std::stable_partition
std::1nplace_merge

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

34

std: :stable sort
std::stable_partition
std::1nplace_merge

std: :execution::parallel x

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

what about STL containers?

- std::array is on the stack

— “realtime-safe”

(except at () which can throw)

- all others use dynamic memory
— not “realtime-safe”

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

36

OK, but what if you need a dynamically-sized

container on the real-time thread?

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

37

void process(buffer& b)

{
float vla[b.size()]; // variable-length array (VLA)

}

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

38

void process(buffer& b)

{
float vlal[b.size()]1; // MSVC: error C2131:

} // expression did not evaluate to a constant

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

39

STL containers with custom allocators?

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

40

STL containers with custom allocators?

general-purpose allocators (tcmalloc, romalloc...)
are not "real-time safe”

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

41

STL containers with custom allocators?

general-purpose allocators (tcmalloc, romalloc...)
are not “real-time safe":

minimising average cost, not worst case

not constant time

multithreaded (locks)

eventually go to OS to request dynamic memory

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

42

STL containers with custom allocators?

‘real-time safe” allocator:
constant time
single-threaded
only use memory allocated upfront

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

43

std: :array<float, 1024> stack_memory;

void process(buffer& b)
{
std: :pmr::monotonic_buffer resource monotonic_buffer(
stack _memory.data(),
stack_memory.size(),
std::pmr::null_memory_resource());

using allocator t = std::pmr::polymorphic_allocator<float>;
allocator_t allocator(&monotonic_buffer);

std::pmr::vector<float> my_vector(b.size(), 0.0f, allocator);

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

44

std: :array<float, 1024> stack_memory;

void process(buffer& b)
{
std::pmr::monotonic_buffer_resource monotonic_buffer(
stack _memory.data(),
stack_memory.size(),
std::pmr::null_memory_ resource());

using allocator t = std::pmr::polymorphic_allocator<float>;
allocator_t allocator(&monotonic_buffer);

std::pmr::vector<float> my_vector(b.size(), 0.0f, allocator);

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

45

std: :array<float, 1024> stack_memory;

void process(buffer& b)
{
std::pmr::monotonic_buffer_resource monotonic_buffer(
stack _memory.data(),
stack_memory.size(),
std::pmr::null_memory_resource());

using allocator t = std::pmr::polymorphic_allocator<float>;
allocator_t allocator(&monotonic_buffer);

std::pmr::vector<float> my_vector(b.size(), 0.0f, allocator);

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

46

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

std: :pmr::monotonic_buffer_resource monotonic_buffer(
safe _memory.data(),
safe _memory.size(),
std::pmr::null_memory_resource());

std::pmr::unsynchronized _pool resource pool(
std: :pmr::pool_options(...),
&monotonic buffer);

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

48

std: :pmr::monotonic_buffer_resource monotonic_buffer(
safe _memory.data(),
safe _memory.size(),
std::pmr::null_memory_resource());

std::pmr::unsynchronized_pool resource pool(
std: :pmr::pool_options(...),
&monotonic buffer);

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

49

- Better: static vector

- smaller
- faster (no indirection)
+ no need to construct allocator object outside vector

— David Stone: “Implementing static_vector”
— P0843

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 50

what about utilities?

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

51

what about utilities?

std::pair/std: :tuple are on the stack

— ‘realtime-safe”

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

52

what about utilities?

std::palir/std: :tuple are on the stack
— ‘realtime-safe”
std::optionalisjust a value + a bool on the stack

— ‘realtime-safe”

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

53

what about utilities?

std::pair/std: :tuple are on the stack

— “realtime-safe”

std::optionalisjust a value + a bool on the stack
— “realtime-safe”

std::variant is just a union on the stack

— “realtime-safe”

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

54

what about utilities?

std::palir/std: :tuple are on the stack

— ‘realtime-safe”

std::optionalisjust a value + a bool on the stack
— ‘realtime-safe”

std::variant is just a union on the stack

— “realtime-safe” (but boost: :variant is not!)

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

55

struct ThrowsOnConstruction

{
ThrowsOnConstruction() { throw std::exception(); }
};
volid variantTest()
{
std::variant<int, ThrowsOnConstruction> var = 42;
try
{
var.emplace<ThrowsOnConstruction>();
}
catch (std::exception&)
{
}
}

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

56

struct ThrowsOnConstruction

{
ThrowsOnConstruction() { throw std::exception(); }
};
volid variantTest()
{
std::variant<int, ThrowsOnConstruction> var = 42;
try
{
var.emplace<ThrowsOnConstruction>();
}
catch (std::exception&)
{
}
}

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

57

struct ThrowsOnConstruction

{
ThrowsOnConstruction() { throw std::exception(); }
};
volid variantTest()
{
std::variant<int, ThrowsOnConstruction> var = 42;
try
{
var.emplace<ThrowsOnConstruction>();
}
catch (std::exception&)
{
}
}

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

58

struct ThrowsOnConstruction

{
ThrowsOnConstruction() { throw std::exception(); }
}
volid variantTest()
{
std: :variant<int, ThrowsOnConstruction> var = 42;
try
{ // Boost.Variant:
var.emplace<ThrowsOnConstruction>(); // temporary heap backup
}
catch (std::exception&)
{
// Boost.Variant: still holds an 1int.
}
}

!

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

59

struct ThrowsOnConstruction

{
ThrowsOnConstruction() { throw std::exception(); }
}i
vold variantTest()
{
std::variant<int, ThrowsOnConstruction> var = 42;
try
{ // std::variant:
var.emplace<ThrowsOnConstruction>(); // no heap allocation
}
catch (std::exception&)
{
// var.valueless by exception() == true
}
}

!)

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

60

Everything using type erasure

IS not “real-time safe”

std::any
std::function

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

61

Lambdas

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

62

void process(buffer& b)

{
std::array a = {1, 1, 2, 3, 5, 8, 13};
auto f = [=] {
return std::accumulate (a.begin(), a.end(), 0);
}s
s

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

63

void process(buffer& b)

{
std::array a = {1, 1, 2, 3, 5, 8, 13};
auto f = [=] {
return std::accumulate (a.begin(), a.end(), 0);
};
do_something(b, f);
}

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

64

Coroutines

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

65

generator<int> f()

{
int 1 = 0;
while (true)
co_yield I++;
}

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

66

generator<int> f()

{
int 1 = 0:
while (true)
co_yield I++;
}
void process(buffer& b)
{
auto gen = f();
do_something(b, gen);
}

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

6/

generator<int> f()

{
int 1 = 0:
while (true)
co_yield I++;
}
void process(buffer& b)
{
auto gen = f(); // may perform dynamic allocation :(
do_something(b, gen);
}

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

Options

rely on the optimiser?
— Eyal Zedaka: “Using Coroutines to Implement
C++ Exceptions for Freestanding Environments”

create and suspend coroutine frame upfront
write your own promise type, defining its own custom operator

new and operator delete
Don’'t use coroutines on the real-time thread

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 69

mutex

timed_mutex
recursive_mutex
recursive_timed mutex

condition variable
condition_variable_any
counting_semaphore
binary_semaphore

shared mutex latch
shared_timed mutex barrier
scoped lock
unique_lock
shared_lock
Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 70

Nothing in the C++20 thread support

library is portably “real-time safe” :(

muté condition_varzdble
timed_muté condities variable_any
recursive mutex aihting _semaphore
recursive_timed mutex binary_semaphore
shared_mutex latch
shared_timed muts sarrier
scoped_Llo
unigue” Lock

ared _lock

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

71

std: :mutex mtx;
shared _object obj;

void process(buffer& b)

{
1f (std::unique_lock lock(mtx, std::try_to_lock); lock.owns_lock())
{
do_some_processing(b, obj);
}
else
{
std::ranges::fill(b, 0.0f);
}
}

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

/2

std: :mutex mtx;
shared _object obj;

void process(buffer& b)

{
1f (std::unique_lock lock(mtx, std::try_to_lock); lock.owns_lock())
{
do_some_processing(b, obj);
}
else
{
std::ranges::fill(b, 0.0f);
}
}

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

73

std: :mutex mtx;
shared _object obj;

void process(buffer& b)

{
1f (std::unique _lock lock(mtx, std::try to lock); lock.owns lock())
{
do_some_processing(b, obj);
@ // might wake up another thread -> not “real-time safe”
se
{
std::ranges::fill(b, 0.0f);
}
}

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

4

C++ has exactly one “real-time safe”

thread synchronisation mechanism:

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

73

C++ has exactly one “real-time safe”
thread synchronisation mechanism:

std: :atomic

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

76

std: :atomic

» use on its own (for single values shared with real-time thread)
+ lock-free queues

— not recommended to implement your own ;)
» spinlocks
— efficient implementation: see my talk at ADC 20
“Using locks in real-time audio processing, safely”

- make sure it's lock-free!

— “atomic” doesn’t mean lock-free, it means “no data race”

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

(&4

using T = std::complex<double>;

static_assert(std::atomic<T>::is_always_lock free);

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

/8

What about random number generators?

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

79

float get random_sample()

{
return float(std::rand()) / float(INT_MAX);
}
volid process(buffer& b)
{
std::ranges::fill(b, get_random_sample);
}

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

30

float get random_sample()

{
return float(std::rand()) / float(INT_MAX);
}
volid process(buffer& b)
{
std::ranges::fill(b, get_random_sample);
}

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

81

26 Numerics library [numerics]j

26.6 Random number generation [rand]

26.6.10 Low-quality random number generation [c.math.rand]

I [Note I: The header <cstdlib> declares the functions described 1n this subclause. — end note]

int rand() ;
vold srand(unsigned int seed);

Effects: The rand and srand functions have the semantics specified in the C standard library.

Remarks: The implementation may specify that particular library functions may call rand. It 1s
implementation-defined whether the rand function may introduce data races ([res.on.data.races]).

[Note 2: The other random number generation facilities in this document ([rand]) are often preferable to rand, because

rand's underlying algorithm is unspecified. Use of rand therefore continues to be non-portable, with unpredictable and
oft-questionable quality and performance. — end note]

SEE ALSO: ISO C 7.22.2

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

32

26 Numerics library [numerics]j

26.6 Random number generation [rand]

26.6.10 Low-quality random number generation [c.math.rand]

I [Note I: The header <cstdlib> declares the functions described 1n this subclause. — end note]

int rand/() ;
vold srand (unsigned 1nt seed);

Effects: The rand and srand functions have the semantics specified in the C standard library.

Remarks: The implementation may specify that particular library functions may call rand. It 1s
implementation-defined whether the rand function may introduce data races ([res.on.data.races]).

[Note 2: The other random number generation facilities in this document ([rand]) are often preferable to rand, because

rand's underlying algorithm is unspecified. Use of rand therefore continues to be non-portable, with unpredictable and
oft-questionable quality and performance. — end note]

SEE ALSO: ISO C 7.22.2

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

33

26 Numerics library [numerics]j

26.6 Random number generation [rand]

26.6.10 Low-quality random number generation [c.math.rand]

I [Note I: The header <cstdlib> declares the functions described 1n this subclause. — end note]

int rand/() ;
vold srand (unsigned 1nt seed);

Effects: The rand and srand functions have the semantics specified in the C standard library.

Remarks: The implementation may specify that particular library functions may call rand. It 1s
implementation-defined whether the rand function may introduce data races ([res.on.data.races]).

[Note 2: The other random number generation facilities in this document ([rand]) are often preferable to rand, because

rand's underlying algorithm is unspecified. Use of rand therefore continues to be non-portable, with unpredictable and
oft-questionable quality and performance. — end note]

SEE ALSO: ISO C 7.22.2

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

34

mersenne_twister _engine
linear_congruential_engine
subtract with _carry_engine

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

85

26.6.3.3 Uniform random bit generator requirements [rand.req.urng]

L' A uniform random bit generator g of type G 1s a function object returning unsigned integer values such that each val-
ue 1n the range of possible results has (1deally) equal probability of being returned.

[Note I: The degree to which g's results approximate the i1deal 1s often determined statistically. — end note]

template<class G>
concept uniform random bit generator =
invocable<G&> && unsigned integral<invoke result t<G&>> &&

requires {

{ G:imin() } —-> same as<invoke result t<G&>>;
{ G::max () } -> same as<invoke result t<G&>>;
requlires bool constant<(G::min() < G::max())>::value;

} oy

2 Let g be an object of type . ¢ models uniform random bit generator only if

@h — G::min() <= g/(),
22— g() <= G::max (), and
23) — g () has amortized constant complexity.

3 A class G meets the uniform random bit generator requirements 1f ¢ models uniform random bit generator, in-

voke result t<Gs&> 18 an unsigned integer type ([basic.fundamental]), and G provides a nested typedef-name re-
sult type that denotes the same type as invoke result t<G&>.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 86

-

Timur Doumler 4= @timur_audio - Jan 7, 2020

Question: In C++, how do | generate random numbers in a context that
requires the code to finish in a deterministic amount of time (realtime
audio callback)?

All the random number engines in std:: are only *amortised* constant
time according to the standard, so they're out ¢

O 19 (A QO 22 w 1l

Corentin @Cor3ntin - Jan 7, 2020

| am not entirely sure but | think it's still deterministic if not constant.
mersen twister has an internal state of fixed known size N and every N
numbers that state is recomputed, so it's O(N) then O(1) N-1 times, then
O(1) again. | believe N is rather small (327?).

O 1 0 QO T

Peter Bindels + = @dascandy42 - Jan 7, 2020
N is 624.

Q 1 () O 2 T

Corentin @Cor3ntin - Jan 7, 2020
| can see that being a problem on a toaster.

Q 2 n Q w

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

37

26.6.4.2 Class template 1inear congruential engine [rand.eng.lcong]

! A linear congruential engine random number engine produces unsigned integer random numbers. The state x;
of a 1inear congruential engine object x 1s of size 1 and consists of a single integer. The transition algorithm i1s a
modular linear function of the form TA(x;) = (a - x; + ¢) mod m; the generation algorithm 1s GA(x;) = x;+1.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 38

Xorshift

From Wikipedia, the free encyclopedia

Xorshift random number generators, also called shift-register generators are a class of
pseudorandom number generators that were discovered by George Marsaglia.l'l They are a
subset of linear-feedback shift registers (LFSRs) which allow a particularly efficient
implementation in software without using excessively sparse polynomials.[2] They generate the
next number in their sequence by repeatedly taking the exclusive or of a number with a bit-
shifted version of itself. This makes them execute extremely efficiently on modern computer
architectures, but does not benefit efficiency in a hardware implementation. Like all LFSRs, the
parameters have to be chosen very carefully in order to achieve a long period.[3]

For execution in software, xorshift generators are among the fastest non-cryptographically-
secure random number generators, requiring very small code and state. However, they do not e
pass every statistical test without further refinement. This weakness is well-known and is Exmle andom ditributin f &1
amended (as pointed out by Marsaglia in the original paper) by combining them with a non- Xorshift128

linear function, resulting e.g. in a xorshift+ or xorshift* generator. A native C implementation of a

xorshift+ generator that passes all tests from the BigCrush suite (with an order of magnitude

fewer failures than Mersenne Twister or WELL) typically takes fewer than 10 clock cycles on x86 to generate a random number, thanks

to instruction pipelining.!!

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

39

struct random_sample_gen

{
float operator()() { return distr(rng); }
private:
xorshift rand rng { std::random_device{}() };
std::uniform_real _distribution<float> distr { 0, 1.0f };
&
volid process(buffer& b)
{
std::ranges::fill(b, random_sample gen{});
}

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

90

struct random_sample_gen

{
float operator()() { return distr(rng); }
private:
xorshift _rand rng { std::random_device{}() };
std::uniform_real _distribution<float> distr { 0, 1.0f };
&
volid process(buffer& b)
{
std::ranges::fill(b, random_sample gen{});
}

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

91

26 Numerics library [numerics]

26.6 Random number generation [rand]
26.6.9 Random number distribution class templates [rand.dist]
26.6.9.1 In general [rand.dist.general]

I Each type instantiated from a class template specified in this subclause [rand.dist] meets the requirements
of a random number distribution type.

2 Descriptions are provided in this subclause [rand.dist] only for distribution operations that are not de-
scribed 1n [rand.req.dist] or for operations where there 1s additional semantic information. In particular, de-
clarations for copy constructors, for copy assignment operators, for streaming operators, and for equality
and 1nequality operators are not shown in the synopses.

3 The algorithms for producing each of the specified distributions are implementation-defined.

4+ The value of each probability density function p(z) and of each discrete probability function P(z;) speci-
fied 1n this subclause 1s 0 everywhere outside its stated domain.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

92

The std::uniform % distributions have

amortised O(1) complexity.

They can discard the generated random

number and generate another one.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

93

Peter Bindels ~ = @dascandy42 - Jan 7, 2020

Replying to @timur_audio

They can either be perfectly unbiased or constant time. The std ones are
perfectly unbiased, so not constant time, only amortized constant time.

O 1 n QO s

Timur Doumler 4= @timur_audio - Jan 7 2020
Why are these two properties mutually exclusive?

Q 2 n V), T 1l

Peter Bindels ~ = @dascandy42 - Jan 7, 2020

Take a die (6-sided). Roll it. Now somehow make this into a balanced
number between 1-5. 1-5 are easy - just direct map.

You get to pick what you do with the 6. Reroll or map to some number.
This is the same problem, except a 4.3 billion sided die.

Q 1 (W) ¥ 6 Ty

Peter Bindels ~ = @dascandy42 - Jan 7, 2020

And of course, if you map to some number it's biased to that number, if
you reroll it *could* keep coming up 6es.

QO 1 () QO 1 Ty

4

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

struct random_sample_gen

{
float operator() ()
{
auto x = float (rng() - rng.min()) / float (rng.max() + 1);
return Xx;
}
private:
xorshift_rand rng { std::random_device{}() };
&
void process(buffer& b)
{
std::ranges::fill(b, random_sample_gen{});
}

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

95

struct random_sample_gen

{
float operator() ()
{
auto x = float (rng() - rng.min()) / float (rng.max() + 1);
1f (x == 1.0f) x —= std::numeric_limits<float>::epsilon();
return Xx;
}
private:
xorshift _rand rng { std::random_device{}() };
&
void process(buffer& b)
{
std::ranges::fill(b, random_sample gen{});
}

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

96

[[realtime safe]]

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

97

Special thanks to:

Fabian Renn-Giles
Peter Bindels
Mattias Jansson
David Stone
Pablo Halpern

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

98

Thank you!

.
AN

Q20
- \'-
v

v~

'-v?

3

Timur Doumler
@timur_audio

Pulsar PSR B1509-58"
: Image credit: NASA/CXC/CTA/P

