
Algorithmic Complexity
Amir Kirsh & Adam Segoli Schubert

© All rights reservedimage source: https://www.ac.tuwien.ac.at/people/szeider/cartoon

Algorithmic Complexity @ CppCon 2021

Why this talk?

2

https://www.ac.tuwien.ac.at/people/szeider/cartoon/

Algorithmic Complexity @ CppCon 2021

Why this talk?
Performance is the name of the game

3

Algorithmic Complexity @ CppCon 2021

Why this talk?
Performance is the name of the game

You all (hopefully) know that O(n) is better than O(n2)

4

Algorithmic Complexity @ CppCon 2021

Performance is the name of the game

You all (hopefully) know that O(n) is better than O(n2)

But there is still important stuff that might be overlooked

Why this talk?

5

Algorithmic Complexity @ CppCon 2021

Why this talk?
Performance is the name of the game

You all (hopefully) know that O(n) is better than O(n2)

But there is still important stuff that might be overlooked

And…

6

Algorithmic Complexity @ CppCon 2021

Why this talk?
Performance is the name of the game

You all (hopefully) know that O(n) is better than O(n2)

But there is still important stuff that might be overlooked

And… the academic answer isn’t always the practical answer

7

Algorithmic Complexity @ CppCon 2021

About Us

8

Algorithmic Complexity @ CppCon 2021

Amir Kirsh

9

Lecturer
Academic College of Tel-Aviv-Yaffo
and Tel-Aviv University

Developer Advocate

Co-Organizer of the CoreCpp
conference and meetup group

Algorithmic Complexity @ CppCon 2021

Adam Segoli Schubert

10

Part of Dev Advocate Office at

Software consultant and programming instructor.

Collaborates and passionate about projects which focus on
decentralization, parallelization, with the objective of advancing
transparency, freely available distributed knowledge, and
autonomy.

Algorithmic Complexity @ CppCon 2021

Algorithmic Complexity
Performance is the name of the game

11

Algorithmic Complexity @ CppCon 2021

Algorithmic Complexity
It’s actually about something BIGGER than just performance

12

Algorithmic Complexity @ CppCon 2021

Algorithmic Complexity
What’s BIGGER than just performance?

13

Algorithmic Complexity @ CppCon 2021

Algorithmic Complexity
What’s BIGGER than just performance?

Scalability

14

Algorithmic Complexity @ CppCon 2021

Computational Complexity

Computational Complexity or simply Complexity of an algorithm
is the amount of resources required to run it.

- from Computational complexity in wikipedia

Resources:
The amount of time, storage, or any other resource.

15

Algorithmic Complexity @ CppCon 2021

Computational Complexity

n → f(n)

n - is size of input

f(n) - is the amount of resources required to run the algorithm

Time - number of required elementary operations
Often denoted by T(n) or t(n)

Space - Amount of memory required
Often denoted by S(n) or s(n)

16

https://en.wikipedia.org/wiki/Computational_complexity

Algorithmic Complexity @ CppCon 2021

Computational Complexity

Worst-Case Complexity

Maximum amount of resources needed over all inputs of size n.

Average-Case Complexity

Average amount of resources over all inputs of size n.

Best-Case Complexity

Minimum amount of resources needed over all inputs of size n.

17

Algorithmic Complexity @ CppCon 2021

Big O Notation
We say that:

f(n) ∈ O(g(n)) [f(n) = O(g(n)) as n→
∞]
iff:

∃k > 0 ∃n0 ∀ n > n0: f(n) ≤ k⋅g(n)

18

Algorithmic Complexity @ CppCon 2021

Only the dominating factor counts

In Big O, we care about asymptotic analysis, when n → ∞

Thus, for example:

t(n) = k1∙ n ∙ log(n) + k2 ∙ n ∈ O(n ∙ log(n))

19

Algorithmic Complexity @ CppCon 2021

Only the dominating factor counts

In Big O, we care about asymptotic analysis, when n → ∞

Thus, for example:

t(n) = k1∙ n ∙ log(n) + k2 ∙ n ∈ O(n ∙ log(n))

20

Algorithmic Complexity @ CppCon 2021

Only the dominating factor counts

In Big O, we care about asymptotic analysis, when n → ∞

Thus, for example:

t(n) = k1∙ n ∙ log(n) + k2 ∙ n ∈ O(n ∙ log(n))

21

Algorithmic Complexity @ CppCon 2021

Not in this talk...

22

Notation Name Short Explanation

𝚯(g(n)) Theta f(n) is bounded both above and below by g(n) asymptotically

Ω(g(n)) Omega f(n) is bounded below by g(n) asymptotically

o(g(n)) Small o f(n) is dominated by g(n) asymptotically

⍵(g(n)) Small omega f(n) dominates g(n) asymptotically

Õ(g(n)) Tilde O same as big O, but “ignores” logarithmic factors

Algorithmic Complexity @ CppCon 2021

Let the Charts talk

23

Algorithmic Complexity @ CppCon 2021

Let the Charts talk

24

Algorithmic Complexity @ CppCon 2021

Let the Charts talk

25

Algorithmic Complexity @ CppCon 2021

Let the Charts talk

26

Algorithmic Complexity @ CppCon 2021

Let the Charts talk

27

Algorithmic Complexity @ CppCon 2021

Let the Charts talk

28

Algorithmic Complexity @ CppCon 2021

Let the Charts talk

29

Algorithmic Complexity @ CppCon 2021

Let the Charts talk

30

Algorithmic Complexity @ CppCon 2021

Let the Charts talk

31

Algorithmic Complexity @ CppCon 2021

Time Estimates

32

Algorithmic Complexity @ CppCon 2021

Time Estimates

33

n O(1) O(log n) O(n) O(n log n) O(n2) O(n3) O(2n) O(n!)

1 1 μs 1 μs 1 μs 1 μs 1 μs 1 μs 2 μs 1 μs

10 1 μs 3 μs 10 μs 34 μs 100 μs 1 ms 1 ms 3.6 seconds

100 1 μs 6 μs 100 μs 665 μs 10 ms 1 sec >400 trillion
centuries

>googol
centuries

1,000 1 μs 9 μs 1 ms ~10 ms 1 sec 16.67 min

10,000 1 μs 13 μs 10 ms ~133 ms 1.67 min ~12 days

100,000 1 μs 16 μs 100 ms 1.67 sec 2.78 hours ~32 years

1,000,000 1 μs 19 μs 1 sec ~20 sec ~12 days ~32,000
years

* let’s assume our single operation takes 1 μs

Algorithmic Complexity @ CppCon 2021

Let’s see if we got it right
Are you ready for a short quiz?

34

Algorithmic Complexity @ CppCon 2021

(1) What is the Complexity of:
Get an element in a vector, at index i

35

i

Algorithmic Complexity @ CppCon 2021

(1) What is the Complexity of:
Get an element in a vector, at index i

O(1)

36

i

Algorithmic Complexity @ CppCon 2021

(2) What is the Complexity of:
Get an element in a list, at position i

37

i

Algorithmic Complexity @ CppCon 2021

(2) What is the Complexity of:
Get an element in a list, at position i

O(n)

38

i

Algorithmic Complexity @ CppCon 2021

(2) What is the Complexity of:
Get an element in a list, at position i

O(n)

See this chart

39

i

Algorithmic Complexity @ CppCon 2021

(3) What is the Complexity of:
push_back to a vector

40

push_back

https://quick-bench.com/q/HQPtiK9YCJnYbYePYD7pjbwehN8

Algorithmic Complexity @ CppCon 2021

(3) What is the Complexity of:
push_back to a vector

well, we need to talk about
Amortized Complexity

41

push_back

Algorithmic Complexity @ CppCon 2021

Amortized Complexity
Amortized complexity considers the total worst case complexity of a sequence of
operations, instead of just one operation.

Example 1:
If the total for n operations is in the worst case O(n) then the amortized complexity is O(1)

Example 2:
If the total for n operations is in the worst case O(n2) then the amortized complexity is O(n)

Note:
Amortized complexity is NOT the average complexity over different inputs of size n!

See: Tarjan, Robert Endre (April 1985). Amortized Computational Complexity

42

https://courses.cs.duke.edu/fall11/cps234/reading/Tarjan85_AmortizedComplexity.pdf

Algorithmic Complexity @ CppCon 2021

(3) What is the Complexity of:
push_back to a vector

Amortized O(1)

43

push_back

Algorithmic Complexity @ CppCon 2021

(3) What is the Complexity of:
push_back to a vector

Amortized O(1)

How do we know?

44

push_back

Algorithmic Complexity @ CppCon 2021

(3) What is the Complexity of:
push_back to a vector

Amortized O(1)

How do we know?

Because the spec requires it!

45

push_back

Algorithmic Complexity @ CppCon 2021

C++ Specifications - Complexity Requirements
In the spec (examples):
containers requirements
unordered associative containers + requirements
complexity of std::sort algorithm
complexity of std::ranges::partition algorithm

Then in CppReference (examples):
complexity of std::vector::insert
complexity of std::list::insert
complexity of std::unordered_map::insert
complexity of std::search algorithm
complexity of std::sort algorithm

46

https://timsong-cpp.github.io/cppwp/n4868/container.requirements#sequence.reqmts-14
https://timsong-cpp.github.io/cppwp/n4868/containers#tab:container.req
https://timsong-cpp.github.io/cppwp/n4868/containers#unord.req.general-1
https://timsong-cpp.github.io/cppwp/n4868/containers#tab:container.hash.req
https://timsong-cpp.github.io/cppwp/n4868/alg.sorting#sort-5
https://timsong-cpp.github.io/cppwp/n4868/alg.sorting#alg.partitions-8
https://en.cppreference.com/w/cpp/container/vector/insert#Complexity
https://en.cppreference.com/w/cpp/container/list/insert#Complexity
https://en.cppreference.com/w/cpp/container/unordered_map/insert#Complexity
https://en.cppreference.com/w/cpp/container/list/insert#Complexity
https://en.cppreference.com/w/cpp/algorithm/search#Complexity
https://en.cppreference.com/w/cpp/container/vector/insert#Complexity
https://en.cppreference.com/w/cpp/algorithm/sort#Complexity

Algorithmic Complexity @ CppCon 2021

std::vector resizing following push_back
Case A
There is enough capacity
push_back ~ O(1)

47

push_back

capacity

Case B
There isn’t enough capacity
Needs to move / copy the vector ~ O(n)

push_back

not enough capacity

allocate new capacity
copy / move
free the old allocation

To have: push_back ~ amortized O(1):
At most 1 of n calls may be of case B

Algorithmic Complexity @ CppCon 2021

An important side note on vector resizing!
There are 3 options when moving / copying the elements from the old allocation:

(a) For trivially copyable elements: vector may use memcpy
(b) If the elements are nothrow_move_constructible: vector moves the elements
(c) Otherwise: the elements are copied

=> if you implement your own move make sure it is marked with noexcept

Widget(Widget&& w) noexcept { /* … */ }

See benchmark

48

https://en.cppreference.com/w/cpp/named_req/TriviallyCopyable
https://en.cppreference.com/w/cpp/types/is_move_constructible
https://quick-bench.com/q/x_cF3UPK-50QKiKpnRzGgJW2v3c

Algorithmic Complexity @ CppCon 2021

Back to our quiz

49

Algorithmic Complexity @ CppCon 2021

Back to our quiz
Are you ready?

50

Algorithmic Complexity @ CppCon 2021

(4) What is the Complexity of:
Sorting a vector using std::sort or std::ranges::sort / a list using list::sort

51

Algorithmic Complexity @ CppCon 2021

(4) What is the Complexity of:
Sorting a vector using std::sort or std::ranges::sort / a list using list::sort

O(n log(n))

See the spec for std::sort and for list::sort

52

https://timsong-cpp.github.io/cppwp/n4868/alg.sorting#sort
https://timsong-cpp.github.io/cppwp/n4868/sequences#lib:sort,list

Algorithmic Complexity @ CppCon 2021

(4) What is the Complexity of:
Sorting a vector using std::sort or std::ranges::sort / a list using list::sort

O(n log(n))

See the spec for std::sort and for list::sort

Note: it might be more efficient to copy the list into a vector, sort the vector, then copy back
Why?
See benchmark

53

Algorithmic Complexity @ CppCon 2021

(5) What is the Complexity of:
Finding the median of n items

54

https://timsong-cpp.github.io/cppwp/n4868/alg.sorting#sort
https://timsong-cpp.github.io/cppwp/n4868/sequences#lib:sort,list
https://quick-bench.com/q/S-zWf8TcxCZ2e73EWrXDENPtj_8

Algorithmic Complexity @ CppCon 2021

(5) What is the Complexity of:
Finding the median of n items

There is an algorithm, PICK, with O(n) worst case complexity!

However, another algorithm, Quickselect, which is O(n2) at worst
case, is usually faster.

They are both O(n) on average.

See https://cs.stackexchange.com/questions/1914/find-median-of-unsorted-array-in-on-time

55

Algorithmic Complexity @ CppCon 2021

(5) What is the Complexity of:
Finding the median of n items

There is an algorithm, PICK, with O(n) worst case complexity!

However, another algorithm, Quickselect, which is O(n2) at worst
case, is usually faster.

They are both O(n) on average.

See https://cs.stackexchange.com/questions/1914/find-median-of-unsorted-array-in-on-time
See also spec requirement for std::nth_element

56

http://people.csail.mit.edu/rivest/pubs/BFPRT73.pdf
https://en.wikipedia.org/wiki/Quickselect
https://cs.stackexchange.com/questions/1914/find-median-of-unsorted-array-in-on-time
http://people.csail.mit.edu/rivest/pubs/BFPRT73.pdf
https://en.wikipedia.org/wiki/Quickselect
https://cs.stackexchange.com/questions/1914/find-median-of-unsorted-array-in-on-time
https://timsong-cpp.github.io/cppwp/n4868/alg.sorting#alg.nth.element-5

Algorithmic Complexity @ CppCon 2021

(6) What is the Complexity of:
find / insert - unordered_map

57

Algorithmic Complexity @ CppCon 2021

(6) What is the Complexity of:
find / insert - unordered_map

O(1) average case

O(n) worst case

See the spec for find
See the spec for insert

58

https://timsong-cpp.github.io/cppwp/n4868/containers#tab:container.hash.req-row-48
https://timsong-cpp.github.io/cppwp/n4868/containers#tab:container.hash.req-row-37

Algorithmic Complexity @ CppCon 2021

(6) What is the Complexity of:
Performing equality (==) between two unordered_maps of the same type

59

Algorithmic Complexity @ CppCon 2021

(6) What is the Complexity of:
Performing equality (==) between two unordered_maps of the same type

O(n) average case

O(n2) worst case

See the spec

60

https://timsong-cpp.github.io/cppwp/n4868/containers#unord.req.general-12

Algorithmic Complexity @ CppCon 2021

Other Examples

61

Algorithmic Complexity @ CppCon 2021

Examples: O(1)
std::list::insert (at any position)

std::list::erase (for a single iterator)

std::vector::pop_back

62

Algorithmic Complexity @ CppCon 2021

Examples: O(n)
std::find

std::max

std::min

63

Algorithmic Complexity @ CppCon 2021

Examples: O(log n)
std::binary_search

std::map::find

std::map::insert

64

Algorithmic Complexity @ CppCon 2021

Examples: O(n log n)
std::sort

65

Algorithmic Complexity @ CppCon 2021

Examples: O(n2)
Bubble sort

66

Algorithmic Complexity @ CppCon 2021

Examples: O(n2)
Bubble sort

Is there any reason whatsoever for using bubble sort?

67

Algorithmic Complexity @ CppCon 2021

Examples: O(n2)
Bubble sort

Is there any reason whatsoever for using bubble sort?

- In space complexity, maybe?
- Being stable? (what is stable sorting algorithm?)

68

Algorithmic Complexity @ CppCon 2021

Examples: O(n2)
Bubble sort

Is there any reason whatsoever for using bubble sort?

- In space complexity, maybe?
- Being stable? (what is stable sorting algorithm?)

Well, no - even though Bubble Sort is O(1) for space complexity and it is stable -
there are other sorting algorithms with same attributes and better complexity.

69

Algorithmic Complexity @ CppCon 2021

Computing a perfect Strategy for n x n Chess

Print the Power set of a set of size n.

Think about finding a collision in SHA256 / SHA512 …

70

Examples: O(2n)

https://en.wikipedia.org/wiki/Sorting_algorithm#Comparison_sorts
https://www.sciencedirect.com/science/article/pii/0097316581900169
https://en.wikipedia.org/wiki/Power_set

Algorithmic Complexity @ CppCon 2021

Ignoring the constant c in t(n) = c*n, i.e O(n)

71

What is the complexity of the code below?

std::vector<Widget> vec;

for(auto& widget: vec) {

 for(int j=0; j<100; ++j) {

 // assume that below is O(1)

 widget.doSomething();

 }

}

Algorithmic Complexity @ CppCon 2021

Ignoring the constant c in t(n) = c*n, i.e O(n)

72

What is the complexity of the code below?

std::vector<Widget> vec;

for(auto& widget: vec) {

 for(int j=0; j<100; ++j) {

 // assume that below is O(1)

 widget.doSomething();

 }

}

Suppose that we can achieve the same,
with t(n) = n * log n
Which would be better?

Algorithmic Complexity @ CppCon 2021

Ignoring the constant c in t(n) = c*n, i.e O(n)

73

What is the complexity of the code below?

std::vector<Widget> vec;

for(auto& widget: vec) {

 for(int j=0; j<100; ++j) {

 // assume that below is O(1)

 widget.doSomething();

 }

}

Suppose that we can achieve the same,
with t(n) = n * log n
Which would be better?

log(n) < 64 < 100, for any 64 bit n

Algorithmic Complexity @ CppCon 2021

Ignoring the constant c in t(n) = c*n, i.e O(n)

74

What is the complexity of the code below?

std::vector<Widget> vec;

for(auto& widget: vec) {

 for(int j=0; j<100; ++j) {

 // assume that below is O(1)

 widget.doSomething();

 }

}

Suppose that we can achieve the same,
with t(n) = n * log n
Which would be better?

log(n) < 64 < 100, for any 64 bit n

log(vector::size) <= 64

Algorithmic Complexity @ CppCon 2021

Two calls to std algorithms

75

unsigned long sum = std::accumulate(vec.begin(), vec.end(), 0);

double inner_product =

std::inner_product(vec.begin(), vec.end(), vec.begin(), 0.0);

Algorithmic Complexity @ CppCon 2021

Two calls to std algorithms

76

unsigned long sum = std::accumulate(vec.begin(), vec.end(), 0);

double inner_product =

std::inner_product(vec.begin(), vec.end(), vec.begin(), 0.0);

Above calls iterate over vec twice.
Would it be better to perform the two operations inside a single loop?

Algorithmic Complexity @ CppCon 2021

Two calls to std algorithms

77

unsigned long sum = std::accumulate(vec.begin(), vec.end(), 0);

double inner_product =

std::inner_product(vec.begin(), vec.end(), vec.begin(), 0.0);

Above calls iterate over vec twice.
Would it be better to perform the two operations inside a single loop?

Two loops ~ n + n = O(n)
Single loop with two operations ~ 2n = O(n)

Algorithmic Complexity @ CppCon 2021

Two calls to std algorithms

78

unsigned long sum = std::accumulate(vec.begin(), vec.end(), 0);

double inner_product =

std::inner_product(vec.begin(), vec.end(), vec.begin(), 0.0);

Above calls iterate over vec twice.
Would it be better to perform the two operations inside a single loop?

Two loops ~ n + n = O(n)
Single loop with two operations ~ 2n = O(n)

So are they the same?

Algorithmic Complexity @ CppCon 2021

Two calls to std algorithms

79

unsigned long sum = std::accumulate(vec.begin(), vec.end(), 0);

double inner_product =

std::inner_product(vec.begin(), vec.end(), vec.begin(), 0.0);

Above calls iterate over vec twice.
Would it be better to perform the two operations inside a single loop?

Two loops ~ n + n = O(n)
Single loop with two operations ~ 2n = O(n)

So are they the same? Complexity-wise yes, practically - not necessarily!

Algorithmic Complexity @ CppCon 2021

Two calls to std algorithms

80

unsigned long sum = std::accumulate(vec.begin(), vec.end(), 0);

double inner_product =

std::inner_product(vec.begin(), vec.end(), vec.begin(), 0.0);

Above calls iterate over vec twice.
Would it be better to perform the two operations inside a single loop?

It might be better due to data locality
see benchmarks with std::list and std::vector
(and see also SO discussion with additional alternatives).

https://quick-bench.com/q/5k3qInUGSL0k96Be8cyUzuPEjrE
https://quick-bench.com/q/kyvMPLTJo5mujZ5c3FRkmThHAcY
https://stackoverflow.com/questions/7616511/calculate-mean-and-standard-deviation-from-a-vector-of-samples-in-c-using-boos

Algorithmic Complexity @ CppCon 2021

Two calls to std algorithms

81

A note:
std::ranges allows consecutive algorithm calls to be “lazily attached”
into a single loop

Algorithmic Complexity @ CppCon 2021

Two calls to std algorithms

82

A note:
std::ranges allows consecutive algorithm calls to be “lazily attached”
into a single loop

ranges require its own talk, but if you are interested…
Here is a relevant code example (courtesy of Dvir Yitzchaki)
You may also want to watch Dvir’s CppCon 2019 talk on ranges

https://quick-bench.com/q/IGfAZyz3r8Cs4Q1_bS6vCAUsu-M
https://www.youtube.com/watch?v=qQtS50ZChN8

Algorithmic Complexity @ CppCon 2021

Best Practices

83

Algorithmic Complexity @ CppCon 2021

Which loop is more important?
for (int i=0; i < n; ++i) {

 Operation 1 ← preformed n times

 for (int j=0; j < n; ++j) {

 Operation 2 ← performed n2 times

 }

}

84

Algorithmic Complexity @ CppCon 2021

Which loop is more important?
for (int i=0; i < n; ++i) {

 Operation 1 ← preformed n times

 for (int j=0; j < n; ++j) {

 Operation 2 ← performed n2 times

 }

}

85

Algorithmic Complexity @ CppCon 2021

Break out of loops

Design your algorithm to break as early as possible from the loop

e.g. Bubble Sort with a flag on whether no swaps made in inner loop.

86

Algorithmic Complexity @ CppCon 2021

Break when it takes too long...

Design your algorithms to break if it doesn’t conclude within reasonable time.
Otherwise, you are stucking your entire process, usually when the result is no
longer required.

* This has more to do with algorithm design than algorithmic complexity

87

Algorithmic Complexity @ CppCon 2021

Simple calls may hide non-constant complexity
Remember to take into account the inner loops

std::vector<Trigger> triggers;

triggers.reserve(matrix.rows());

for (const auto& row: matrix) {

 triggers.push_back(Trigger::create(row));

}

88

Algorithmic Complexity @ CppCon 2021

Time vs. Space Complexity
max_occurences_item(vec)

89

Algorithmic Complexity @ CppCon 2021

Time vs. Space Complexity
max_occurences_item(vec)

Option 1 - sort and count:
O(1) in space [worst case]
O(n log n) in time [worst and average case]

Option 2 - index and count:
O(n) in space [worst case]
O(n) in time [on average]

90

Algorithmic Complexity @ CppCon 2021

Setup Time (1)

Setup time vs. query time: indexing (e.g. previous slide)

91

Algorithmic Complexity @ CppCon 2021

Setup Time (2)

What is the best practical way to sort a list?
It may be: copy to a vector, sort the vector, assign back to a list
(already presented above...)

See benchmark
See also SO discussion

92

https://quick-bench.com/q/rSmijgHslGKwnxfxsPSkyYTVMI0
https://stackoverflow.com/a/1525419/2085626

Algorithmic Complexity @ CppCon 2021

Setup Time (3)

Setup time to achieve cache locality / branch prediction / other accelerations:
This is one of the most famous questions in SO

On the other hand, benchmarks are quite confusing…
- a benchmark without optimization (not a good way to benchmark)
- a benchmark with -O3 (unsorted wins!)
- another benchmark with -O3 (now pre-sort wins!)

93

Algorithmic Complexity @ CppCon 2021

Picking the right container
std::vector is the best, it’s not us who say that, it is the spec:

When choosing a container, remember vector is best;
leave a comment to explain if you choose from the rest!

std::unordered_map
make sure to provide a good enough hash function for your key,
or forget about amortized O(1) operations…

hash function requirements in the spec

94

https://stackoverflow.com/questions/11227809/why-is-processing-a-sorted-array-faster-than-processing-an-unsorted-array
https://quick-bench.com/q/KaKNSap87pfjqQEusIMoiIlaVDk
https://quick-bench.com/q/FOEx8tvzo5akwi3wq1T9fbagxN8
https://quick-bench.com/q/wLFD4s2iGypJ3ogo-aaQWrt8eCo
https://timsong-cpp.github.io/cppwp/n4868/containers#sequence.reqmts-2
https://timsong-cpp.github.io/cppwp/n4868/hash.requirements#tab:cpp17.hash-row-2

Algorithmic Complexity @ CppCon 2021

Using std algorithms

Don’t reinvent the wheel

e.g. don’t implement your own sort, you may accidentally implement bubble sort

95

Algorithmic Complexity @ CppCon 2021

Summary

96

Algorithmic Complexity @ CppCon 2021

Summary
Implications of bad algorithms and improper use of data structures are potentially
much bigger than other micro-performance improvements

Switching to a better algorithm can decrease runtime dramatically!

97

Algorithmic Complexity @ CppCon 2021

Summary
Thinking about algorithmic complexity is not pre-optimization

It’s an essential element of your design and its ability to scale

98

Algorithmic Complexity @ CppCon 2021

Summary
The theoretical worst case Big O shouldn’t be your only decision factor:

- In real life, constants are important: 2n is better than 4n
- In real life, we might choose an algorithm with better average performance

but worse worst case complexity
- Memory locality is highly important

99

Algorithmic Complexity @ CppCon 2021

Summary
Remember the tradeoffs:

- Prior setup (e.g. sorting / indexing)
- Space vs. Time - using space to save runtime (e.g. caching, indexing)

100

Algorithmic Complexity @ CppCon 2021

Summary
A final note on Space Complexity

101

Algorithmic Complexity @ CppCon 2021

Summary
A final note on Space Complexity

the Conference ⇔ Wardrobe complexity problem

102

Algorithmic Complexity @ CppCon 2021 103

void conclude(auto greetings) {
while(still_time() && have_questions()) {

ask();
}
greetings();

}

conclude([]{ std::cout << "Thank you!"; });

Thank you!

