From Eager
Futures/Promises
to Lazy Continuations

Evolving an Actor Library Based on Lessons
Learned from Large-Scale Deployments

Benjamin Hindman
CppCon 2021 @benh

prologue

e past life at UC Berkeley, Twitter, Mesosphere/D2iQ

e currently research at UC Berkeley and reboot.dev

e big thanks to Nikita (@FolMing), Zakhar (@onelxj), and Artur
(@ArthurBandaryk)

chapters

(1)
(2)
(3)
(4)
(5)
)
(7)
(8)

motivating futures/promises + actors
libprocess

revisiting the problem

evolution of libprocess

eventuals

scheduling

QUEEEINIS

type erasure

chapters

(1)
(2)
(3)
(4)
(5)
)
(7)
(8)

motivating futures/promises + actors
libprocess

revisiting the problem

evolution of libprocess

eventuals

scheduling

QUEEEINIS

type erasure

key challenges we've faced
building distributed systems with good
performance and correctness

challenges
building systems

challenges building systems

challenges building systems

(1) you have to wait (2) you have state

challenges building systems

(1) you have to wait (2) you have state

motivating example

text = SpellCheck (text) ;
text

GrammarCheck (text) ;

function composition is fundamental

GrammarCheck (SpellCheck ())

motivating example

std:: (std::
body = http::UrlEncode ({
response = http::Post(
response.body;

text) {

4

text}) ;

, body) ;

motivating example

(
= ::UrlEncode ({
= : :Post (
response.body;

14

) A
text}) ;

, body) ;

motivating example

std::string (std::string text) {
auto body = http::UrlEncode ({ , text});
auto response = http::Post(, body) ;

return response.body;

you have to wait!

whether you end up writing code that is blocking or non-blocking doesn’t change
the underlying issue ... you have to wait!

possible solutions

possible solutions

just walit ...

possible solutions

possible solutions

use threads ...

possible solutions

use threads ... foo expensive, not conducive to correctness

possible solutions

use threads ... foo expensive, not conducive to correctness

use coroutines ...

possible solutions

use threads ... foo expensive, not conducive to correctness

use coroutines ... circa 2009

possible solutions

use threads ... foo expensive, not conducive to correctness

use coroutines ... circa 2009

use a different language (e.g., Erlang) ...

possible solutions

use threads ... foo expensive, not conducive to correctness

use coroutines ... circa 2009

use a different language (e.g., Erlang) ... or bring Erlang to C++!

possible solutions

use threads ... foo expensive, not conducive to correctness

use coroutines ... circa 2009

use a different language (e.g., Erlang) ... or bring Erlang to C++!

use callbacks ...

possible solutions

use threads ... foo expensive, not conducive to correctness

use coroutines ... circa 2009

use a different language (e.g., Erlang) ... or bring Erlang to C++!

use callbacks ... more on this later

possible solutions

use threads ... foo expensive, not conducive to correctness

use coroutines ... circa 2009

use a different language (e.g., Erlang) ... or bring Erlang to C++!
use callbacks ... more on this later

use futures/promises ...

possible solutions

use threads ... foo expensive, not conducive to correctness

use coroutines ... circa 2009

use a different language (e.g., Erlang) ... or bring Erlang to C++!
use callbacks ... more on this later

use futures/promises ... |

futures/promises: “buffered channel”

< : >

futures/promises: “buffered channel”

< : >

thread x

< :: > = channel.Reader() ;

futures/promises: “buffered channel”

< : >

thread x

< :: > = channel.Reader() ;
reader.Read() ;

futures/promises: “buffered channel”

< : > channel;
thread x
< P > reader = channel.Reader();
reader.Read() ;
thread y

< i > writer = channel.Writer();

futures/promises: “buffered channel”

< s > channel;
thread x
< - > reader = channel.Reader();
reader.Read () ;
thread y
< i > writer = channel.Writer();

writer.Write (),

futures/promises: “buffered channel”

< s > channel;
thread x
< - > reader = channel.Reader();
reader.Read () ;
thread y
< i > writer = channel.Writer();

writer.Write (),
writer.Close() ;

futures/promises: “buffered channel”

< s > channel;
thread x
< e > reader = channel.Reader();
reader.Read() ;
thread y
< e > writer = channel.Writer|():;

writer.Write (),

writer.Close () ;

futures/promises: “buffered channel”

< D > promise;
thread x
< e > reader = channel.Reader();
reader.Read() ;
thread y
< e > writer = channel.Writer|():;

writer.Write (),

writer.Close () ;

futures/promises: “buffered channel”

< 1 > promise;
thread x
< - > reader = channel.Reader();
reader.Read() ;
thread y
< e > writer = channel.Writer|():;

writer.Write (),

writer.Close () ;

futures/promises: “buffered channel”

< 1 > promise;
thread x
< 1 > future = promise.Future() ;
reader.Read() ;
thread y
< e > writer = channel.Writer|():;

writer.Write (),

writer.Close () ;

futures/promises: “buffered channel”

< >
thread x
< - > = promise.Future();
reader.Read() ;
thread y
< .- > = channel.Writer();

writer.Write (),
writer.Close () ;

futures/promises: “buffered channel”

< : >
thread x
< - > = promise.Future();
future.Get () ;
thread y
< .- > = channel.Writer();

writer.Write (),
writer.Close () ;

futures/promises: “buffered channel”

< 1 > promise;
thread x
< D > future = promise.Future();
future.Get () ;
thread y
< i > writer = channel.Writer();

writer.Write (),

writer.Close () ;

futures/promises: “buffered channel”

< I >
thread x
< - > = promise.Future() ;
future.Get () ;
thread y

writer.Write (),

writer.Close () ;

futures/promises: “buffered channel”

< 2§ >
thread x
< - > = promise.Future() ;
future.Get () ;
thread y
writer.Write () ;

writer.Close() ;

futures/promises: “buffered channel”

< I >
thread x
< - > = promise.Future() ;
future.Get () ;
thread y

promise. Set ()

futures/promises

std:: (std::
body = http::UrlEncode ({
response = http::Post(
response.body;

text) {

4

text}) ;

, body) ;

futures/promises

(- text) {
body = ::UrlEncode ({ , text});
response = ::Post (, body);
response.body;

futures/promises

< :: > (
body = ::UrlEncode ({
response = ::Post (

response.body;

14

text)
text}) ;

{

14

body) ;

futures/promises

< 38 > (3 6) A
= ::UrlEncode ({ , text});
= : :Post (, body);
response.body;

futures/promises

<std:: > (std:: text)
body = http::UrlEncode ({ , text});
<std:: > promise;

future = promise.Future() ;
response = http::Post (

future;

14

body) ;

futures/promises

<std:: > (std::
body = http::UrlEncode ({
<std:: > promise;
future = promise.Future();

response = http::Post(

future;

14

text)
text}) ;

r bOdY) 7

futures/promises

<std:: > (std::
body = http::UrlEncode ({
<std:: > promise;
future = promise.Future();

http: :AsyncPost (

body,
[promise = std::move (promise)] (

promise.Set (response.body) ;

})

future;

text) {

text}) ;

&& response) {

futures/promises

<std:: > (std:: text) {
body = http::UrlEncode ({ , text});
<std:: > promise;

future = promise.Future() ;
http: :AsyncPost (

body,
[promise = std::move (promise)] (&& response) {
promise.Set (response.body) ;

})

future;

futures/promises failures

< 38 > (2 g text) {

body = ::UrlEncode ({ , text});

< 3 ¢ > promise;

future = promise.Future /()

: :AsyncPost (
body,

[promise = ::move (promise)] (&& response) |

(response.code != 200) promise.Fail (response.code) ;

promise.Set (response.body) ;

1) ;

future;

futures/promises and function composition

text = SpellCheck (text) ;
text = GrammarCheck (text) ;

futures/promises and function composition

text = SpellCheck (text) . Get() ;
text = GrammarCheck (text) . Get() ;

futures/promises and function composition

text = SpellCheck (text) . Get() ;
text = GrammarCheck (text) . Get() ;

futures/promises and function composition

3 ¢ (D) |
text = SpellCheck (text) .Get() ;
GrammarCheck (text) .Get () ;

futures/promises and function composition

. - (::) A
text = SpellCheck (text) .Get () ;
GrammarCheck (text) .Get () ;

futures/promises and function composition

< 5 - > (::) |
text = SpellCheck (text) .Get () ;
GrammarCheck (text) .Get () ;

futures/promises and function composition

< s > (I) A
text = SpellCheck (text) .Get() ;
GrammarCheck (text) .Get () ;

futures/promises and function composition

< s > (I) A
SpellCheck (text)
GrammarCheck (text) .Get () ;

futures/promises and function composition

< s > (-) |
SpellCheck (text)
GrammarCheck (text) .Get () ;

futures/promises and function composition

< 83 > (45) |
SpellCheck (text)
.Then ([] (&&) A
GrammarCheck (text) ;

}) s

futures/promises and function composition

< 9 9 > (5 8) |
SpellCheck (text)
.Then ([] (&&) A
GrammarCheck (text) ;

}) s

futures/promises and function composition

< 9 9 > (5 8) |
SpellCheck (text)
.Then ([] (&&) A
GrammarCheck (text) ;

}) s

challenges building systems

(1) you have to wait | (2) you have state

challenges building systems

(1) you have to wait (2) you have state

executing code with futures/promises

e only need a single thread to execute code with futures/promises because you
never block (i.e., a single threaded “event loop”)

executing code with futures/promises

e however, code may not be executed atomically because it may be interleaved
with other code when it has to wait (executing other code while you have to
wait is the whole point of all this!)

executing code with futures/promises

only need a single thread to execute code with futures/promises because you
never block (i.e., a single threaded “event loop”)

however, code may not be executed atomically because it may be interleaved
with other code when it has to wait (executing other code while you have to
wait is the whole point of all this!)

many call this “concurrency” vs parallelism because it only gives you the
illusion of parallelism since you’re not running anything simultaneously (i.e.,
on multiple CPUs)

executing code with futures/promises

only need a single thread to execute code with futures/promises because you
never block (i.e., a single threaded “event loop”)

however, code may not be executed atomically because it may be interleaved
with other code when it has to wait (executing other code while you have to
wait is the whole point of all this!)

many call this “concurrency” vs parallelism because it only gives you the
illusion of parallelism since you’re not running anything simultaneously (i.e.,
on multiple CPUs)

but you still have all the synchronization problems from parallelism!

executing code with futures/promises

only need a single thread to execute code with futures/promises because you
never block (i.e., a single threaded “event loop”)

however, code may not be executed atomically because it may be interleaved
with other code when it has to wait (executing other code while you have to
wait is the whole point of all this!)

many call this “concurrency” vs parallelism because it only gives you the
illusion of parallelism since you’re not running anything simultaneously (i.e.,
on multiple CPUs)

but you still have all the synchronization problems from parallelism!

can execute in parallel by using a thread pool instead of a single thread

executing code with futures/promises

only need a single thread to execute code with futures/promises because you
never block (i.e., a single threaded “event loop”)

however, code may not be executed atomically because it may be interleaved
with other code when it has to wait (executing other code while you have to
wait is the whole point of all this!)

many call this “concurrency” vs parallelism because it only gives you the
illusion of parallelism since you’re not running anything simultaneously (i.e.,
on multiple CPUs)

but you still have all the synchronization problems from parallelism!

can execute in parallel by using a thread pool instead of a single thread

possible solutions

1963: mutexes, semaphores

1973: actors

1974 monitors

1978: communicating sequential processes (CSP)

1987: statecharts

possible solutions

1963:

1973: actors

1974

1978: communicating sequential processes (CSP)

1987: statecharts

possible solutions without threads

1963: mutexes, semaphores

1973: actors

1974 monitors

1978: communicating sequential processes (CSP)

1987: statecharts

without threads?

abstractions without threads
the
model/semantics and
of

actors encapsulate
execution, synchronization, state

more encapsulation = higher-level abstraction

e (usually) easier to reason about
e (usually) easier to run on more hardware/platforms
e (usually) easier to optimize

actors

local mutable state

queue of incoming “messages”

receive and handle “messages” one at a time

sending “messages” to other actors is non-blocking (no waiting!)
same programming model whether local or distributed

“actors” in C++

many actor libraries are based on low-level message-passing “send/receive”

struct MyActor : public Actor {
void (ActorId sender, Message message, void* arguments) override {
switch (message) {
case MESSAGE FOO REQUEST:
auto* request = (FooRequest*) arguments;

Send (sender, MESSAGE FOO RESPONSE, response) ;
break;
case MESSAGE BAR REQUEST:

“actors” in C++

many actor libraries are based on low-level message-passing “send/receive”

struct MyActor : public Actor ({
void (ActorId sender, Message message, void* arguments) override {
switch (message) {
case MESSAGE FOO REQUEST:
auto* request = (FooRequest?*) arguments;

Send (sender, MESSAGE FOO RESPONSE, response);
break;
case MESSAGE BAR REQUEST:

“actors” in C++

many actor libraries are based on low-level message-passing “send/receive”

struct MyActor : public Actor {
void (ActorId sender, Message message, void* arguments) override {
switch (message) {
case MESSAGE FOO REQUEST:
auto* request = (FooRequest?*) arguments;

Send (sender, MESSAGE FOO RESPONSE, response);
break;
case MESSAGE BAR REQUEST:

“actors” in C++

many actor libraries are based on low-level message-passing “send/receive”

MyActor : Actor {
void (ActorId sender, Message message, void* arguments)
(message) {
MESSAGE FOO_ REQUEST:
* request = (FooRequest*) arguments;

Send (sender, MESSAGE FOO RESPONSE, response);

MESSAGE _BAR REQUEST:

“actors” in C++

many actor libraries are based on low-level message-passing “send/receive”

struct MyActor : public Actor {
void (ActorId sender, Message message, void* arguments) override ({
switch (message) {
case MESSAGE FOO REQUEST:
auto* request = (FooRequest*) arguments;

Send (sender, MESSAGE FOO RESPONSE, response);
break;
case MESSAGE BAR REQUEST:

“actors” in C++

many actor libraries are based on low-level message-passing “send/receive”

MyActor : Actor {
void (ActorId sender, Message message, void* arguments)
(message) |
MESSAGE FOO REQUEST:
* request = (FooRequest*) arguments;

Send (sender, MESSAGE FOO RESPONSE, response) ;

4

MESSAGE BAR REQUEST:

actors (visualized)

actor A actor B actor C

actors (visualized)
actor A actor B actor C

| reawest

actors (visualized)
actor A actor B actor C

| reauest

actors (visualized)
actor A actor B actor C

| reauest

T

actors (visualized)
actor A actor B actor C

| reauest

\
i

actors (visualized)
actor A actor B actor C

| reauest

T
i,

actors (visualized)

actor A actor B actor C
|\

—

can’t | get the same thing using locks for all my
methods? (or mark all my methods in Java as
synchronized)

NO!

threads (visualized)

thread A thread B thread C

threads (visualized)

thread A thread B thread C

threads (visualized)

thread A thread B thread C

threads (visualized)

thread A thread B thread C

\

threads (visualized)

thread A thread B thread C

\

threads (visualized)

thread A thread B thread C

\

threads (visualized)

thread A thread B thread C

\

threads (visualized)

thread A thread B thread C

\

threads (visualized)

CPUA CPUB CPUC

\

actors (visualized)

CPUA CPUB CPUC
I\

—

actor performance

for parallel programs data will often need to be shared and/or moved between
execution resources (i.e., cores)

but for distributed/network services, the data is often only shared with other
machines and bouncing the data unnecessarily between arbitrary cores incurs
performance slowdowns (and in many cases due to cache line sharing the
slowdown impacts everyone)

(check out http://seastar.io for more examples of distributed services using actors)

http://seastar.io

challenges building systems

(1) you have to wait (2) you have state @

chapters

(1)
(2)
(3)
(4)
(5)
)
(7)
(8)

motivating futures/promises + actors
libprocess

revisiting the problem

evolution of libprocess

eventuals

scheduling

QUEEEINIS

type erasure

chapters

(1)
(2)
(3)
(4)
(5)
)
(7)
(8)

motivating futures/promises + actors
libprocess

revisiting the problem

evolution of libprocess

eventuals

scheduling

QUEEEINIS

type erasure

circa 2009

e building distributed system Apache Mesos at UC Berkeley
e using C++ to avoid runtime non-determinism that had been plaguing the

Hadoop distributed system (due to garbage collection, it was written in Java)
e wanted to use actors

so let’s build a library for actors in C++ ... libprocess

our novelty: let's combine futures/promises + actors!

why actors need futures/promises

“actors” in C++

{

(sender, message, * arguments)
(message) {
MESSAGE FOO_ REQUEST:
* request = (*) arguments;

Send (sender, MESSAGE FOO RESPONSE, response) ;

4

MESSAGE BAR REQUEST:

why actors need futures/promises

hard to reason about control flow between actors

e sending/receiving messages is the “assembly language” of the actor model
(even though they do solve “having to wait”)
e messages are like gotos!

gotos considered harmful ...

why actors need futures/promises

instead of gotos we want:

e function calls (but without blocking so ... return futures!)

actor;

future = actor.Foo(...);

why actors need futures/promises

instead of gotos we want:

e function calls (but without blocking so ... return futures!)
e function composition (but without blocking so ... Then ())

MyActor actor;

future = actor.Foo(...)
.Then ([] (&& response) {

})

libprocess actors (pseudocode)

: {
<FooResponse> ()

On(self (), [, 10 {
FooResponse response;

response;

})

{

libprocess actors (pseudocode)

{

<FooResponse> ()

On(self (), I , 10 |
FooResponse response;

response;

libprocess actors (pseudocode)

: {
<FooResponse> ()

On(self (), I , 10 |
FooResponse response;

response;

{

libprocess actors (pseudocode)

{

<FooResponse> ()

On(self (), [, 10 {
FooResponse response;

response;

});

libprocess actors (pseudocode)

{

<FooResponse> ()

On(self (), [, 10 |
FooResponse response;

response;

libprocess actors (pseudocode)

{

<FooResponse> () |
On(self (), I / 10 A

SomeOtherFunctionReturningAFuture ()
.Then ([] (&&) |

}) s

why futures/promises need actors

why futures/promises need actors

{
< > () {

SomeFunction ()
.Then ([] (&&) |

}) s

why futures/promises need actors

{

< > () {
SomeFunction ()
.Then ([] (&& value) {

}) s

strawman: using the execution resource that completes the promise
associated with the future returned from SomeFunction ()

why futures/promises need actors

{
< > () A

SomeFunction ()
.Then ([] (55) A

why futures/promises need actors

MyObject {
Future<void> () {
SomeFunction ()
.Then ([1 (&& value) |

std: :unique lock<std::mutex> lock (mutex) ;
i += value;
}) s
}

int i ;

' ; ' ing!?
std: :mutex mutex_; ouch, calling promise.Set () might be blocking!”

hard to reason about due to non-deterministic
performance characteristics (kind of like garbage
collection, that thing we wanted to avoid)

why futures/promises need actors

{
< > () A

SomeFunction ()
.Then ([] (&& value) |

mutex .Acquire ()
.Then ([10 {
i += value;
mutex .Release();

})
asynchronous mutex?

mutex ;

why futures/promises need actors

{
< > () A

SomeFunction ()
.Then ([] (&& value) |

mutex .Acquire ()
.Then ([10 {
i += value;
mutex .Release();

});
b asynchronous mutex?

ugh, calling Release () will/must execute any
mutex ; waiters which might not block but could still incur
bi arbitrary non-deterministic execution!

why futures/promises need actors

: {
< > () A
SomeFunction ()
.Then ([] (&&) |
On(self (), [, value] () {
i += value;

}) s

why futures/promises need actors

: {
< > () A

SomeFunction ()
.Then (DeferOn (self (), [] (&&) |

i += value;

1))

why futures/promises need actors

< > () A

SomeFunction ()
.Then (DeferOn (self (), [] (&& value) {

i += value;

}))

e actor provides “executor” to execute the continuation
e setting the promise is fast (non-blocking)
e no need for synchronization!

why futures/promises need actors

< > () A

SomeFunction ()
.Then (DeferOn (self (), [] (&& value) {

i += value;

}))

e actor provides “executor” to execute the continuation
e setting the promise is fast (non-blocking)
e no need for synchronization!

Apache Mesos (built with libprocess)

e over a half million lines of code

e hundreds of contributors

e about a dozen mutexes! (mostly for interfacing with code not written w/
libprocess)

e massive scale (clusters of ~80k physical machines)

chapters

(1)
(2)
(3)
(4)
(5)
)
(7)
(8)

motivating futures/promises + actors
libprocess

revisiting the problem

evolution of libprocess

eventuals

scheduling

QUEEEINIS

type erasure

chapters

(1)
(2)
(3)
(4)
(5)
)
(7)
(8)

motivating futures/promises + actors
libprocess

revisiting the problem

evolution of libprocess

eventuals

scheduling

QUEEEINIS

type erasure

revisiting the problem ...

S (
text = SpellCheck (text) ;
GrammarCheck (text) ;

)

{

revisiting the problem ...

std:: (std:: text) {
text = SpellCheck (text) ;
GrammarCheck (text) ;

... this code is sequential

revisiting the problem ...

std:: (std::

text = SpellCheck (text) ;
GrammarCheck (text) ;

... this code is sequential

... definitely not parallel

text) {

revisiting the problem ...

std: :string (std: :string text) ({
text = SpellCheck (text) ;
return GrammarCheck (text) ;

}

... this code is sequential
... definitely not parallel

... and even if executed concurrently has no state to synchronize

revisiting the problem ...

Future<std: :string> (std: :string text) ({
return SpellCheck (text)
. Then([] (auto&& text) {
return GrammarCheck (text) ;

}) s

acquires locks and dynamically allocates memory!

(acceptable for parallel/concurrent code, but this isn’t!)

why do we need locks and dynamic memory?

< 83 > (98) |
SpellCheck (text)
.Then ([] (&&) A
GrammarCheck (text) ;

1)

why do we need locks and dynamic memory?

< 2 g > (2 g text) {

future = promise. future() ;

: :AsyncPost (
-y

[promise = : :move (promise)] (&& response) {
promise.Set (response.body) ;

b))

future
.Then ([] (&& text) |
GrammarCheck (text) ;

b8

why do we need locks and dynamic memory?

= promise.future();
: :AsyncPost (
[= : :move (promise)] (& &) |
promise.Set (response.body) ;

1)

future
.Then ([] (55) o
GrammarCheck (text) ;

b8

why do we need locks and dynamic memory?

= promise.future();
: :AsyncPost (
[= : :move (promise)] (&&) A
promise.Set (response.body) ;
}) s

future
.Then ([] (& &) |
GrammarCheck (text) ;

})

why do we need locks and dynamic memory?

< 2 g > (2 g text) {
future = promise.future();
: :AsyncPost (
7
[promise = : :move (promise)] (&& response) |

promise.Set (response.body) ;
N

' I
future there is a race!

.Then ([] (&& text) {
GrammarCheck (text) ;

})

why do we need locks and dynamic memory?

<std:: > (std:: text) {

future = promise.future();
http::AsyncPost (
[promise = std::move (promise)] (&& response) {
promise.Set (response.body) ;
});

' |
future there is a race!
.Then ([] (§& text) { _ " |
GrammarCheck (text) ; prormse r.nay. be set at the sfame time
1) ; continuation is composed via Then ()

thus, we need /locks!

why do we need locks and dynamic memory?

<std:: > (std:: text) {

future = promise.future();
http::AsyncPost (
[promise = std::move (promise)] (&& response) {
promise.Set (response.body) ;
});

future there is a race!
.Then ([] (§& text) { _
GrammarCheck (text) ; prorryse r.nay. be set before |
1) ; continuation is composed via Then ()

thus, we need dynamic allocation!

can we avoid locking?

can we avoid dynamic allocation?

chapters

(1)
(2)
(3)
(4)
(5)
)
(7)
(8)

motivating futures/promises + actors
libprocess

revisiting the problem

evolution of libprocess

eventuals

scheduling

QUEEEINIS

type erasure

chapters

(1)
(2)
(3)
(4)
(5)
)
(7)
(8)

motivating futures/promises + actors
libprocess

revisiting the problem

evolution of libprocess

eventuals

scheduling

QUEEEINIS

type erasure

callbacks don't require locks

<std:: > (std:: text) {
body = http::UrlEncode ({ , text});
<std:: > promise;

future = promise.Future() ;
http: :AsyncPost (

body,
[promise = std::move (promise)] (&& response) {
promise.Set (response.body) ;

})

future;

callbacks don't require locks

(std:: text, std:: < (std::
body = http::UrlEncode ({ , text});
<std:: > promise;
future = promise.Future();

http::AsyncPost (

body,

[promise = std::move (promise)] (&& response) |
promise.Set (response.body) ;
});

future;

)> £) |

callbacks don't require locks

(std:: text, std:: < (std::
body = http::UrlEncode ({ , text});
<std:: > promise;

future = promise.Future() ;

http::AsyncPost (

body,
[promise = std::move (promise)] (

promise.Set (response.body) ;

i

future;

&& response) |

)> £)

callbacks don't require locks

(2 C text, < (
body = ::UrlEncode ({ , text});
: :AsyncPost (
body,
[promise = ::move (promise)] (&& response)

promise.Set (response.body) ;

i

future;

{

callbacks don't require locks

(38 text,
body = ::UrlEncode ({
: :AsyncPost (
body,
[promise = : :move (promise)]

promise.Set (response.body) ;

i

future;

14

text}) ;

&& response)

{

callbacks don't require locks

= ::UrlEncode ({

: :AsyncPost (

body,

[f = : :move (£f)] (& &
f (response.body) ;

b) s

future;

14

text}) ;

callbacks don't require locks

= ::UrlEncode ({

: :AsyncPost (

body,

[f = : :move (£f)] (& &
f (response.body) ;

}) s

future;

14

text}) ;

callbacks don't require locks

< >
(std:: ;) |
= ::UrlEncode ({ , text});
: :AsyncPost (
body,
[k = : :move (k)] (& &)

k (response.body) ;
}) s

future;

callbacks don't require locks

< >
(D text, k) {
body = : :UrlEncode ({ , text});
: :AsyncPost (
body,
[k = ::move (k)] (&& response) {

k (response.body) ;
})

futures/promises support failures (and cancellation)

< >
(3 3 .) A
= ::UrlEncode ({ , text});
: :AsyncPost (
body,
[k = ::move (k)] (&&) o
(response.code != 200) 27?7

k (response.body) ;

futures/promises support failures (and cancellation)

< , >
(3 8 ’ v) |
= ::UrlEncode ({ , text});
: :AsyncPost (
body,
[s = : :move (s), = ::move (£f)] (&&) |
(response.code != 200) £ (response.code)

s (response.body) ;

})

futures/promises support failures (and cancellation)

< >
(3 3 .) A
= ::UrlEncode ({ , text});
: :AsyncPost (
body,
[k = : :move (k)] (&&)
(response.code != 200) k.Fail (response.code);

k.Success (response.body) ;

futures/promises support failures (and cancellation)

< >
(std:: text, k) {
body = http::UrlEncode ({ , text});
http::AsyncPost (

body,
[k = std: :move (k)] (&& response) {
(response.code != 200) k.Fail (response.code);
k.Success (response.body) ;

won'’t be discussing “cancellation/cancelled”
in more detail in this talk but check out the
repository for implementation

can we avoid locking? W

can we avoid dynamic allocation?

do we need to dynamically allocate?

< >
(g ,) |
= : :UrlEncode ({ , text});
: :AsyncPost (
body,
[k = ::move (k)] (&&) {
(response.code != 200) k.Fail (response.code) ;

k.Success (response.body) ;

})

do we need to dynamically allocate?

< >
(s /) A
= ::UrlEncode ({ , text});
: :AsyncPost (
body,
[k = ::move (k)] (&&) {
(response.code != 200) k.Fail (response.code) ;

k.Success (response.body) ;

})

need to allocate the continuation somewhere!

{

< >
(D , D ,) |
* = (::move (k)) ;
http post(url, body, data, +[](, * , *
* = <K*>(data) ;
k->Success (: :Response{code, body}) ;

k;
}) s
}

}

)

{

need to allocate the continuation somewhere!

{

< >
() A
3 = (::move (k)) ;
http post (url, body, data, +[](, *
* = <K*>(data) ;
k=>Success (: :Response{code, body}):;

k;
1) ;
}

}

need to allocate the continuation somewhere!

{

< >
(- , M ,) |
% = (::move (k)) ;
http post(url, body, data, +[](, * , *
* = <K*>(data) ;
k->Success (: :Response{code, body}) ;

k;
}) s
}

}

)

{

solve all problems with level of indirection ...

' could avoid allocation if return continuation K as part of result of function?

solve all problems with level of indirection ...

' could avoid allocation if return continuation K as part of result of function?

a continuation as an argument and a continuation as the result!!!!
(that composes/encapsulates the continuation passed in as an argument)

continuations in continuations

< >
(std:: url, std:: body,
* data = (std: :move (k)) ;
http post(url, body, data, +[](code,
* k = <K*>(data) ;

k->Success (http: :Response{code, body}) ;
k;
});

k)

{

* body,

* data) {

continuations in continuations

< >
(e url, T body, k) {
* data = (::move (k)) ;
http post(url, body, data, +[](code, * body, * data) {
* ko= <K*>(data) ;
k—=>Success (: :Response{code, body});

k;
1) s

continuations in continuations

(3 g url, g body, k) {

() {
* data = &k;
http post(url, body, data, +[](code, * body, * data)

* ko= <K*>(data) ;
k=>Success (: :Response{code, body});
k;
Y) s

url, body;

continuations in continuations

(3¢ url, g body, k) {

0 |
* data = &k;
http post(url, body, data, +[](code, * body, * data)

* ko= <K*>(data) ;
k=>Success (: :Response{code, body});
k;
Y) s

url, body;

continuations in continuations

(3¢ url, g body, k) {

0 |
* data = &k;
http post(url, body, data, +[](code, * body, * data)

* k = <K*>(data) ;
k=>Success (: :Response{code, body});

i

url, body;

continuations in continuations

(T url, T body, k) {

O {
* data = &k;

http post(url, body, data, +[](code, * body, * data)
{
* k = <K*>(data) ;
k=>Success (: :Response{code, body});
}) s
}
url, body;

continuations in continuations

(o url, S g body, k) A
0 |
* data = &k;
http post(url, body, data, +[](code, * body, * data)
* k = <K*>(data) ;
k=>Success (: :Response{code, body});

i

url, body;

Continuation{ : :move (url) , : :move (body) , : :move (k) } ;

continuations in continuations

< >
(std:: url, std:: body, k) {

0 {
* data = &k;
http post(url, body, data, +[](code, * body, * data) {
* k = <K*>(data) ;
k->Success (http: :Response{code, body}) ;
});

std:: url, body;

Continuation{std: :move (url), std::move(body), std::move(k)};

lazy continuations

k = http::Post(url, bedy,) ;

e resulting type is the “computational graph”

lazy continuations

auto k = http::Post(url, body,) ;

k.Start () ;

e resulting type is the “computational graph”
e the graphis lazy, i.e., nothing has started when we get it (tradeoff for dynamic
allocation) and must be explicitly started

lazy continuations

auto k = http::Post(url, body,) ;

k.Start () ;

e resulting type is the “computational graph”

e the graphis lazy, i.e., nothing has started when we get it (tradeoff for dynamic
allocation) and must be explicitly started

e the graph can be allocated on the stack, or the heap (but we can do a single heap
allocation rather than one for each operation that requires waiting!)

lazy continuations

auto k = http::Post(url, body,) ;

k.Start () ;

e resulting type is the “computational graph”

e the graphis lazy, i.e., nothing has started when we get it (tradeoff for dynamic
allocation) and must be explicitly started

e the graph can be allocated on the stack, or the heap (but we can do a single heap
allocation rather than one for each operation that requires waiting!)

e memory must exist until completion!

can we avoid locking? V&

can we avoid dynamic allocation? V&

chapters

(1)
(2)
(3)
(4)
(5)
)
(7)
(8)

motivating futures/promises + actors
libprocess

revisiting the problem

evolution of libprocess

eventuals

scheduling

QUEEEINIS

type erasure

chapters

(1)
(2)
(3)
(4)
(5)
)
(7)
(8)

motivating futures/promises + actors
libprocess

revisiting the problem

evolution of libprocess

eventuals

scheduling

QUEEEINIS

type erasure

lazy continuations

= ::Post(url, body,

k.Start () ;

lazy-econtintations eventuals

k = http::Post(url, bedy,) ;

k.Start () ;

follow along at https://github.com/3rdparty/eventuals

lazy-econtintations eventuals

k = http::Post(url, bedy,) ;

k.Start () ;

passing around the continuation k is not very ergonomic!

Eventual<T>

template <typename K>

auto (std: :string url, std::string body, K k) {
struct Continuation {
void () {

void* data = &k;
http post(url, body, data, +[] (long code, const char* body, void* data) ({
K* k = reinterpret cast<K*>(data);
k->Success (http: :Response{code, body}) ;
});
}
std: :string url, body;
K k;
};

return Continuation{std: :move (url), std::move (body), std::move(k)};

Eventual<T>

(std:: url, std:: body, k) {
0 |
* data = &k;
http post(url, body, data, +[](code, * body, * data)
* k = <K*>(data) ;
k->Success (http::Response{code, body}):;

std:: url, body;

Continuation{ std::move (url), std::move (body), std::move (k)};

Eventual<T>

(std:: url, std:: body) {
0 |
* data = &k;
http post(url, body, data, +[](code, * body, * data)
* k = <K*>(data) ;
k->Success (http::Response{code, body}):;

std:: url, body;

Continuation{ std::move (url), std::move (body), std::move (k)};

Eventual<T>

(std:: url, std:: body) {
() {
* data = &k;
http post(url, body, data, +[](code, * body, * data)
* k = <K*>(data) ;
k->Success (http::Response{code, body}):;

std:: url, body;

Continuation{std: :move (url), std::move(body), std::move(k)};

Eventual<T>

(D url, - body) {
Eventual< : :Response> ([url, body] (& k) {
= D < (k)>;
* data = &k;
http post(url, body, data, +[](code, * body, * data)

* k = <K*>(data) ;

k=>Success (: :Response{code, body});

i

1)

Eventual<T>

(std:: url, std:: body) {
Eventual<http: :Response>([url, body] (
= std:: < (k)>;
* data = &k;
http post(url, body, data, +[](code,
* k = <K*>(data) ;

k->Success (http: :Response{code, body}) ;
});

}) s

& k) {

* body,

* data) {

Eventual<T>

<std:: > (std:: text) {
body = http::UrlEncode ({ , text});
<std:: > promise;
future = promise.Future();

http::AsyncPost (

body,

[promise = std::move (promise)] (&& response) |
promise.Set (response.body) ;
});

future;

Eventual<T>

(std:: text) {
body = http::UrlEncode ({
<std:: > promise;
future = promise.Future();

http::AsyncPost (

body,

[promise = std::move (promise)] (
promise.Set (response.body) ;

}) s

future;

text}) ;

&& response)

{

Eventual<T>

(std:: text) {
body = http::UrlEncode ({ , text}):;
<std:: > promise;

future = promise.Future() ;
http::AsyncPost (

body,
[promise = std::move (promise)] (&& response) |
promise.Set (response.body) ;

i

future;

Eventual<T>

(i text) {
body = ::UrlEncode ({ , text});
: :AsyncPost (
body,
[promise = ::move (promise)] (&& response) |

promise.Set (response.body) ;

i

Eventual<T>

(std:: text) {
body = http::UrlEncode ({ , text}):;

http: :AsyncPost (

body,
[promise = std::move (promise)] (&& response) {
promise.Set (response.body) ;

})

Eventual<T>

= ::UrlEncode ({ , text});

::Post(

body) ;

Eventual<T>

(x) A
= : :UrlEncode ({ , text});
::Post(

body) ;

Then ()

< 9 9 > (5 8 text) {
SpellCheck (text)
.Then ([] (&& text) {
GrammarCheck (text) ;

}) s

Then ()

< s > { e text) {
SpellCheck (text)
.Then ([] (&& text) |
GrammarCheck (text) ;

b8

Then ()

(b text) {
SpellCheck (text)
.Then ([] (&& text) |
GrammarCheck (text) ;

b8

Then ()

(N text) {
SpellCheck (text)
.Then ([] (&& text) {
GrammarCheck (text) ;

b8

Then ()

(- text) {
SpellCheck (text)
| Then ([] (&& text) {
GrammarCheck (text) ;

b8

Then ()

(D text) {
SpellCheck (text)
| Then([] (&& text) {
GrammarCheck (text) ;

}) s

Then ()

auto (std: :string text) {
return SpellCheck (text)
| Then([] (auto&& text) {
return GrammarCheck (text) ;

}) s

>90% of time sequencing/composing eventuals using
combinators like Then ()

<10% of the time using Eventual<T> () or creating
your own eventual type

combinators

Let
Conditional
Raise

Catch

Lock
Terminal
Closure

event loop powered by libuv

Timer

Signal

DomainNameResolve

http: :Get, http::Post,
OpenFile, ReadFile, WriteFile,

eventuals + actors

<FooResponse> (

On(self (), [

response;

})

4

10 {

)

{

eventuals + actors

<FooResponse> (

On (self (), [

response;

eventuals + actors

response;

eventuals + actors

(

On(self (), [

response;

eventuals + actors

(

Schedule (|

response;

eventuals + actors

struct MyActor : public Actor {
auto (FooRequest request) {

return Schedule([this, request] () {
FooRequest response;

return response;
});
}
}i

chapters

(1)
(2)
(3)
(4)
(5)
)
(7)
(8)

motivating futures/promises + actors
libprocess

revisiting the problem

evolution of libprocess

eventuals

scheduling

QUEEEINIS

type erasure

chapters

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

motivating futures/promises + actors
libprocess

revisiting the problem

evolution of libprocess

eventuals

scheduling

QUEEEINIS

type erasure

where should the continuation run?

(D url, D body) {
Eventual< : :Response> ([url, body] (& k) {
= : < (k)>;
* data = &k;
http post(url, body, data, +[](code, * body, * data) {
* k = <K*>(data) ;

k->Success (: :Response{code, body}) ;

b))

})

where should the continuation run?

(P url, - body) {
Eventual< : :Response>([url, body] (& k) |
= 3 3 < (k)>;

* data = &k;
http post(url, body, data, +[](code, * body, * data) {
* k = <K*>(data) ;
k->Success (: :Response{code, body}) ;

b))

where should the continuation run?

(std:: url, std:: body) {
Eventual<http::Response>([url, body] (& k) {
= std:: < (k) >;
* data = &k;
http post(url, body, data, +[](code, * body, * data)

* k = <K*>(data) ;
k->Success (http: :Response{code, body}) ;

if continution is getting invoked by an event loop, don’t want to
keep using the same execution resource!

where should the continuation run?

(std:: url, std:: body) {
Eventual<http::Response>([url, body] (& k) {
= std:: < (k) >;
* data = &k;
http post(url, body, data, +[](code, * body,

* k = <K*>(data) ;
k->Success (http: :Response{code, body}) ;

if continution is getting invoked by an actor, don’'t want to
using the same execution resource!

* data)

keep

where should the continuation run?

motivating example

std:: (std::
body = http::UrlEncode ({
response = http::Post(
response.body;

text) {

4

text}) ;

, body) ;

function abstraction

(T) A
= ::UrlEncode ({ , text});
= : : Post (, body) ;
response.body;

function abstraction

std::string (std::string text) {
auto body = http::UrlEncode({"text", text});
auto response = http::Post("https://www.online-spellcheck.com", body) ;
return response.body;

}

function abstraction enables us to
separate the concerns of

iInterface and implementation

function abstraction

std::string (std::string text) {
body = http::UrlEncode ({ , text}):;
response = http::Post(, body) ;

response.body;

function abstraction allows us to not need to care about how http: : Post is implemented

function abstraction

std::string (std::string text) {
auto body = http::UrlEncode ({ , text});
auto response = http::Post(, body) ;

return response.body;

function abstraction allows us to not need to care about how http: : Post is implemented

e if it uses multiple threads, we don'’t care, nor do we need to!

function abstraction

std::string (std::string text) {
auto body = http::UrlEncode ({ , text});
auto response = http::Post(, body) ;

return response.body;

function abstraction allows us to not need to care about how http: : Post is implemented

e if it uses multiple threads, we don'’t care, nor do we need to!
e |fituses a GPU, we don'’t care, nor do we need to!

function abstraction

std::string (std::string text) {
auto body = http::UrlEncode ({ , text});
auto response = http::Post(, body) ;

return response.body;

function abstraction allows us to not need to care about how http: : Post is implemented

e if it uses multiple threads, we don'’t care, nor do we need to!
e |fituses a GPU, we don'’t care, nor do we need to!
e |fituses an FPGA or a SoC, we don’t care, nor do we need to!

function abstraction

std::string (std::string text) {
auto body = http::UrlEncode ({ , text});
auto response = http::Post(

, body) ;
return response.body;

moreover, if control was returned to us after executing http: : Post and we were executing ...

e ... on a different thread than the one we started on, we’d be surprised!
e ...on a GPU when we started on a CPU, we’d be surprised!

function abstraction

std::string (std::string text) {
auto body = http::UrlEncode ({ , text});
auto response = http::Post(

, body) ;
return response.body;

moreover, if control was returned to us after executing http: : Post and we were executing ...

e ... on a different thread than the one we started on, we’d be surprised!
e ...on a GPU when we started on a CPU, we’d be surprised!

breaks the principle of least astonishment!

where should the continuation run?

using what ever execution resource it was using before you had to wait!

otherwise ...

(D text) {
SpellCheck (text)
| Then([] (&& text) {
GrammarCheck (text) ;

}) s

otherwise ...

(std:: text) {
ThreadPool: : Schedule ([text] () {
SpellCheck (text)
| Then ([] (&& text) |
GrammarCheck (text) ;
1D
})

otherwise ...

(std:: text) {
ThreadPool : : Schedule ([text] () {
SpellCheck (text)
| ThreadPool: :Schedule ([text] () {
Then ([] (&& text) |

GrammarCheck (text) ;

b))

otherwise ...

auto (std::string text) {
return ThreadPool ::Schedule ([text] () {
return SpellCheck (text)
// Rescheduling on thread pool because we looked at
// documentation of 'SpellCheck()' and it continues on the
// event loop which we don't want to be on.
| ThreadPool ::Schedule ([text] () |
return Then([] (auto&& text) {
return GrammarCheck (text) ;
1D
}) s

otherwise ...

(85 text)
: :Schedule ([10 |
SpellCheck (text)
: :Schedule ([1) |
Then ([] (&& text) {

GrammarCheck (text) ;

otherwise ...

auto (std::string text) {
return ThreadPool ::Schedule ([text] () {

return SpellCheck (text)
// Rescheduling on thread pool because we emailed the developers

// of '"SpellCheck()' and they said they’ll use the event loop
// in the future which we don't want to be on so we’re being
// proactive now rather than deal with issues when the code changes.
| ThreadPool ::Schedule ([text] () {
return Then([] (auto&& text) {
return GrammarCheck (text);

1) ;
1)

P2300R1 std: :execution

Working with Asynchrony Generically: A Tour of C++ Executors - Eric Niebler

hierarchies of schedulers

“Composing Software Efficiently with Lithe” (PLDI 2010)

e allows for many simultaneous schedulers to be responsible for subtrees of the
computation call graph (hierarchical)

e all computations have a scheduler context

e formal interface for resubmiting work to the scheduler that owns a context

chapters

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

motivating futures/promises + actors
libprocess

revisiting the problem

evolution of libprocess

eventuals

scheduling

QUEEEINIS

type erasure

chapters

(1)
(2)
(3)
(4)
(5)
)
(7)
(8)

motivating futures/promises + actors
libprocess

revisiting the problem

evolution of libprocess

eventuals

scheduling

streams

type erasure

streams

e ‘“generator” type that follows the eventuals model/concept
e natural extension to eventuals
e perfect match for protobuf + gRPC

service RouteGuide {
// Unary RPC.
rpc GetFeature (Point) returns (Feature) ({}

// Server streaming RPC.
rpc ListFeatures (Rectangle) returns (stream Feature) {}

// Client streaming RPC.
rpc RecordRoute (stream Point) returns (RouteSummary) {}

// Bidirectional streaming RPC.
rpc RouteChat (stream RouteNote) returns (stream RouteNote) {}

service RouteGuide {
// Unary RPC.
rpc GetFeature (Point) returns (Feature) {}

// Server streaming RPC.

rpc ListFeatures (Rectangle) returns (stream Feature) {}

// Client streaming RPC.

rpc RecordRoute (stream Point) returns (RouteSummary) {}

// Bidirectional streaming RPC.
rpc RouteChat (stream RouteNote) returns (stream RouteNote) {}

streams

(

[left, right, top, bottom]

Iterate (feature list)
| Filter([left,
f.location().

f.location().
f.location() .
f.location().

}) s

right, top, bottom] (

* context, * rectangle)

GetBoundingBox (*rectangle) ;

& £) {
longitude () < left

longitude () > right

latitude () < bottom

latitude () > top;

streams

(* context, * rectangle)
[left, right, top, bottom] = GetBoundingBox (*rectangle) ;
Iterate (feature list)
| Filter([left, right, top, bottom] (& £) |

f.location () .longitude () < left

| | f£.location().longitude() > right

| | £.location() .latitude() < bottom

|| f.location () .latitude() > top;

1)

streams

auto (ServerContext * context, Rectangle* rectangle)
avto [left, right, top, bottom] = GetBoundingBox (*rectangle);
return Iterate(feature list)
| Filter([left, right, top, bottom] (const Feature& f) {
return f.location().longitude() < left
| | f£.location().longitude() > right
| | £.location() .latitude() < bottom
|| f.location () .latitude() > top;

1)

follow along at https://github.com/3rdparty/eventuals-grpc

combinators

Map

Reduce

j=(=F-Tel

Take

Collect

StreamForEach (aka nested Map)
Until (aka “break”)

chapters

(1)
(2)
(3)
(4)
(5)
)
(7)
(8)

motivating futures/promises + actors
libprocess

revisiting the problem

evolution of libprocess

eventuals

scheduling

streams

type erasure

chapters

(1)
(2)
(3)
(4)
(5)
)
(7)
(8)

motivating futures/promises + actors
libprocess

revisiting the problem

evolution of libprocess

eventuals

scheduling

QUEEEINIS

type erasure

non-trivial types

e auto everywhere, loss of documentation from types
e header “only” development

e |onger compile times

e debuggability(?)

type erasure

type erase behind Task<T> and Generator<T>

nothing is free, we trade off with heap allocation here

can define everything behind interfaces, faster compilation & documentation
naming mimics task and generator from C++ coroutines (which also heap
allocate)

epilogue

epilogue

e you have to wait and you have state, be thoughtful about your approach

epilogue

e you have to wait and you have state, be thoughtful about your approach
e futures/promises are a good approach to waiting, but they have overhead

epilogue

e you have to wait and you have state, be thoughtful about your approach

e futures/promises are a good approach to waiting, but they have overhead

e continuations in continuations, aka lazy continuations, aka eventuals, can let
you have your cake and eat it too, but there’s no free lunch (dessert)

epilogue

e you have to wait and you have state, be thoughtful about your approach

e futures/promises are a good approach to waiting, but they have overhead

e continuations in continuations, aka lazy continuations, aka eventuals, can let
you have your cake and eat it too, but there’s no free lunch (dessert)

e actors are a good approach to state, but you have to consider scheduling

epilogue

e you have to wait and you have state, be thoughtful about your approach

e futures/promises are a good approach to waiting, but they have overhead

e continuations in continuations, aka lazy continuations, aka eventuals, can let
you have your cake and eat it too, but there’s no free lunch (dessert)
actors are a good approach to state, but you have to consider scheduling

e functional composition is fundamental

epilogue

e you have to wait and you have state, be thoughtful about your approach

e futures/promises are a good approach to waiting, but they have overhead

e continuations in continuations, aka lazy continuations, aka eventuals, can let
you have your cake and eat it too, but there’s no free lunch (dessert)

e actors are a good approach to state, but you have to consider scheduling

e functional composition is fundamental

e functional abstraction is fundamental

thanks!

@benh

https://qgithub.com/3rdparty/eventuals

https://github.com/3rdparty/eventuals-grpc

https://github.com/3rdparty/eventuals
https://github.com/3rdparty/eventuals-grpc

