
COMPOSABLE C++COMPOSABLE C++

BEN DEANE / BEN DEANE /
CPPCON 2021CPPCON 2021

@ben_deane@ben_deane

http://twitter.com/ben_deane

IN THIS TALKIN THIS TALK
1. Composability de�ned
2. Composable types
3. Objects and patterns
4. Composability at compile time
5. Hierarchies and computation

COMPOSABLE?COMPOSABLE?

What does "composable" mean?What does "composable" mean?

Composable, reusable, extensible, �exible…?Composable, reusable, extensible, �exible…?

Simple?Simple?

Do we recognize composability when we see it?Do we recognize composability when we see it?

STL algorithms?
ranges?

THE COMPOSABILITY PROBLEMTHE COMPOSABILITY PROBLEM

-- R. Buckminster Fuller

"When I am working on a problem,"When I am working on a problem,
I never think about beauty.I never think about beauty.
But when I have �nished,But when I have �nished,

if the solution is not beautiful,if the solution is not beautiful,
I know it is wrong."I know it is wrong."

COMPOSABILITY LAID BARECOMPOSABILITY LAID BARE

-- Alexander Stepanov (via Sean Parent)

"Understanding why software"Understanding why software
fails is important, but the realfails is important, but the real

challenge is understanding whychallenge is understanding why
software works."software works."

WHY SOFTWARE WORKSWHY SOFTWARE WORKS

Software works because of Software works because of properties we can reason aboutproperties we can reason about..

This is the root of composability:This is the root of composability:

Alice writes some code
Bob takes that code
Bob puts it to a use that Alice didn't foresee, and it works

WHAT COMPOSABILITY ISN'TWHAT COMPOSABILITY ISN'T

Composability is not:Composability is not:

WHAT COMPOSABILITY ISN'TWHAT COMPOSABILITY ISN'T

Composability is not:Composability is not:

based on syntax

WHAT COMPOSABILITY ISN'TWHAT COMPOSABILITY ISN'T

Composability is not:Composability is not:

based on syntax
a product of test-driven development

WHAT COMPOSABILITY ISN'TWHAT COMPOSABILITY ISN'T

Composability is not:Composability is not:

based on syntax
a product of test-driven development
one particular pattern

WHAT COMPOSABILITY ISN'TWHAT COMPOSABILITY ISN'T

Composability is not:Composability is not:

based on syntax
a product of test-driven development
one particular pattern
exclusive to one coding paradigm

NO, REALLYNO, REALLY

NO, REALLYNO, REALLY

ComposabilityComposability

NO, REALLYNO, REALLY

ComposabilityComposability

is NOTis NOT

NO, REALLYNO, REALLY

ComposabilityComposability

is NOTis NOT

about syntax!about syntax!

COMPOSABILITY IS JOB #1COMPOSABILITY IS JOB #1

As for allocators, so for As for allocators, so for everythingeverything..

-- Andrei Alexandrescu (CppCon 2015)

"If you want to design an allocator, you gotta make composition"If you want to design an allocator, you gotta make composition
the �rst thing in your design, the �rst concern.the �rst thing in your design, the �rst concern.

Getting composition right is getting the allocators right."Getting composition right is getting the allocators right."

PART 1: FUNCTIONSPART 1: FUNCTIONS

Starting at the bottom and working our way up:Starting at the bottom and working our way up:

Function-level composabilityFunction-level composability

THE RETURN TYPETHE RETURN TYPE

Choosing the wrong return type is one of the most common composability errors.Choosing the wrong return type is one of the most common composability errors.

Often we don't even realise we're choosing.Often we don't even realise we're choosing.

boolbool

The simplest composable return type is The simplest composable return type is boolbool..

Simple, but important.Simple, but important.

auto do_a_thing() -> void;
auto do_a_thing_more_composably() -> bool;

WHY IS WHY IS boolbool COMPOSABLE? COMPOSABLE?

The simplest form of composability stems from properties of boolean algebra.The simplest form of composability stems from properties of boolean algebra.

auto any_done = do_a_thing(1) or do_a_thing(2) or ...;
auto all_done = do_a_thing(1) and do_a_thing(2) and ...;

boolbool UNDERLIES SO MUCH UNDERLIES SO MUCH

It seems so trivial that we often don't notice it.It seems so trivial that we often don't notice it.

Things that build on composability of Things that build on composability of boolbool::

boolbool UNDERLIES SO MUCH UNDERLIES SO MUCH

It seems so trivial that we often don't notice it.It seems so trivial that we often don't notice it.

Things that build on composability of Things that build on composability of boolbool::

control �ow: almost all algorithms and loops, really

boolbool UNDERLIES SO MUCH UNDERLIES SO MUCH

It seems so trivial that we often don't notice it.It seems so trivial that we often don't notice it.

Things that build on composability of Things that build on composability of boolbool::

control �ow: almost all algorithms and loops, really
a lot of caching schemes (or idempotent calculations)

boolbool UNDERLIES SO MUCH UNDERLIES SO MUCH

It seems so trivial that we often don't notice it.It seems so trivial that we often don't notice it.

Things that build on composability of Things that build on composability of boolbool::

control �ow: almost all algorithms and loops, really
a lot of caching schemes (or idempotent calculations)
polling/non-blocking functions

boolbool UNDERLIES SO MUCH UNDERLIES SO MUCH

It seems so trivial that we often don't notice it.It seems so trivial that we often don't notice it.

Things that build on composability of Things that build on composability of boolbool::

control �ow: almost all algorithms and loops, really
a lot of caching schemes (or idempotent calculations)
polling/non-blocking functions
Chain of Responsibility pattern

boolbool UNDERLIES SO MUCH UNDERLIES SO MUCH

It seems so trivial that we often don't notice it.It seems so trivial that we often don't notice it.

Things that build on composability of Things that build on composability of boolbool::

control �ow: almost all algorithms and loops, really
a lot of caching schemes (or idempotent calculations)
polling/non-blocking functions
Chain of Responsibility pattern

Note: short-circuiting is not part of composability here;Note: short-circuiting is not part of composability here;
it's just a semantic nicety of the operators.it's just a semantic nicety of the operators.

CHAIN OF RESPONSIBILITYCHAIN OF RESPONSIBILITY

A design pattern that exploits A design pattern that exploits boolbool's composability to achieve prioritization.'s composability to achieve prioritization.

handled

unhandledrequest A B C

t

f f f

t t

CASE STUDY: LOGGINGCASE STUDY: LOGGING

From "Easy to Use, Hard to Misuse: Declarative Style in C++" (CppCon 2018)From "Easy to Use, Hard to Misuse: Declarative Style in C++" (CppCon 2018)

The The boolbool return type is the key to composition here. return type is the key to composition here.

struct log_sink {
 virtual bool push(const log_entry&);
};

CASE STUDY: LOGGINGCASE STUDY: LOGGING

Given the Given the pushpush function, we can write various function, we can write various log_sinklog_sink classes: classes:

CASE STUDY: LOGGINGCASE STUDY: LOGGING

Given the Given the pushpush function, we can write various function, we can write various log_sinklog_sink classes: classes:

"ordinary" sinks that send entries to di�erent places (�le, output window, etc)

CASE STUDY: LOGGINGCASE STUDY: LOGGING

Given the Given the pushpush function, we can write various function, we can write various log_sinklog_sink classes: classes:

"ordinary" sinks that send entries to di�erent places (�le, output window, etc)
a �lter sink that runs a predicate on the entry and accepts it conditionally

CASE STUDY: LOGGINGCASE STUDY: LOGGING

Given the Given the pushpush function, we can write various function, we can write various log_sinklog_sink classes: classes:

"ordinary" sinks that send entries to di�erent places (�le, output window, etc)
a �lter sink that runs a predicate on the entry and accepts it conditionally
a sink that wraps another sink in an execution policy (e.g. for threaded logging)

CASE STUDY: LOGGINGCASE STUDY: LOGGING

Given the Given the pushpush function, we can write various function, we can write various log_sinklog_sink classes: classes:

"ordinary" sinks that send entries to di�erent places (�le, output window, etc)
a �lter sink that runs a predicate on the entry and accepts it conditionally
a sink that wraps another sink in an execution policy (e.g. for threaded logging)
a sink that wraps several other sinks and:

sends a log_entry to all
sends a log_entry to the �rst one that accepts

CASE STUDY: LOGGINGCASE STUDY: LOGGING

Given the Given the pushpush function, we can write various function, we can write various log_sinklog_sink classes: classes:

"ordinary" sinks that send entries to di�erent places (�le, output window, etc)
a �lter sink that runs a predicate on the entry and accepts it conditionally
a sink that wraps another sink in an execution policy (e.g. for threaded logging)
a sink that wraps several other sinks and:

sends a log_entry to all
sends a log_entry to the �rst one that accepts

the null sink that accepts every entry and does nothing

BEYOND BEYOND boolbool

Returning Returning voidvoid gives gives no choiceno choice to the caller. to the caller.

Returning Returning boolbool gives gives one choiceone choice to the caller. to the caller.

What can be returned to give more choices?What can be returned to give more choices?

FROM FROM boolbool TO TO intint

The next simplest composable return type is The next simplest composable return type is intint..

auto do_a_thing() -> void;
auto do_a_thing_more_composably() -> bool;
auto do_a_thing_even_more_composably() -> int;

FROM FROM boolbool TO TO intint

The next simplest composable return type is The next simplest composable return type is intint..

auto do_a_thing() -> void;
auto do_a_thing_more_composably() -> bool;
auto do_a_thing_even_more_composably() -> int;

Spoiler: Spoiler: boolbool and and intint are in some sense are in some sense
the the onlyonly two composable return types we need… two composable return types we need…

WHY WHY intint??

Of course, Of course, intint can represent N (32?) can represent N (32?) boolsbools,,
using using bitandbitand ((&&) and) and bitorbitor ((||) operators.) operators.

That's sometimes useful, but reallyThat's sometimes useful, but really
just an extension of the composability of just an extension of the composability of boolbool……

WHY WHY intint??

With With intint we can say not just we can say not just ifif something happened, but something happened, but how muchhow much was taken care of. was taken care of.

Going from Going from boolbool to to intint is like going from is like going from findfind to to accumulateaccumulate..

It also opens the door for more complex user-de�ned behaviour.It also opens the door for more complex user-de�ned behaviour.

HOW MUCH WAS CALCULATED?HOW MUCH WAS CALCULATED?

boolbool gives a binary choice (naturally). gives a binary choice (naturally).

An arithmetic type allows incremental progress.An arithmetic type allows incremental progress.

auto do_calculation(float) -> float;

CASE STUDY: STEERING BEHAVIOURSCASE STUDY: STEERING BEHAVIOURS
a.k.a. "boids" (by Craig Reynolds)a.k.a. "boids" (by Craig Reynolds)

Boids are de�ned quite simply:Boids are de�ned quite simply:

mechanical parameters: position, heading, velocity etc
a collection of behaviours

The calculation of each behaviour returns a force The calculation of each behaviour returns a force (arithmetic type)(arithmetic type)..

The sum of forces The sum of forces (composition)(composition) given by all behaviours is applied to the boid. given by all behaviours is applied to the boid.

STEERING BEHAVIOURSSTEERING BEHAVIOURS

Classic boids �ocking consists of three behaviours.Classic boids �ocking consists of three behaviours.

separation alignment cohesion

MORE BEHAVIOURSMORE BEHAVIOURS

We can arbitrarily layer more behaviours into the calculation.We can arbitrarily layer more behaviours into the calculation.

Obstacle avoidance, collision response, priority deferment, etc…Obstacle avoidance, collision response, priority deferment, etc…

COMPOSABILITY FROM PRINCIPLESCOMPOSABILITY FROM PRINCIPLES

At the core, steering behaviours is based on the At the core, steering behaviours is based on the composability of arithmetic typescomposability of arithmetic types..

A single function returns a force A single function returns a force that can be accumulatedthat can be accumulated and applied. and applied.

The resulting framework has many uses:The resulting framework has many uses:

crowd simulations
visualisations
optimisation problems
etc

MORE COMPOSABLE TYPESMORE COMPOSABLE TYPES

So far we've seen So far we've seen boolbool and and intint..

The next step in composable types stems directly from here.The next step in composable types stems directly from here.

Instead of integral types, let's go to Instead of integral types, let's go to TT..

MORE COMPOSABLE TYPESMORE COMPOSABLE TYPES

boolbool is to is to intint

asas

optional<T>optional<T> is to is to collection<T>collection<T>

COMPOSING COMPOSING optionaloptional

optionaloptional can compose in the same way as can compose in the same way as boolbool. But it also has another trick.. But it also has another trick.

When you have a When you have a TT that has no "default value" for some combining operation, you can use that has no "default value" for some combining operation, you can use
optionaloptional to provide that value. to provide that value.

struct T { ... };
auto combine(T x, T y) -> T;

auto combine(optional<T> x, optional<T> y) -> optional<T> {
 if (x.has_value() and y.has_value()) {
 return combine(*x, *y);
 }
 return {};
}

COMPOSING COMPOSING vectorvector

optionaloptional is like is like boolbool: we get presence or absence.: we get presence or absence.

vectorvector is like is like intint: we get to combine quantities.: we get to combine quantities.

(It's been suggested that (It's been suggested that optionaloptional is just a is just a vectorvector with max size 1) with max size 1)

A COMMON PROBLEMA COMMON PROBLEM

Many calculations are most simply formulated as recursive calculations.Many calculations are most simply formulated as recursive calculations.
Interesting variations often include mutual recursion.Interesting variations often include mutual recursion.

The most common inhibitor of recursive beauty is mixed up return types.The most common inhibitor of recursive beauty is mixed up return types.

auto calculate_recursively(const collection&) -> collection;

WE GET CONFUSEDWE GET CONFUSED

When solving any kind of interesting recursive problem, the When solving any kind of interesting recursive problem, the highest probability ofhighest probability of
confusionconfusion occurs from failing to keep return types uniform. occurs from failing to keep return types uniform.

auto calculate_recursively(branch_t) -> collection_t;
auto calculate_recursively(leaf1_t) -> value_t;
auto calculate_recursively(leaf2_t) -> value_t;
auto calculate_recursively(array_leaf_t) -> vector<value_t>;

MATCH RETURN TYPE WITHMATCH RETURN TYPE WITH
PARAMETERSPARAMETERS

Functions whose return type is the same as (one of) theirFunctions whose return type is the same as (one of) their
parameter type(s) are the parameter type(s) are the most composablemost composable..

And one of the easiest ways to And one of the easiest ways to make code uglymake code ugly, if we don't line up types properly., if we don't line up types properly.

auto do_calculation(float) -> float;
auto combine(T x, T y) -> T;
auto combine(optional<T> x, optional<T> y) -> optional<T>;
auto calculate_recursively(const collection&) -> collection;

MATCH RETURN TYPE WITHMATCH RETURN TYPE WITH
PARAMETERSPARAMETERS

Put more simply:Put more simply:

When working with a container, stay in the container!When working with a container, stay in the container!

e.g. if you're returning a e.g. if you're returning a vectorvector, write your function to take a , write your function to take a vectorvector..

There is always a cost to exiting container-world.There is always a cost to exiting container-world.

checking whether an optional is engaged
checking whether a vector is empty
waiting for a future value to materialize

COMPOSABLE FUNCTIONSCOMPOSABLE FUNCTIONS

Composable functions stem from composable properties of their return types. We can:Composable functions stem from composable properties of their return types. We can:

use and and or with bool
use arithmetic, ordering operations, etc with numbers
concatenate or merge collections

And we can take the output of a function and And we can take the output of a function and feed it backfeed it back to another. to another.

Almost all composability in object-pattern land builds on such type composability.Almost all composability in object-pattern land builds on such type composability.

PART 2: OBJECTS & PATTERNSPART 2: OBJECTS & PATTERNS

The next rung on the ladder:The next rung on the ladder:

Object-level composabilityObject-level composability

SO WE HAVE AN INTERFACESO WE HAVE AN INTERFACE

What classes should we write to this interface, to enable higher-level composability?What classes should we write to this interface, to enable higher-level composability?

struct thing_doer {
 virtual auto frob(const widget&) -> composable_type_t;
};

FIRST: ZEROFIRST: ZERO

The �rst object to write is the one that The �rst object to write is the one that does nothing, composablydoes nothing, composably..

FIRST: ZEROFIRST: ZERO

The �rst object to write is the one that The �rst object to write is the one that does nothing, composablydoes nothing, composably..

the logger that accepts an entry and produces no log

FIRST: ZEROFIRST: ZERO

The �rst object to write is the one that The �rst object to write is the one that does nothing, composablydoes nothing, composably..

the logger that accepts an entry and produces no log
the allocator that always returns nullptr

FIRST: ZEROFIRST: ZERO

The �rst object to write is the one that The �rst object to write is the one that does nothing, composablydoes nothing, composably..

the logger that accepts an entry and produces no log
the allocator that always returns nullptr
the parser or validator that fails

FIRST: ZEROFIRST: ZERO

The �rst object to write is the one that The �rst object to write is the one that does nothing, composablydoes nothing, composably..

the logger that accepts an entry and produces no log
the allocator that always returns nullptr
the parser or validator that fails
the visitor that uses the identity operation

FIRST: ZEROFIRST: ZERO

The �rst object to write is the one that The �rst object to write is the one that does nothing, composablydoes nothing, composably..

the logger that accepts an entry and produces no log
the allocator that always returns nullptr
the parser or validator that fails
the visitor that uses the identity operation
the request that does nothing

THE ZERO OBJECTTHE ZERO OBJECT
If writing this is If writing this is di�cultdi�cult, it's a good sign our , it's a good sign our composability abstraction is not rightcomposability abstraction is not right..

THE ZERO OBJECTTHE ZERO OBJECT
If writing this is If writing this is di�cultdi�cult, it's a good sign our , it's a good sign our composability abstraction is not rightcomposability abstraction is not right..

Possible Possible problemsproblems::

THE ZERO OBJECTTHE ZERO OBJECT
If writing this is If writing this is di�cultdi�cult, it's a good sign our , it's a good sign our composability abstraction is not rightcomposability abstraction is not right..

Possible Possible problemsproblems::

no default state

THE ZERO OBJECTTHE ZERO OBJECT
If writing this is If writing this is di�cultdi�cult, it's a good sign our , it's a good sign our composability abstraction is not rightcomposability abstraction is not right..

Possible Possible problemsproblems::

no default state
coupled actions or state

THE ZERO OBJECTTHE ZERO OBJECT
If writing this is If writing this is di�cultdi�cult, it's a good sign our , it's a good sign our composability abstraction is not rightcomposability abstraction is not right..

Possible Possible problemsproblems::

no default state
coupled actions or state
side-e�ectful behaviour

THE ZERO OBJECTTHE ZERO OBJECT
If writing this is If writing this is di�cultdi�cult, it's a good sign our , it's a good sign our composability abstraction is not rightcomposability abstraction is not right..

Possible Possible problemsproblems::

no default state
coupled actions or state
side-e�ectful behaviour
world-switching

THE ZERO OBJECTTHE ZERO OBJECT
If writing this is If writing this is di�cultdi�cult, it's a good sign our , it's a good sign our composability abstraction is not rightcomposability abstraction is not right..

Possible Possible problemsproblems::

no default state
coupled actions or state
side-e�ectful behaviour
world-switching

SolutionsSolutions::

THE ZERO OBJECTTHE ZERO OBJECT
If writing this is If writing this is di�cultdi�cult, it's a good sign our , it's a good sign our composability abstraction is not rightcomposability abstraction is not right..

Possible Possible problemsproblems::

no default state
coupled actions or state
side-e�ectful behaviour
world-switching

SolutionsSolutions::

use composable types

THE ZERO OBJECTTHE ZERO OBJECT
If writing this is If writing this is di�cultdi�cult, it's a good sign our , it's a good sign our composability abstraction is not rightcomposability abstraction is not right..

Possible Possible problemsproblems::

no default state
coupled actions or state
side-e�ectful behaviour
world-switching

SolutionsSolutions::

use composable types
apply SOLID principles

THE ZERO OBJECTTHE ZERO OBJECT
If writing this is If writing this is di�cultdi�cult, it's a good sign our , it's a good sign our composability abstraction is not rightcomposability abstraction is not right..

Possible Possible problemsproblems::

no default state
coupled actions or state
side-e�ectful behaviour
world-switching

SolutionsSolutions::

use composable types
apply SOLID principles
avoid world-switching

THE ZERO OBJECTTHE ZERO OBJECT
If writing this is If writing this is di�cultdi�cult, it's a good sign our , it's a good sign our composability abstraction is not rightcomposability abstraction is not right..

Possible Possible problemsproblems::

no default state
coupled actions or state
side-e�ectful behaviour
world-switching

SolutionsSolutions::

use composable types
apply SOLID principles
avoid world-switching
�nd a better abstraction?

SECOND: PASSTHROUGHSECOND: PASSTHROUGH

The second object to think about is the one that The second object to think about is the one that delegatesdelegates to another presumed object in to another presumed object in
some way.some way.

If your return type is If your return type is boolbool or or optionaloptional, you can write the "if-else" object:, you can write the "if-else" object:
try option A, and if it fails, employ option B.try option A, and if it fails, employ option B.

At this point, the "if-else" object may extend to the "any-of" and "all-of" objects.At this point, the "if-else" object may extend to the "any-of" and "all-of" objects.

CASE STUDY: ALLOCATORSCASE STUDY: ALLOCATORS

BlkBlk contains pointer (=> contains pointer (=> boolbool) and size.) and size.

-- Andrei Alexandrescu, CppCon 2015

std::allocatorstd::allocator is to Allocation is to Allocation
what what std::vectorstd::vector is to Vexation is to Vexation

struct Allocator {
 auto allocate(size_t) -> Blk;
 auto owns(Blk) const -> bool;
 auto deallocate(Blk) -> void;
};

CASE STUDY: ALLOCATORSCASE STUDY: ALLOCATORS

With just that interface, we can implement:With just that interface, we can implement:

CASE STUDY: ALLOCATORSCASE STUDY: ALLOCATORS

With just that interface, we can implement:With just that interface, we can implement:

fallback allocator (try A, if it fails, try B)

CASE STUDY: ALLOCATORSCASE STUDY: ALLOCATORS

With just that interface, we can implement:With just that interface, we can implement:

fallback allocator (try A, if it fails, try B)
stack allocator

CASE STUDY: ALLOCATORSCASE STUDY: ALLOCATORS

With just that interface, we can implement:With just that interface, we can implement:

fallback allocator (try A, if it fails, try B)
stack allocator
�xed size allocators (chunks of N bytes)

CASE STUDY: ALLOCATORSCASE STUDY: ALLOCATORS

With just that interface, we can implement:With just that interface, we can implement:

fallback allocator (try A, if it fails, try B)
stack allocator
�xed size allocators (chunks of N bytes)
slab/arena allocators

CASE STUDY: ALLOCATORSCASE STUDY: ALLOCATORS

With just that interface, we can implement:With just that interface, we can implement:

fallback allocator (try A, if it fails, try B)
stack allocator
�xed size allocators (chunks of N bytes)
slab/arena allocators
freelist based allocators

CASE STUDY: ALLOCATORSCASE STUDY: ALLOCATORS

With just that interface, we can implement:With just that interface, we can implement:

fallback allocator (try A, if it fails, try B)
stack allocator
�xed size allocators (chunks of N bytes)
slab/arena allocators
freelist based allocators
a�x allocator (metadata pre�x/su�x)

CASE STUDY: ALLOCATORSCASE STUDY: ALLOCATORS

With just that interface, we can implement:With just that interface, we can implement:

fallback allocator (try A, if it fails, try B)
stack allocator
�xed size allocators (chunks of N bytes)
slab/arena allocators
freelist based allocators
a�x allocator (metadata pre�x/su�x)
hi/lo allocator, bucket allocator, etc

CASE STUDY: ALLOCATORSCASE STUDY: ALLOCATORS

With just that interface, we can implement:With just that interface, we can implement:

fallback allocator (try A, if it fails, try B)
stack allocator
�xed size allocators (chunks of N bytes)
slab/arena allocators
freelist based allocators
a�x allocator (metadata pre�x/su�x)
hi/lo allocator, bucket allocator, etc
mallocator

CASE STUDY: ALLOCATORSCASE STUDY: ALLOCATORS

With just that interface, we can implement:With just that interface, we can implement:

fallback allocator (try A, if it fails, try B)
stack allocator
�xed size allocators (chunks of N bytes)
slab/arena allocators
freelist based allocators
a�x allocator (metadata pre�x/su�x)
hi/lo allocator, bucket allocator, etc
mallocator
compositions of all of the above (powered by fallback allocator)

COMPOSABILITY IN THE FALLBACKCOMPOSABILITY IN THE FALLBACK
ALLOCATORALLOCATOR

The fallback allocator �rst tries a primary;The fallback allocator �rst tries a primary;
if that fails, it if that fails, it falls backfalls back to the other. to the other.

This relies on the composable properties of This relies on the composable properties of boolbool..

template <class Primary, class Fallback>
struct FallbackAllocator : Primary, Fallback {
 auto allocate(size_t n) -> Blk {
 if (const auto r = Primary::allocate(n); r.ptr) {
 return r;
 }
 return Fallback::allocate(n);
 }
};

N-ARY FALLBACK ALLOCATORN-ARY FALLBACK ALLOCATOR

We can turn a binary pattern into an n-ary pattern:We can turn a binary pattern into an n-ary pattern:

template <class... As>
struct FallbackAllocator : As... {
 auto allocate(size_t n) -> Blk {
 Blk r{};
 auto alloc = [&] <class A> () -> bool {
 r = static_cast<A*>(this)->allocate(n);
 return r.ptr;
 };
 (... or alloc.template operator()<As>());
 return r;
 }
};

"FUNCTIONAL PROGRAMMING""FUNCTIONAL PROGRAMMING"

Functional programming in C++? Polarising?Functional programming in C++? Polarising?

Higher order functions that take functions as arguments and return functions.Higher order functions that take functions as arguments and return functions.

"A m**** is just a m***** in the c******* of…""A m**** is just a m***** in the c******* of…"

WHO WRITES CODE LIKE THIS?WHO WRITES CODE LIKE THIS?

Who Who writeswrites code like this? code like this?

auto compose(auto f1, auto f2) {
 return [f1, f2] (auto arg) {
 if (auto result = f1(arg); result) {
 return result;
 }
 return f2(arg);
 };
};

WHO WRITES CODE LIKE THIS?WHO WRITES CODE LIKE THIS?

Who Who writeswrites code like this? code like this?

auto compose(auto f1, auto f2) {
 return [f1, f2] (auto arg) {
 if (auto result = f1(arg); result) {
 return result;
 }
 return f2(arg);
 };
};

We. All. Do.We. All. Do.

PATTERNS: COMPOSITEPATTERNS: COMPOSITE

"Composite lets clients treat individual objects and compositions of objects uniformly.""Composite lets clients treat individual objects and compositions of objects uniformly."

In classical OO-style, this is done with an In classical OO-style, this is done with an abstract base classabstract base class that declares that declares
operations on both composite and leafoperations on both composite and leaf classes. classes.

struct graphic {
 virtual auto draw() -> void = 0;
 virtual auto add(graphic&) -> void = 0;
 virtual auto remove(graphic&) -> void = 0;
};

struct leaf : graphic { ... };
struct collection : graphic { ... };

PATTERNS: COMPOSITEPATTERNS: COMPOSITE

Composite is a useful pattern because it allows us to compose structure directlyComposite is a useful pattern because it allows us to compose structure directly
without conditions in the handling codewithout conditions in the handling code..

We We don't have a dichotomydon't have a dichotomy between a leaf and a collection. between a leaf and a collection.

This means we can This means we can write functions against one interfacewrite functions against one interface that work with both. that work with both.

WHAT IS THE LEARNING HERE?WHAT IS THE LEARNING HERE?

Q. What makes composite nice to use?Q. What makes composite nice to use?

WHAT IS THE LEARNING HERE?WHAT IS THE LEARNING HERE?

Q. What makes composite nice to use?Q. What makes composite nice to use?

A. We A. We don't havedon't have to put to put conditionsconditions in the calling code. in the calling code.

HERE'S THE LEARNINGHERE'S THE LEARNING

No raw conditionsNo raw conditions..

A A raw conditionraw condition is is any binary conditionany binary condition that doesn't serve one of two purposes: that doesn't serve one of two purposes:

intrinsic optionality present inside a data type
a con�guration or construction-time choice

Notice this includes:Notice this includes:

regular if
the conditional operator
if constexpr

BRIEF ASIDEBRIEF ASIDE

Remember "C++ Seasoning"?Remember "C++ Seasoning"?

Of course. We all remember "no raw loops".Of course. We all remember "no raw loops".

I suggest watching that talk again. (For the rest of it.)I suggest watching that talk again. (For the rest of it.)

NO RAW CONDITIONSNO RAW CONDITIONS

Put another way -Put another way -

We should strive to put We should strive to put ifif statements in two places only: statements in two places only:

at the bottom of the stack (built into data structure)
at the top of the stack (construction time)

THE SECRET OF UNIFORMITYTHE SECRET OF UNIFORMITY

Good composition happens when functions across the object space:Good composition happens when functions across the object space:

take the same types
return the same types
take the same types as they return (or related ones)

WELL-BEHAVED FUNCTIONSWELL-BEHAVED FUNCTIONS

Functions or methods with the following signaturesFunctions or methods with the following signatures
usually make good compositional sense:usually make good compositional sense:

auto func() -> bool;
auto func(T) -> collection<T>;
auto func(collection<T>) -> collection<T>;

PROBLEMATIC FUNCTIONSPROBLEMATIC FUNCTIONS

Functions or methods with the following signatures are often problematic:Functions or methods with the following signatures are often problematic:

As well as mixing functions that return As well as mixing functions that return TT and and collection<T>collection<T>..

auto func(int) -> bool;
auto func(optional<T>) -> T;
auto func(collection<T>) -> T;

INTERLUDE: COMPILE-TIMEINTERLUDE: COMPILE-TIME

So far we've seen everything in value-space.So far we've seen everything in value-space.

The The same principles applysame principles apply (perhaps even more so) to (perhaps even more so) to type-spacetype-space..

COMPILE-TIME TYPE CALCULATIONSCOMPILE-TIME TYPE CALCULATIONS

In this form of compile-time programming:In this form of compile-time programming:

values become types
functions become templates (usually class/alias)
data structures are typically type lists or pairs

COMPILE-TIME FAILCOMPILE-TIME FAIL

We have pretty much one data structure: the type list.We have pretty much one data structure: the type list.

The same problematic function signatures apply.The same problematic function signatures apply.

// auto func(collection<T>) -> T;
template <typename... Ts>
struct func {
 using type = some_T;
};

WE WOULDN'T WRITE THIS CODEWE WOULDN'T WRITE THIS CODE

If we saw this structure in code review, we'd balk.If we saw this structure in code review, we'd balk.

if (conditionA) {
 if (subConditionX) {
 } else if (subConditionY) {
 } else {
 }
} else if (conditionB and conditionC) {
 if (not subConditionZ) {
 }
}

BUT WE CAN END UP WITH THISBUT WE CAN END UP WITH THIS

"At least it's better than SFINAE.""At least it's better than SFINAE."

if constexpr (conditionA) {
 if constexpr (subConditionX) {
 } else if constexpr (subConditionY) {
 } else {
 }
} else if constexpr (conditionB and conditionC) {
 if constexpr (not subConditionZ) {
 }
}

REFLECTION IS COMINGREFLECTION IS COMING

Maybe for some of you, it's already here in some form.Maybe for some of you, it's already here in some form.

We are going to get a lot of metafunctions building on the following general form:We are going to get a lot of metafunctions building on the following general form:

What should happen if What should happen if TT is an is an intint? What does that mean for when T is a ? What does that mean for when T is a structstruct??

template <typename T>
auto members_of(T) -> type_list<TMembers...>;

REFLECTION IS COMINGREFLECTION IS COMING

We are going to get a lot of metafunctions in the following pattern:We are going to get a lot of metafunctions in the following pattern:

What should this function return?What should this function return?

How can we compose functionality like this?How can we compose functionality like this?

template <typename T>
auto for_each_member_recursively(T) -> /* what? */;

PART 3: STRUCTURESPART 3: STRUCTURES

The top rung on the ladder (for this talk):The top rung on the ladder (for this talk):

Structural composabilityStructural composability

TRAVERSING HIERARCHIESTRAVERSING HIERARCHIES

C1draw

L1 C2 L2

L3 L4 L5

FIRST PROBLEMFIRST PROBLEM

Many languages have object-oriented features.Many languages have object-oriented features.

They make it easy to add new types.They make it easy to add new types.

It's di�cult to add new behaviour though.It's di�cult to add new behaviour though.

This is (half of) the This is (half of) the expression problemexpression problem..

WHAT SOLVES THIS PROBLEM?WHAT SOLVES THIS PROBLEM?

Another pattern, of course.Another pattern, of course.

The The visitor patternvisitor pattern..

VISITOR PATTERNVISITOR PATTERN

-- Bob Nystrom, Crafting Interpreters

"The "The Visitor patternVisitor pattern is the most widely misunderstood pattern in is the most widely misunderstood pattern in
all of all of Design PatternsDesign Patterns, which is really saying something [...], which is really saying something [...]

The pattern isn't about "visiting", [... it's] The pattern isn't about "visiting", [... it's] really aboutreally about
approximating the functional style within an OOP language."approximating the functional style within an OOP language."

VISITOR PATTERNVISITOR PATTERN

In an OO language, In an OO language, types (classes) are easytypes (classes) are easy to add, to add,
but adding behaviour (methods) require touching the world.but adding behaviour (methods) require touching the world.

In a functional language, it's the other way around: In a functional language, it's the other way around: functions are easyfunctions are easy to add, to add,
but adding types requires updating pattern matching everywhere.but adding types requires updating pattern matching everywhere.

The visitor pattern approximates the functional experience in an OO language.The visitor pattern approximates the functional experience in an OO language.

WAS THAT THE ONLY PROBLEM?WAS THAT THE ONLY PROBLEM?

Fundamentally that's still a choice of one way or the other.Fundamentally that's still a choice of one way or the other.
And that's �ne for some problems (like representing expressions).And that's �ne for some problems (like representing expressions).

The expression problem The expression problem always remainsalways remains to some degree. to some degree.

We have another problem - composability means:We have another problem - composability means:

structured hierarchies
hierarchical composition and extension
run computations over hierarchies

COMPUTATION AND TRAVERSALCOMPUTATION AND TRAVERSAL

When structures are �at, we're already good at separating computation and traversal.When structures are �at, we're already good at separating computation and traversal.

We have lots of algorithms that We have lots of algorithms that separate whereseparate where (traversal with iterators) (traversal with iterators)
from whatfrom what (the operation passed in). (the operation passed in).

auto total_length(const vector<string>& v) -> int {
 return transform_reduce(begin(v), end(v),
 0, plus{},
 [] (const auto& s) { return size(s); });
}

vector<string> v = {"Hello", "CppCon", "2021"};
std::cout << total_length(v); // 15

HIERARCHICAL COMPUTATIONHIERARCHICAL COMPUTATION

When structures are hierarchical, we're When structures are hierarchical, we're much less goodmuch less good at at
separating computation and traversal.separating computation and traversal.

Consider how to sum the lengths in a rose tree.Consider how to sum the lengths in a rose tree.

template <typename T>
struct rose_tree : variant<T, vector<rose_tree<T>>> {
 using variant<T, vector<rose_tree<T>>>::variant;
};

HIERARCHICAL COMPUTATIONHIERARCHICAL COMPUTATION

The traversal is mixed with the operation.The traversal is mixed with the operation.

auto total_length(const rose_tree<string>& t) -> int {
 return visit(
 overloaded{
 [] (const string& leaf) -> int { return size(leaf); },
 [] (const auto& branch) -> int {
 return transform_reduce(
 begin(branch), end(branch),
 0, plus{},
 [] (const auto& t) -> int { return total_length(t); }); }},
 t);
}

SEPARATE WHAT FROM WHERESEPARATE WHAT FROM WHERE

Here is the "where": Here is the "where": reduce_treereduce_tree embodies the traversal. embodies the traversal.

template <typename T, typename TInit, typename FBranch, typename FLeaf>
auto reduce_tree(const rose_tree<T>& t, TInit i, FBranch r_op, FLeaf t_op) {
 return std::visit(overloaded{
 [&] (const T& leaf) { return t_op(leaf); },
 [&] (const auto& branch) {
 return std::transform_reduce(
 std::begin(branch), std::end(branch), i,
 r_op, [&] (const auto& t) { return reduce_tree(t, i, r_op, t_op); }); }},
 t);
}

SEPARATE WHAT FROM WHERESEPARATE WHAT FROM WHERE

Here is the "what": how to treat a branch and a leaf.Here is the "what": how to treat a branch and a leaf.

auto total_length(const rose_tree<string>& t) -> int {
 return reduce_tree(t, 0, plus{},
 [] (const auto& leaf) -> int { return size(leaf); });
}

C++ IN FLATLANDC++ IN FLATLAND

When all you have is iterators/ranges, everything looks �at.When all you have is iterators/ranges, everything looks �at.

Every standard structure is �at… many non-standard structures are not.Every standard structure is �at… many non-standard structures are not.

But they are amenable to the same kind of abstraction that leads to composability!But they are amenable to the same kind of abstraction that leads to composability!

FROM FLATLAND TO HIGHERFROM FLATLAND TO HIGHER
DIMENSIONSDIMENSIONS

// this is not possible in C++ but a useful structure to imagine...
struct nil{};
template <typename T>
struct vector : variant<nil, pair<T, vector<T>>> {
 using variant<nil, pair<T, vector<T>>>::variant;
};

template <typename T, typename TInit, typename Op>
auto reduce(const T& t, TInit i, Op op) {
 return visit(overloaded{
 [&] (nil) { return i; },
 [&] (const auto& v) {
 return op(v.first, reduce(v.second, i, op)); }},
 t);
}

GENERIC HIERARCHY TRAVERSALGENERIC HIERARCHY TRAVERSAL

By applying a functional lens, we can see how to traverse hierarchies in higher dimensions.By applying a functional lens, we can see how to traverse hierarchies in higher dimensions.

This unlocks structural and computational composition by separating what from where.This unlocks structural and computational composition by separating what from where.

We can go a little further though…We can go a little further though…

WHAT, WHERE - AND WHEN?WHAT, WHERE - AND WHEN?

Where's the "when" in this picture?Where's the "when" in this picture?

template <typename T, typename TInit, typename Op>
auto reduce(const T& t, TInit i, Op op) {
 return visit(overloaded{
 [&] (nil) { return i; },
 [&] (const auto& v) {
 return op(v.first, reduce(v.second, i, op)); }},
 t);
}

WHY IS ANY OF THIS IMPORTANT?WHY IS ANY OF THIS IMPORTANT?
Alice writes some code
Bob takes that code
Bob puts it to a use that Alice didn't foresee, and it works

This. This is only possible with a principled approach to composability.This. This is only possible with a principled approach to composability.

types
functions
objects
structures
computation

CONCLUSIONSCONCLUSIONS
Composability is not about syntax, it's about semantics.
Pattern/object-level composability stems from function-level composability, stems
from type-level composability.
When working in a collection, stay in the collection.
Conditions inhibit composition: avoid raw if statements.
Compile-time capability is still in its infancy (if constexpr is not better than SFINAE).
The key to structural composition is breaking out of �atland and separating what,
where and when.

