
Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Overview
Introduction

Persistent Memory
Use-Cases
Pitfalls

Persistent Hash Map
Design Goals and Methodology
Persistence
Performance Results

Persistent Transactional Data Structures
Design Goals
Methodology
Performance Results

Live Demonstration
A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 2

Introduction

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Introduction

Persistent Memory

I Persistent Memory is positioned as a new tier in the memory hierarchy that
delivers capacity of non-volatile storage at speeds close to DRAM

I Benefits:
I Non-volatile storage
I Byte addressable
I Provides higher density than DRAM
I Has access latencies closer to DRAM than storage

I Persistent memory is commercially available through Intel® OptaneTM DC
Persistent Memory

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 4

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Traditional Memory Hierarchy

CPU
Registers

CPU Caches
(L1,L2,L3,L4)

Double Data Rate (DDR)
DRAM

NAND SSD

Hard Disk Drives
(HDD)

Tape

Capacity

~10ms

~100ms

10-100µs

~80-100ns

1-10ns

~0.1ns

Volatile Memory
Load/Store Instructions
Cache Line Granularity

Non-Volatile Memory
I/O Commands
Block Granularity

Figure 1: Traditional Memory Hierarchy [1]

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 5

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

New Memory Hierarchy

~10ms

~100ms

10-100µs

~80-100ns

1-10ns

~0.1ns

Volatile Memory
Load/Store Instructions
Cache Line Granularity

Non-Volatile Storage
I/O Commands
Block Granularity

CPU
Registers

CPU Caches
(L1,L2,L3,L4)

Double Data Rate
(DDR) DRAM

NAND SSD

Hard Disk Drives
(HDD)

Tape

Persistent Memory
< 1µs

Non-Volatile Storage
Load/Store Instructions
Cache Line Granularity

Capacity

Figure 2: New Memory Hierarchy [1]

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 6

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Statistics

Feature DRAM PMEM NAND SSD
Volatility Volatile Non-Volatile Non-Volatile

Capacity 16GB-64GB [2]
128GB, 256GB,

512GB [2]
256GB-1TB [3]

Latency 0.1 x 1µ [4] 0.1µ - 1µ [4] 1000 x 0.1µ [4]

Endurance 64E7 PBW [5]
360 Petabytes Written

(PBW) [6]
0.3 PBW [7]

Cost*
$5.04/GB (64GB) [8],
$7.5/GB (128GB) [9]

$16.30/GB
(512GB) [10]

$0.11/GB (1TB) [11]

I *The price per gigabyte increases with increasing density [12]
I It is difficult to pack a lot of DRAM into a single module [12]

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 7

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Use-Cases of Persistent Memory

Metagenomics

I Persistent hash table to lookup genome fragments [13]

Astronomy

I Persistent indexing structure to maintain data sets generated by an optical
telescope [13]

Graph Analytics

I Maintain graph structure in persistent memory for scalable checkpointing [13]

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 8

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Use-Cases of Persistent Memory

Common Characteristics of Use-Cases
I Data sets are large, up to trillions of data points [13]

I High capacity
I Data sets may encounter a large number of updates

I High endurance
I Data set updates are computationally expensive

I Non-volatile, low latency

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 9

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Desirable Properties

I High capacity
I High endurance
I Non-volatile, low latency

Persistent memory provides a happy medium!
Feature DRAM PMEM NAND SSD
Volatility Volatile Non-Volatile Non-Volatile

Capacity 16GB-64GB [2]
128GB, 256GB,

512GB [2]
256GB-1TB [3]

Latency 0.1 x 1µ [4] 0.1µ - 1µ [4] 1000 x 0.1µ [4]

Endurance 64E7 PBW [5]
360 Petabytes Written

(PBW) [6]
0.3 PBW [7]

Cost
$5.04/GB (64GB) [8],
$7.5/GB (128GB) [9]

$16.30/GB
(512GB) [10]

$0.11/GB (1TB) [11]

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 10

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Pitfalls of Persistent Memory

Architecture Limitations
I Caches and registers are expected to remain volatile

I Can cause persisted data to be in an inconsistent state if stores prior to the
crash were in the cache but not yet written to persistent memory

I Architecture provides instructions to ensure durability and ordering. Example:
I clwb: x86 ISA cacheline writeback
I sfence: x86 ISA fence

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 11

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Example

1 i f (CAS(curr −>next , next , node)) {
2 clwb (curr −>next) ;
3 sfence () ;
4 }

Figure 3: Persist Ordering Problem

NodeA

NodeB NodeC

NodeD
Persist

Persist

NodeB NodeC
Persist

Figure 4: Crash Consistency
Violation

Compare-And-Swap (CAS) accepts a memory location, expected value, and new
value as parameters. If the dereferenced value of the memory location is
equivalent to the expected value, then the memory location value is updated to the
new value and true is returned. Otherwise, no change is made and false is
returned.

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 12

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Correctness Properties for Persistent Data Structures

I Crash Consistency
I Durable Linearizability

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 13

Persistent Hash Map

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Persistent Hash Map

Setting
I Graph analytics

I Billions of vertices
I Concurrent data structures

I High performance access to data in shared memory
I Hash maps

I Fundamental data structure
I Commonly used in graph analytics
I Few high-performance NVM options

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 15

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Persistent Hash Map

Design Goals
I Read optimized

I Persistence needs no flush or fence after first read
I Runtime over recovery

I Persist as little as possible
I Compact representation and few cache misses

I Arrays
I Open addressing

I Low memory management overhead
I Allocate large table chunks

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 16

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Persistent concurrent hash Map (PMap)

I Non-volatile
I Lock-free

I Guaranteed system-wide progress
I Scales up with multiple threads

I Open addressing
I In-place keys and values

I Resizable
I Shrink or expand

I Operations
I insert(), replace(), remove(), get(), and update()
I update() is an atomic conditional replace

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 17

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

PMap Design Overview

ConcurrentHashMap
table

Table
pairs
CHM
copyIdx copyDone size slots newTable

K1 V1 K2 V2 K3 V3 K4 V4

Table
pairs
CHM
copyIdx copyDone size slots newTable

K1 V1 K2 V2 K3 V3 K4 V4 K5 V5 K6 V6 K7 V7 K8 V8

K1 V1 K2 V2 1.dat

2.dat

3.dat

Table
pairs
CHM
copyIdx copyDone size slots newTable

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 18

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Resizing

I Adapted from Cliff Click’s hash
map [14]

I Lock-free resizing is challenging
I Keys and values are separate

atomics
I Partial operations are possible

I Allocate a table twice (or half) the
current table size

I Key-value pairs are individually
migrated
I Concurrent
I Parallel
I Incremental

ConcurrentHashMap
table

Table
pairs
CHM
copyIdx copyDone size slots newTable

K1 V1 K2 V2 K3 V3 K4 V4

Table
pairs
CHM
copyIdx copyDone size slots newTable

K1 V1 K2 V2 K3 V3 K4 V4 K5 V5 K6 V6 K7 V7 K8 V8

K1 V1 K2 V2 1.dat

2.dat

3.dat

Table
pairs
CHM
copyIdx copyDone size slots newTable

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 19

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Resizing

I Reserves a resize bit for each value
I Indicates migration in progress

I Threads must help migrate
before returning a value

I Resize bit cuts into usable bits
I Limits values to 63 bits

I Once migrated, the old slot is
replaced with a migration sentinel
I Slot cannot be reused
I Migration is complete when all

slots have migration sentinels

ConcurrentHashMap
table

Table
pairs
CHM
copyIdx copyDone size slots newTable

K1 V1 K2 V2 K3 V3 K4 V4

Table
pairs
CHM
copyIdx copyDone size slots newTable

K1 V1 K2 V2 K3 V3 K4 V4 K5 V5 K6 V6 K7 V7 K8 V8

K1 V1 K2 V2 1.dat

2.dat

3.dat

Table
pairs
CHM
copyIdx copyDone size slots newTable

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 20

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Persistence

I Goal: Add persistence to concurrent data structures
I Leverage existing multithreaded synchronization guarantees

I Naive idea: flush-on-read [15]
I Flush newly created objects (ex. node and pointer)
I Flush before each read
I Simple, but expensive

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 21

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Persistence

I Goal: Add persistence to concurrent data structures
I Leverage existing multithreaded synchronization guarantees

I Naive idea: flush-on-read [15]
I Flush newly created objects (ex. node and pointer)
I Flush before each read
I Simple, but expensive

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 21

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Flush-on-Read

void persist(atomic<uintptr_t> *address) {
FLUSH(address);
FENCE;
return

}
uintptr_t pread(atomic<uintptr_t> *address) {

persist(address);
return address->load();

}
bool pcas(atomic<uintptr_t> *address,
uintptr_t &oldVal, uintptr_t newVal) {

persist(address);
return address->CAS(oldVal, newVal);

}

NodeA

NodeB

NodeD

NodeA

NodeB NodeC

NodeD

1

Links are not persisted on
assignment
New links are persisted on
creation

2

All links must be persisted
before access

Persist

Persist

Persist

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 22

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Persistence
I Goal: Add persistence to concurrent data structures

I Leverage existing multithreaded synchronization guarantees
I Naive idea: flush-on-read [15]

I Flush newly created objects (ex. node and pointer)
I Flush before each read
I Simple, but expensive

I Better idea: link-and-persist [15], [16]
I Flush newly created objects (just as before)
I Borrow an unused bit from a pointer

I Most architectures leave unused bits
I Mark as dirty on write
I Flush only on first read, then mark clean

I Worst case: All threads read at once, see the dirty bit, and all persist (factor of
thread count)

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 23

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Link-and-Persist

uintptr_t persist(atomic<uintptr_t> *address,
uintptr_t value) {

FLUSH(address);
FENCE;
address->CAS(value, value & ~DirtyFlag));
return value;

}
uintptr_t pRead(atomic<uintptr_t> *address) {

uintptr_t value = address->load();
if ((value & DirtyFlag) != 0) {

persist(address, value);
}
return value & ~DirtyFlag;

}
bool pCAS(atomic<uintptr_t> *address,
uintptr_t &oldVal, uintptr_t newVal) {

uintptr_t value = address->load();
if ((value & DirtyFlag) != 0) {

persist(address, value);
}
return address->CAS(oldVal, newVal | DirtyFlag);

}

NodeA

NodeB

NodeD
Persist

NodeA

NodeB NodeC

NodeD

1

Mark links to indicate
“not persisted”

Persist

2

Marked links must be
persisted upon access

Persist

Persist

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 24

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Link-and-Persist in PMap

I Flush new objects: Flush levels to hold default (empty) values.
I Extend from pointers to data.

I Cost: 1 bit per value
I Effective limit: 62-bit values (resize bit)
I Reasonable trade-off for our use cases

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 25

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Recovery
I Only persist keys and values
I Filesystem data (name, size) infers contents

I DAX (Direct Access) mode
I Link-and-persist ensures data is consistent

I Orphans are possible but discarded during recovery

1024 bits

512 bits

256 bits

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 26

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Related Works Compared
I Concurrent level hashing (clevel)

I Lock-free
I Open addressing (of pointers)
I Resize (but only expansion)

I OneFile hash map (OneFile)
I Wait-free
I Transactional
I Node-based

I Standard Template Library hash map (STL)
I Volatile
I std::map with global lock

I Persistent Memory Development Kit concurrent_hash_map (PMDK)
I Based on Intel TBB
I Reader-writer locks

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 27

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Testing Environment

I System:
I 2x 20 core / 40 thread Intel Xeon Gold 6230
I 134GB DRAM, 248GB Optane DC

Optane Configuration:
I App Direct mode
I DAX (Direct Access) mode

Code Configuration:
I C++
I GCC 9

Test Configuration:
I 62-bit keys and values
I Table capacity initially 214

I No garbage collection

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 28

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Performance Comparisons

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 29

Persistent Transactional Data Structures

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Persistent Transactional Systems

Taxonomy

Transactional Non-Transactional
High-Level (Data

Structure Semantics)
Persistent Data

Structures

Low-Level
(Reads/writes)

Persistent
Transactional Memory

(PTM)
clwb, sfence

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 31

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Persistent Transactional Data System for Linked Data Structures
(PETRA)

Design Goals
I High Performance

I Low overheads added to achieve durability
I High Scalability

I Performance scaling well with increasing number of processes
I Non-Blocking

I There is guaranteed system-wide progress

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 32

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Persistent Transactional Data System for Linked Data Structures
(PETRA)

High Performance
I PETRA keeps the number of cache line flushes and memory fences low by

persisting only the transaction descriptor :
I Contains the information needed to execute a transaction
I Leveraged as redo logs verify consistency after a crash and correct possible

inconsistencies
I Optimized for failure-free execution

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 33

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Persistent Transactional Data System for Linked Data Structures
(PETRA)

High Scalability
I Transactional synchronization for conflicts on nodes

I Logical rollback when a semantic conflict is detected
I Thread-level synchronization for read/write conflicts

I Eliminates false aborts

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 34

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Persistent Transactional Data System for Linked Data Structures
(PETRA)

Non-Blocking
I PETRA enforces transactional synchronization using a helping scheme in

conjunction with CAS
I A transaction will help complete another transaction if a conflict is detected
I The transaction status is updated from Active to either Committed or Aborted

using CAS
I PETRA achieves Obstruction Freedom:

I A single process executed in isolation is guaranteed to make progress

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 35

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

PETRA Methodology Example
Algorithm 1 Type Definitions

1: enum TxStatus
2: Active
3: Committed
4: Aborted
5: enum PersStatus
6: Maybe \\Default value
7: InProgress
8: Persisted
9: enum OpType

10: Insert
11: Delete
12: Find
13: struct Operation
14: OpType type

15: int key
16: struct Desc
17: int size
18: int txid
19: TxStatus status
20: PersStatus pstatus
21: Operation ops[]
22: struct NodeInfo
23: Desc* desc
24: int opid
25: struct Node
26: NodeInfo* info
27: int key
28: ...

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 36

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

PETRA Methodology Overview
Create Descriptor

Begin Transaction

End Transaction Persist Transaction

More
Operations

?

Execute Data
Structure Operation

Operation
Successful?

Commit Transaction

Abort Transaction
Set Transaction

Status

ExecuteTransaction

ExecuteOps

YES NO

YES

NO

Figure 5: Execute Transaction

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 37

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

PETRA Methodology Overview
Create Descriptor

Begin Transaction

End Transaction Persist Transaction

More
Operations

?

Execute Data
Structure Operation

Operation
Successful?

Commit Transaction

Abort Transaction
Set Transaction

Status

ExecuteTransaction

ExecuteOps

YES NO

YES

NO

Figure 6: Execute Transaction

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 38

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

PETRA Methodology Overview

Begin Data Structure
Operation

Begin CAS-Based
While Loop

DO_LocatePred()

DO_Operation()

UpdateInfo()IsNodePresent()

Result

Execute Data Structure Operation

YES

NO

RETRY

SUCCESS

FAIL

Note: DO_ indicates an operation from
the base concurrent data structure to
handle thread-level synchronization

Figure 7: Execute Data Structure Operation

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 39

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

PETRA Methodology Example

1

2

3 4

Node

Info

Transaction

Descriptor

t1 t2 t3

Thread 1

Thread 2

Thread 3

Insert(3) Insert(1)

Insert(4) Insert(2)

Delete(3) Delete(4)

Replaced by t3

Access conflict with t2

opid: 1

txdesc:t1

opid: 1

txdesc:t2

opid: 0

txdesc:t1

opid: 0

txdesc:t2

opid: 0

txdesc:t3

opid: 1

txdesc:t3

Type: Insert, key: 3

Type: Insert, key: 1

Status: Committed

PStatus: Persisted

Size: 2

Type: Insert, key: 4

Type: Insert, key: 2

Status: Active

PStatus: Maybe

Size: 2

Type: Delete, key: 3

Type: Delete, key: 4

Status: Active

PStatus: Maybe

Size: 2

Crash in the middle of

t2 and t3 execution

Figure 8: Transaction Descriptors for Conflict Detection, Durability
A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 40

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

PETRA Recovery

(op.key, desc)
exists in KDMap?

curtx happens after
desc in KDMap?

Contents of n
(e.g. value) is

valid?Descriptor pointed by
n matches the value
for n.key in KDMap?

Set the value to the
curtx descriptor for
op.key in KDMap

curtx is ignored

Read transaction
descriptors

Build key-descriptor
map (KDMap)

Verify consistency
of reachable nodes

Use the KDMap to execute
the remaining operations

for the missing keys

State of container
is consistent

State of n is consistent

Remove n
Re-execute the corresponding operation

based on the correct descriptor

For each op in a committed transaction curtx

For each node n in the linked-list based set

YES

NO YES

NO

YES

NO

NO

YES

Figure 9: Recovery Steps

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 41

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Experimental Setup

Machine Testbed
I Intel’s second-generation Xeon Scalable processors (Cascade Lake)

I 48 cores (2 sockets), supporting 96 threads
I Main memory consists of Intel Optane DC Persistent Memory (DCPM) with 6TB

total capacity, plus 768GB DRAM
I Persistent data structures placed in the DCPM; DRAM is used to store everything

else (e.g. code)

I The OS is Ubuntu 18.04 LTS
I The application and micro-benchmarks were compiled using gcc 7.4 with the

-O3 optimization flag and C++14 standard flags

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 42

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Experimental Setup

Micro-benchmarks
I Operation ratio for write-dominated workload

I Lists: 40% Insert, 40% Delete, 20% Find
I Map: 40% Insert, 30% Delete, 10% Update, 20% Find

I Operation ratio for read-dominated workload
I Lists: 10% Insert, 10% Delete, 80% Find
I Map: 10% Insert, 10% Delete, 5% Update, 75% Find

I Number of Transactions
I Linked List: 100K, Other Data Structures: 1M

I Key Range
I Linked List: 10K, Other Data Structures: 1M

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 43

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Performance Results

1 2 4 8 16 48 96
Number of Threads

103

104

105

106

Th
ro

ug
hp

ut
 O

ps
/s

ec PETRA-1 PETRA-4

(a) Linked list: write-dominated

1 2 4 8 16 48 96
Number of Threads

103

104

105

106

Th
ro

ug
hp

ut
 O

ps
/s

ec NTDSet-1 LFTT-1 LFTT-4

(b) Linked list: read-dominated

1 2 4 8 16 48 96
Number of Threads

103
104
105
106

Th
ro

ug
hp

ut
 O

ps
/s

ec OFLF-1 OFLF-4 ROM-1

(c) Map: write-dominated

1 2 4 8 16 48 96
Number of Threads

103
104
105
106

Th
ro

ug
hp

ut
 O

ps
/s

ec ROM-4 PMDK-1 PMDK-4

(d) Map: read-dominated
Figure 10: Throughput for transactional data structures for transactions of size 1 and 4.

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 44

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Performance Results

1 2 4 8 16 48 96
Number of Threads

103
104
105
106

Th
ro

ug
hp

ut
 O

ps
/s

ec PETRA-1 PETRA-4

(e) Skiplist: write-dominated

1 2 4 8 16 48 96
Number of Threads

103
104
105
106

Th
ro

ug
hp

ut
 O

ps
/s

ec NTDSet-1 LFTT-1 LFTT-4

(f) Skiplist: read-dominated

1 2 4 8 16 48 96
Number of Threads

103

104

105

106

Th
ro

ug
hp

ut
 O

ps
/s

ec OFLF-1 OFLF-4 ROM-1

(g) MDlist: write-dominated

1 2 4 8 16 48 96
Number of Threads

103

104

105

106

Th
ro

ug
hp

ut
 O

ps
/s

ec ROM-4 PMDK-1 PMDK-4

(h) MDlist: read-dominated
Figure 11: Throughput for transactional data structures for transactions of size 1 and 4.

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 45

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Performance Results

1 2 4 8 16 48 96
Number of Threads

0.1

2.5

5

7.5

10

Th
ro

ug
hp

ut
 M

Tx
/s

ec

PETRA
cgl_eager

orec_eager
orec_lazy

orec_mixed
norec

ring_sw
tlrw_eager

cgl_lazy

Figure 12: Performance comparison of PETRA with general-purpose PTMs in TATP
benchmark.

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 46

Live Demonstration

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Demonstration Settings

Processor
I AMD EPYC 7501 @ 2 GHz

I Cores: 32, Logical Processors: 64

Compiler Options

I Use DRAM allocator
I Persistent Write-Back (PWB) is Cacheline Flush (CLFLUSH)

1 # i f d e f PWB_IS_CLFLUSH
2 # def ine PWB(addr) asm v o l a t i l e (" c l f l u s h (%0) " : : " r " (addr) : "memory")
3 # de f ine PFENCE() { }
4 # de f ine PSYNC() { }
5 #endif

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 48

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Demonstration Settings

Micro-benchmarks
I Operation ratio: 33% Insert, 33% Delete, 34% Find
I Number of Transactions: 10K
I Key Range: 10K

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 49

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

Conclusion
Key Take-Aways

I Persistent memory provides a new tier of memory that is non-volatile and high
capacity with access latencies close to DRAM

I The persistent hash map uses open addressing
I Low memory overhead
I Improved cache locality

I PETRA provides highly scalable durable transactions due to its high-level
semantic conflict detection

Source Code
I PMap: https://github.com/ucf-cs/PMap
I PETRA: https://github.com/CLPeterson/PETRA-Non-Pmem

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 50

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

References I

[1] Flash memory summit, https:
//www.flashmemorysummit.com/opt_persistent_memory.html,
Accessed: 10-6-2021.

[2] Intel optane persistent memory,
https://www.intel.com/content/www/us/en/architecture-
and-technology/optane-dc-persistent-memory.html, Accessed:
10-6-2021.

[3] 3d nand stacking memory cells, https://www.atpinc.com/blog/3d-
nand-ssd-sd-flash-memory-storage-what-is, Accessed:
10-6-2021.

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 51

https://www.flashmemorysummit.com/opt_persistent_memory.html
https://www.flashmemorysummit.com/opt_persistent_memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.atpinc.com/blog/3d-nand-ssd-sd-flash-memory-storage-what-is
https://www.atpinc.com/blog/3d-nand-ssd-sd-flash-memory-storage-what-is

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

References II

[4] Researchers scrutinize optane memory performance,
https://www.nextplatform.com/2019/03/18/researchers-
scrutinize-optane-memory-performance/, Accessed: 10-6-2021.

[5] What is dram’s future?
https://semiengineering.com/what-is-drams-future/,
Accessed: 10-6-2021.

[6] Is optane dimm endurance good enough?
https://blocksandfiles.com/2019/04/04/enduring-optane-
dimm-question-is-its-endurance-good-enough-yes-intel-
has-delivered/, Accessed: 10-6-2021.

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 52

https://www.nextplatform.com/2019/03/18/researchers-scrutinize-optane-memory-performance/
https://www.nextplatform.com/2019/03/18/researchers-scrutinize-optane-memory-performance/
https://semiengineering.com/what-is-drams-future/
https://blocksandfiles.com/2019/04/04/enduring-optane-dimm-question-is-its-endurance-good-enough-yes-intel-has-delivered/
https://blocksandfiles.com/2019/04/04/enduring-optane-dimm-question-is-its-endurance-good-enough-yes-intel-has-delivered/
https://blocksandfiles.com/2019/04/04/enduring-optane-dimm-question-is-its-endurance-good-enough-yes-intel-has-delivered/

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

References III

[7] Ssd lifespan: How long will your ssd work?
https://www.enterprisestorageforum.com/hardware/ssd-
lifespan-how-long-will-your-ssd-work/, Accessed: 10-6-2021.

[8] Dram 64gb, https://www.newegg.com/p/pl?d=DRAM+64GB,
Accessed: 10-7-2021.

[9] Dram 128gb,
https://www.newegg.com/p/pl?d=Samsung+128GB+DIMM,
Accessed: 10-11-2021.

[10] Intel optane persistent memory,
https://www.newegg.com/p/pl?d=Optane+Persistent+Memory,
Accessed: 10-7-2021.

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 53

https://www.enterprisestorageforum.com/hardware/ssd-lifespan-how-long-will-your-ssd-work/
https://www.enterprisestorageforum.com/hardware/ssd-lifespan-how-long-will-your-ssd-work/
https://www.newegg.com/p/pl?d=DRAM+64GB
https://www.newegg.com/p/pl?d=Samsung+128GB+DIMM
https://www.newegg.com/p/pl?d=Optane+Persistent+Memory

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

References IV

[11] Nand ssd, https://www.newegg.com/p/pl?d=NAND+SSD, Accessed:
10-7-2021.

[12] Intel’s optane dimm price model, https:
//thememoryguy.com/intels-optane-dimm-price-model/,
Accessed: 10-7-2021.

[13] Persistent Programming in Real Life 2019 (PIRL 2019), Persistent Memory
Evaluation and Experiments
(https://www.youtube.com/watch?v=M_kCL1OZjko). Retrieved
3/22/2021.

[14] C. Click, “A lock-free wait-free hash table,” work presented as invited
speaker at Stanford, 2008.

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 54

https://www.newegg.com/p/pl?d=NAND+SSD
https://thememoryguy.com/intels-optane-dimm-price-model/
https://thememoryguy.com/intels-optane-dimm-price-model/
https://www.youtube.com/watch?v=M_kCL1OZjko

Introduction Persistent Hash Map Persistent Transactional Data Structures Live Demonstration References

References V

[15] T. Wang, J. Levandoski, and P.-A. Larson, “Easy lock-free indexing in
non-volatile memory,” in 2018 IEEE 34th International Conference on Data
Engineering (ICDE), IEEE, 2018, pp. 461–472.

[16] T. David, A. Dragojević, R. Guerraoui, and I. Zablotchi, “Log-free concurrent
data structures,” in 2018 USENIX Annual Technical Conference (USENIX
ATC 18), Boston, MA: USENIX Association, Jul. 2018, pp. 373–386, ISBN:
978-1-939133-01-4. [Online]. Available: https:
//www.usenix.org/conference/atc18/presentation/david.

A Persistent Hash Map for Graph Processing Workloads and a Methodology for Persistent Transactional Data Structures 55

https://www.usenix.org/conference/atc18/presentation/david
https://www.usenix.org/conference/atc18/presentation/david

	Introduction
	Persistent Memory
	Use-Cases
	Pitfalls

	Persistent Hash Map
	Design Goals and Methodology
	Persistence
	Performance Results

	Persistent Transactional Data Structures
	Design Goals
	Methodology
	Performance Results

	Live Demonstration
	References

