
Motivation Quantifiability Vector Space Entropy Measurement Design and Implementation of Quantifiable Stack/Queue Live Demonstration



Motivation Quantifiability Vector Space Entropy Measurement Design and Implementation of Quantifiable Stack/Queue Live Demonstration

Overview

Motivation
Correctness (Safety) Conditions
Motivating Examples, Drivers for Change

Quantifiability
Definition

Vector Space
System Model

Entropy Measurement
Correctness and Performance
Engineering Case Study: k-FIFO Queue

Design and Implementation of Quantifiable Stack/Queue

Live Demonstration

Design and Implementation of Highly Scalable Quantifiable Data Structures in C++ 2



Motivation



Motivation Quantifiability Vector Space Entropy Measurement Design and Implementation of Quantifiable Stack/Queue Live Demonstration

Correctness Conditions
A correctness condition defines correct behavior for a multiprocessor program.

I Serializability
I Sequential Consistency
I Quiescent Consistency
I Linearizability

All require reduction to a sequential history
64 threads with only one method call each, yields 64! = 1089

FYI: number of atoms in the universe is 1082
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Linearizability is the Standard
Linearizability is a correctness condition such that

1. A concurrent history of method calls is equivalent to a sequential history, and
2. Each method call appears to take effect at some instant between its

invocation and response.

If a method call takes effect between its invocation and response, the method call
takes effect in real-time order.
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Practical Concerns about Linearizability

I Method calls not conserved
I Timing is critical to correctness yet can only be estimated by applications
I Intermediate system state is opaque

(i.e. denotational, not small step operational)

I Correctness is binary, lacking any metric for engineering trade-offs
I Forced to make assumptions about abstract data type and object semantics

(i.e. a pop called on an empty stack)

I Limits parallel computation to an outdated serial model
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Correctness Depends upon Timing
Timing is critical to correctness yet opaque to the application. What about 4
wheels in an electric car!

P0

P1

x.push(7) x.pop(7)

x.push(8)

History H1: Concurrent history H1 on a single LIFO object x.

Serializable: Yes
Linearizable: No (or Yes with k-LIFO)
Quantifiable: Yes
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Conditional Semantics Violates Type Constraints, Atomicity
Conditional pop assumed to make H2 Linearizable.

P0

P1

x.pop(null ∨ 7)

y.pop(null ∨ 8)

y.push(8)

x.push(7)

History H2: Concurrent history H2 on two LIFO objects x and y.

Serializable: Yes
Linearizable: Yes
Quantifiable: Yes
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Conditional pop is inherently unfair
P0 keeps trying to pop, i.e. “progress without progress.”

P0

P1

P2

z.pop(null ∨ 1)

z.push(1)

z.pop(null ∨ 1)

z.pop(null ∨ 1)

History H3: Concurrent history on a single LIFO object z.

Serializable: Yes
Linearizable: Yes
Quantifiable: Yes
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Serializable, but not Linearizable
H4 works as a database transaction as some total order is valid.

P0

P1

x.pop(7)

y.pop(8)

y.push(8)

x.push(7)

History H4: Concurrent history H3 on two LIFO objects x and y.

Serializable: Yes
Linearizable: No
Quantifiable: Yes
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Drivers for Change

I Architectural demands to utilize multicore resources
I General acceptance of relaxed semantics
I The intractable O(n!) complexity of concurrent system models prompting the

search for reductions
I Growth of distributed software applications: blockchain, distributed file

systems, network apps
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Desiderata
I Native concurrent correctness, independent of sequential history
I Timing and semantics in the type system available to applications
I Defined operationally on system state, not by a combinatorial search of the

results
I Compositional*
I Free of Inherent Locking or Waiting*

*(Linearizability does fulfill the last two)
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First Principles

Inspired by Descartes
Applying Cartesian thought to concurrent systems, we see that first principles
describe what the program does (what is programmed), while secondary
principles such as timing, order and arguments are modifiers on them.

"The conditions defined in secondary principles cannot be known without the first, whereas the
reverse is not true."

– Descartes, Principles of Philosophy (preface to French edition of 1647)
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Introducing Quantifiability

Principles of Quantifiability

1. Methods are Conserved: Method calls are first class objects in the system
that must succeed, remain pending, or be explicitly cancelled.

2. Methods Count: Every method call has a measurable impact on the system
state.
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Informal Definition of Quantifiability
A history H is quantifiable if each method call in H succeeds, remains pending, or
is explicitly canceled, and the effect of each method call appears to execute
atomically and in isolation. Furthermore, the effect of every completed method call
makes a measurable contribution to the system state.
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Figure 1: Venn diagram showing Quantifiability (green dashes) and other correctness
conditions
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System Model

Methods (M)
Methods are actions defined on concurrent objects.

Processes (P)
Processes are the actors that call the methods.

Objects (O)
Objects are encapsulated containers of concurrent system.

Items (I)
Items are data passed as arguments to and returned as results from method calls.
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Method Calls in Vector Space
Concurrent histories are represented in vector space. Each method call has a
value over a basis vector uniquely defined by the system model [M, P, O, I].

P0

P1

x.push(7) x.pop(7)

x.push(8)

History H1

basis =



push, P0, x, 7
push, P0, x, 8
push, P1, x, 7
push, P1, x, 8
pop, P0, x, 7
pop, P0, x, 8
pop, P1, x, 7
pop, P1, x, 8


H1 =



1
0
0
1
−1
0
0
0


(1)
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History Vector Value Assignment
Let ~H be a history vector, let ~Hprev be the previous state of the history vector, and
let i be the position in the basis vector corresponding to a method call M on item I
by a process P in object O in a history.
I Producer: ~H[i] = ~Hprev[i] + 1
I Consumer: ~H[i] = ~Hprev[i]− 1
I Reader: for the jth read, ~H[i] = ~Hprev[i]− 1

2j

geometric series
∑∞

j=0
1
2j = 1

I Writer: let k be the position in the basis vector corresponding to an old item to
be overwritten in object O, ~H[i] = ~Hprev[i] + 1, ~H[k] = ~Hprev[k]− 1
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P0

P1

xA.ins(7) xA.put(8)

xA.get(7)

History H6: Quantifiable History for a Concurrent Map. xA is a specific key in the map.

basis =



ins, P0, xA, 7
ins, P0, xA, 8
ins, P1, xA, 7
ins, P1, xA, 8
put, P0, xA, 7
put, P0, xA, 8
put, P1, xA, 7
put, P1, xA, 8
get, P0, xA, 7
get, P0, xA, 8
get, P1, xA, 7
get, P1, xA, 8



H6 =



1
0
0
0
−1
1
0
0
0
0
− 1

2
0



(2)
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Reshaping H6 into a 2 by 6 matrix such that each row corresponds to an
object/item combination yields the following:

H6 =

[
1 0 −1 0 0 − 1

2
0 0 1 0 0 0

]
sum =

[
d1− 1

2e − 1
1

]
=

[
1− 1

1

]
=

[
0
1

]
(3)

I Top row corresponds to item 7
I Bottom row corresponds to item 8
I For each row:

I Add producers and readers, then take the ceiling of the sum
I Add consumers
I If the sum for each row is greater than or equal to zero, the sum is quantifiable

Design and Implementation of Highly Scalable Quantifiable Data Structures in C++ 23



Motivation Quantifiability Vector Space Entropy Measurement Design and Implementation of Quantifiable Stack/Queue Live Demonstration

Methods count: Verification becomes a matrix operation

I Let n be the total number of method calls in a history
I Let i be the total number of input/output combinations
I Let j be the total number of objects
I It takes O(n) time to iterate through all methods in the method call set

I Update sum for each method call
I It takes O(i · j) time to iterate through all possible configurations

I Check that each position in vector is greater than or equal to zero
I The total time complexity is O(n + i · j)
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Proving that a Data Structure is Quantifiably Correct

Visibility Point

I Identify an instruction in which the entire effects of the method become visible
I Demonstrates:

I Atomicity
I Isolation

Method Call Conservation
I Proof by cases to demonstrate

I A method call completes its operation on the successful code path
I A method call’s pending request is stored in the data structure on the

unsuccessful code path
I A method call’s pending request is fulfilled by the corresponding inverse method

Design and Implementation of Highly Scalable Quantifiable Data Structures in C++ 25
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Relationship between Correctness and Performance

I Previous works focus on relaxed correctness conditions
I Relaxed semantics is a technique, not a measurement
I Need to measure what relaxed semantics and other techniques do
I How correct is the result? (not binary)

Problem
Existing metrics are not capable of measuring the performance effects of a
correctness condition because they neglect the delays in method calls.
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Disordered results are "correct"

T1

T2

Enq (1)

Enq (2)

Enq (3)

Deq ()

Deq ()

Deq ()

T3
Enq (3) Deq ()

Linearizable response values for Deq operations:

T1:Deq ():1
T2:Deq ():2
T3:Deq ():3

T1:Deq ():2
T2:Deq ():3
T3:Deq ():1

T1:Deq ():3
T2:Deq ():1
T3:Deq ():2

T1:Deq ():1
T2:Deq ():3
T3:Deq ():2

T1:Deq ():2
T2:Deq ():1
T3:Deq ():3

T1:Deq ():3
T2:Deq ():2
T3:Deq ():1

Figure 2: First-In-First-Out (FIFO) Queue
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Knuth Inversion Count
The expected order of method calls is the invocation order.
(Think when you enter the restaurant or you hit the brakes on the 4 wheels of an
electric car.)

Actual order in a queue or stack represents the method call order.

The deviations in the expected and actual ordering of method calls is measured by
counting the inversions.

Solution
Disorder is entropy. Use the Knuth inversion count to create a probability mass
function and Shannon entropy to measure it. Normalize it so it is generally
applicable across many systems.
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Shannon Entropy

H(X) = −
n∑

i=1

P(xi)logP(xi) (4)

Equation 4 is Shannon entropy for a discrete random variable X with possible
values {x1, ..., xn} and probability mass function P(X).

P(X) varies for each of the abstract data types for concurrent data structures.
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Stacks
I High Entropy
I Concurrent implementations are challenging
I EBS attains high throughput and low entropy
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Case Study: Engineering trade-offs

I Correctness is not enough
I Entropy is an actionable measure
I Applications have different requirements
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Requirements

I All method calls must be conserved
I All method call must be atomic

Design Goals

I Prioritize avoiding contention over resolving it
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Conservation: pending pop is a first class object

pop(&a2)

-2

top @timeB

pop(&a1)

-1

empty

0

start

push(5)

1

push(9)

2

push(7)

3

top @timeA

Figure 6: Negative stack formed @timeB after 3 push followed by 5 pop calls.
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Providing Atomicity
Compare-And-Swap (CAS) atomically updates an object given an expected value.
If the expected value is incorrect, no update occurs.

C++ Compare-Exchange

1: obj->compare_exchange_weak(*expected, desired)
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Quantifiable Stack
I In the case of contention at a node, create a fork
I Push and pop insert or remove at any “leaf” node
I To make it easy to check for leaf nodes, we maintain a doubly-linked stack

push(1)

1

push(3)

2(a)

push(5)

2(b)
Thread 1 Thread 2

Figure 7: Thread 1 and Thread 2 concurrently perform push operations. An incoming pop
may return 3 or 5, either is correct
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Descriptor Objects
I Some operations must update multiple pointers

I We can use descriptor objects to make this process appear atomic
I A descriptor object contains all necessary information for an arbitrary thread

to complete an operation

Descriptor Object Example
1: struct Descriptor
2: Operation {fork, push, pop}
3: Active {true, false}
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Push Operation With Descriptors

I To push a node, a thread updates a node’s descriptor pointer using CAS
I This makes the intended operation visible to all threads

push(1)

Descriptor *

Descriptor:
Operation: Push(2)
Active: True

Top[0]
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Push Operation With Descriptors

I Afterwards, an arbitrary thread may insert a new doubly-linked node, and
update the top pointer

I Once this is done, the descriptor may be marked inactive

push(1)

Descriptor *

push(2)

Descriptor *

Descriptor:
Operation: Push(2)
Active: False

Top[0]
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Pop Operation With Descriptors

I The pop operation requires two descriptor pointers to be updated

push(1)

Descriptor *

push(2)

Descriptor *

Descriptor:
Operation: Pop(2)
Active: True

Top[0]
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Pop Operation With Descriptors

I Afterwards, the links can be removed, and the top pointer updated

push(1)

Descriptor *

Descriptor:
Operation: Pop(2)
Active: False

Top[0]
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Fork Operation With Descriptors

I To create a fork, a thread updates a node’s descriptor pointer
I Afterwards, any thread may initialize a new top pointer, and point it at that

node

push(1)

Descriptor *

Descriptor:
Operation: Fork
Active: False

Top[0] Top[1]
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Reducing Entropy

I reduce time between new forks
I limit maximum number of branches
I Enforce maximum "height" disparity between branches
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Quantifiable Stack
I Reduce entropy by keeping branches balanced

push(1)

push(3)push(5)

push(7)

push(8)

Figure 8: Branches with a height disparity of 2

Design and Implementation of Highly Scalable Quantifiable Data Structures in C++ 47



Motivation Quantifiability Vector Space Entropy Measurement Design and Implementation of Quantifiable Stack/Queue Live Demonstration

Quantifiable Queue
I The aforementioned branching technique is not very useful in a queue
I Instead, we implement a multi-queue to minimize contention between threads

enq(1) enq(3)enq(2)

Tail[0] Tail[1] Tail[2]

Head[0] Head[1] Head[2]
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Demonstration Settings

Processor
I AMD EPYC 7501 @ 2 GHz

I Cores: 32, Logical Processors: 64
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Conclusion

Key Take-Aways

I Quantifiability enables highly scalable data structures by permitting relaxed
semantics

I The vector space model facilitates an efficient verification technique for
checking the correctness of a concurrent history

I The entropy metric provides designers with the ability to analyze the trade-off
between correctness and performance

Source Code
I QStack and QQueue: https://github.com/RioVic/quantifiable.git
I Vector Space Verification:

https://github.com/CLPeterson/VectorSpace/tree/gnuplots
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