Design Patterns:
Facts and Misconceptions

KLAUS IGLBERGER

@ Cppcon AN
The C++ Conference 2] October 24-29

mailto:klaus.iglberger@gmx.de

C++ Trainer/Consultant
Author of the bI/\ze C++ math library
(Co-)Organizer of the Munich C++ user group

Chair of the CppCon B2B and SD tracks

Email: klaus.iglberger@gmx.de

Klaus Iglberger

() Episode #80 - the SOLID principles

2 |

e
4 \/

J

Phil Nash | =

/-

alal 2

b

-\
‘++ ‘++ ‘++ - +
++ {++ {++ |
(NN

-A-./
4 i
++ ++ ++ (: o

Watch on (3 YouTube

~—

+
+

AL
4

Let’s talk about
Software Design and

Design Patterns

All content is based on personal, subjective
impressions and opinions.

You may have another opinion, and that is fine!

There is no definitive answer in software design.
It depends.

But that is the reason why it is fun.

std: :make unique() ...

¢ ... Improves exception safety;
< ... fulfills the Single-Responsibility Principle (SRP);
¢ ...is a factory function.

std: :make _unique() ...

¢ ... improves exception safety;

4
4

©

void process(std::unique ptr<Widget> a, std::unique ptr<Widget> b);

int main()

{
process(std::unique ptr<Widget>(new Widget(1, /*...*/))
, std::unique ptr<Widget>(new Widget(2, /*...%/)));
//
return EXIT SUCCESS;
h

Possible order of operations:

void process(std::unique ptr<Widget> a, std::unique ptr<Widget> b);

int main()

{
process(std::unique ptr<Widget>(new Widget(1, /*...%*/))
, std::unique ptr<Widget>(new Widget(2, /*...%/)));

//

return EXIT SUCCESS;
X

Possible order of operations:

¢ new Widget(1, /*...%/)

void process(std::unique ptr<Widget> a, std::unique ptr<Widget> b);

int main()

{
process(std::unique ptr<Widget>(new Widget(1, /*...*/))
, std::unique ptr<Widget>(new Widget(2, /*...%/)));

//

return EXIT SUCCESS;
X

Possible order of operations:
¢ new Widget(1, /*...%/)
¢ std::unique ptr<Widget>(/*...*/)

10

void process(std::unique ptr<Widget> a, std::unique ptr<Widget> b);

int main()

{
process(std::unique_ptr<Widget>(new Widget(1, /*...%/))
, std::unique ptr<Widget>(new Widget(2, /*...%/)));
//
return EXIT SUCCESS;
X

Possible order of operations:

¢ new Widget(1, /*...%/)

¢ std::unique ptr<Widget>(/*...*/)
¢ new Widget(2, /*...*/)

11

void process(std::unique ptr<Widget> a, std::unique ptr<Widget> b);

int main()

{
process(std::unique ptr<Widget>(new Widget(1, /*...*/))
, std::unique ptr<Widget>(mew Widget(2, /*...%/)));
//
return EXIT SUCCESS;
h

Possible order of operations:

¢ new Widget(1, /*...%*/)

¢ std::unique ptr<Widget>(/*...*/)
¢ new Widget(2, /*...*/)

¢ std::unique_ptr<Widget>(/*...%/)

void process(std::unique ptr<Widget> a, std::unique ptr<Widget> b);

int main()

{
process(std::unique ptr<Widget>(new Widget(1, /*...*/))
, std::unique ptr<Widget>(new Widget(2, /*...%/)));
//
return EXIT SUCCESS;
h

Possible order of operations:

¢ new Widget(1, /*...*/)

¢ new Widget(2, /*...*/) // Resource leak in case of exception
¢ std: :unique_ptr<Widget>(/*...*/)

¢ std: :unique ptr<Widget>(/*...*/)

13

void process(std::unique ptr<Widget> a, std::unique ptr<Widget> b);

int main()

{
process(std::unique ptr<Widget>(new Widget(1, /*...*/))
, std::unique ptr<Widget>(new Widget(2, /*...%/)));
//
return EXIT SUCCESS;
h

Possible order of operations:

¢ new Widget(1, /*...*/)

¢ std: :unique ptr<Widget>(/*...*/)

¢ new Widget(2, /*...*/) // No longer an issue since C++17

¢ std::unique ptr<Widget>(/*...*/)

14

©

std: :make _unique() ...

Timprovesexception-satety-

N
&)

©

15

std: :make unique() ...

- =improves-exception-safetys
¢ ... fulfills the Single-Responsibility Principle (SRP);

(/1“\
(1_1\)

16

& Not logged in Talk Contributions Create account Log in

| L
Article Talk Read Edit View history ‘Search Wikipedia Q

\)(}IK‘i;,EDI A Single-responsibility principle

The Free Encyclopedia e :
From Wikipedia, the free encyclopedia
Main page The single-responsibility principle (SRP) is a computer-programming principle that states that SOLID
Contents every module, class or function in a computer program should have responsibility over a single
. . : Principles
Cunentevenis part of that program's functionality, and it should encapsulate that part. All of that module, class or . e
Random article e . _ . L Single responsibility
About Wikipedia function's services should be narrowly aligned with that responsibility. Open—closed
: 2 - i Liskov substitution
Contact us Robert C. Matrtin, the originator of the term, expresses the principle as, "A class should have only Interface segregation
sondio one reason to change,"!'] although, because of confusion around the word "reason" he also Dependency inversion
Contribute stated "This principle is about people.".[?] In some of his talks, he also argues that the principle is, VoT*E
Help in particular, about roles or actors. For example, while they might be the same person, the role of
Learn to edit an accountant is different from a database administrator. Hence, each module should be responsible for each role.?!
Community portal
Recent changes Contents [hide]
Upload file 1 History
2 Example
Tools
3 See also

What links here

4 References
Related changes

Special pages 5 External links

Permanent link
Page information

Cite this page HlStOI'y [edit]

RiiCcara o The term was introduced by Robert C. Martin in an article by the same name as part of his Principles of Object Oriented Design,!! made
Print/export popular by his book Agile Software Development, Principles, Patterns, and Practices.[! Martin described it as being based on the principle of
Download as PDF cohesion, as described by Tom DeMarco in his book Structured Analysis and System Specification,®! and Meilir Page-Jones in The Practical
Printable version Guide to Structured Systems Design.l”! In 2014 Martin wrote a blog post entitled The Single Responsibility Principle & with a goal to clarify

what was meant by the phrase "reason for change."
Languages o

17

“Everything should do just one thing.”

(Common Knowledge?)

18

Cppcon

The C++ Conference

Breaking Dependencies:
The SOLID Principles

Klaus Iglberger

) "
(B , '

20
0

om % = O[] -2

“The Single-Responsibility Principle advices to
separate concerns to isolate and simplify change.”
(Klaus Iglberger)

20

& Not logged in Talk Contributions Create account Log in

7 ool
e Article Talk Read Edit View history | Search Wikipedia Q
"ow O

The Free Encyclopedia

From Wikipedia, the free encyclopedia

viain'page This article needs additional citations for verification. Please help improve this article by adding
Contents

citations to reliable sources. Unsourced material may be challenged and removed.
Current events

Random article Find sources: "Software design" — news * newspapers * books * scholar - JSTOR (January 2013) (Learn how and when

About Wikipedia to remove this template message)
Contact us T
Donate Software design is the process by which an agent creates a specification of a software artlfa[c;; Software development
e intended to accomplish goals, using a set of primitive components and subject to constraints. Core activitios [hide]
Software design may refer to either "all the activity involved in conceptualizing, framing, Processes + Requirements - Design

Gop implementing, commissioning, and ultimately modifying complex systems" or "the activity Engineering - Construction - Testing -
Learn to edit . : . : : : Debugging * Deployment - Maintenance
c o following requirements specification and before programming, as ... [in] a stylized software

OMmUnty pora L W[2] Paradigms and models [show]
Recent changes engineering process.
Upload file Methodologies and frameworks [show]

Software design usually involves problem-solving and planning a software solution. This includes
Supporting disciplines [show]

Tools both a low-level component and algorithm design and a high-level, architecture design.
Practices [show]
What links here
Contents [hide
Related changes . [) Tools [3how]
Special pages 1 Overview Standards and Bodies of [show]
Permanent link 2 Design concepts Knowledge
P?ge |T1format|on 3 Design considerations Glosearios [show]
Cite this page 4 Modeling language ST o)
e . utlines
Wikidata item 5 Design patterns
Print/export 6 Technique VT
Download as PDF 7 Lsage
Printable version 8 See also
9 References
In other projects

21

“... ’'ll assert that there is no difference between [architecture and
design]. None at all.

The goal of software architecture is to minimize the human resources
required to build and maintain the required system.”

(Robert C. Martin, Clean Architecture)

22

Software Design is the art of managing
interdependencies between software components.

It aims at minimizing (technical) dependencies
and introduces the necessary
abstractions and compromises.

(Klaus Iglberger)

23

Software Design is the art of managing

dependencies and abstractions.

24

namespace std {

template< typename T, typename... Args >
std: :unique ptr<T> std::make unique(Argsé&&... args)

{

return std: :unique ptr<T>(new T(std::forward<Args>(args)...

¥

} // namespace std

std: :make _unique() ...

b [X J

. does not resolve any dependency;

.. does not provide any (semantic) abstraction (no customization);
.. has nothing to do with software design;
.. has nothing to do with design principles.

))

25

std: :make _unique() ...

26

std: :make unique() ...

@ ... is a factory function.

27

4)

Core Guideline C.50: Use a factory function if you need “virtual
behavior” during initialization.

. y

std: :unique ptr<MyThing> createMyThing()

{
auto tmp{ std::make_ unique<MyThing>() };

tmp->init(); // Virtual function call
return tmp;

28

D

WIKIPEDIA

The Free Encyclopedia

Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate

Contribute

Help

Learn to edit
Community portal
Recent changes
Upload file

Tools

What links here
Related changes
Special pages
Permanent link
Page information
Cite this page
Wikidata item

Print/export

Download as PDF
Printable version

Languages <

L all
Lietuviy
Magyar
Portugués
Tiéng Viét

& Not logged in Talk Contributions Create account Log in

Article Talk Read Edit View history | Search Wikipedia Q

Factory (object-oriented programming)

From Wikipedia, the free encyclopedia
(Redirected from Factory function)

"Factory pattern" redirects here. For the GoF design patterns using factories, see factory method pattern and abstract factory pattern.

In object-oriented programming (OOP), a factory is an object for creating other objects —
formally a factory is a function or method that returns objects of a varying prototype or
class!!! from some method call, which is assumed to be "new".[a] More broadly, a
subroutine that returns a "new" object may be referred to as a "factory", as in factory

Products
method or factory function. This is a basic concept in OOP, and forms the basis for a
) Factories
number of related software design patterns.
Factory Method in LePUS3 o
Contents [hide]
1 Motivation

2 Terminology

3 Use
3.1 Object creation

4 Examples

5 Syntax

6 Semantics

7 Design patterns

8 Applications

9 Applicability

10 Benefits and variants
10.1 Descriptive names

10.2 Encapsulation
10.2.1 Java

10:2:2 " PHP
11 Limitations
12 Notes
13 References

RAAETTrATS 7RI o

Download as PDF
Printable version

Languages o

Ll
Lietuviy
Magyar
Portugués
Tiéng Viét
FX
#' Edit links

10.2 Encapsulation
10.2.1 Java

10:2:2 " PHP
11 Limitations
12 Notes
13 References

Motivation [edit]

In class-based programming, a factory is an abstraction of a constructor of a class, while in prototype-based programming a factory is an
abstraction of a prototype object. A constructor is concrete in that it creates objects as instances of a single class, and by a specified process
(class instantiation), while a factory can create objects by instantiating various classes, or by using other allocation schemes such as an object
pool. A prototype object is concrete in that it is used to create objects by being cloned, while a factory can create objects by cloning various
prototypes, or by other allocation schemes.

Factories may be invoked in various ways, most often a method call (a factory method), sometimes by being called as a function if the factory
is a function object (a factory function). In some languages factories are generalizations of constructors, meaning constructors are themselves
factories and these are invoked in the same way. In other languages factories and constructors are invoked differently, for example using the
keyword new to invoke constructors but an ordinary method call to invoke factories; in these languages factories are an abstraction of
constructors but not strictly a generalization, as constructors are not themselves factories.

Terminology |edit]

Terminology differs as to whether the concept of a factory is itself a design pattern — in the seminal book Design Patterns there is no "factory
pattern", but instead two patterns (factory method pattern and abstract factory pattern) that use factories. Some sources refer to the concept
as the factory pattern,2l3] while others consider the concept itself a programming idiom,*! reserving the term "factory pattern" or "factory
patterns"” to more complicated patterns that use factories, most often the factory method pattern; in this context, the concept of a factory itself
may be referred to as a simple factory.l%! In other contexts, particularly the Python language, "factory" itself is used, as in this article.[’] More
broadly, "factory" may be applied not just to an object that returns objects from some method call, but to a subroutine that returns objects, as in
a factory function (even if functions are not objects) or factory method.'! Because in many languages factories are invoked by calling a
method, the general concept of a factory is often confused with the specific factory method pattern design pattern.

Use [edit]

OOP provides polymorphism on object use by method dispatch, formally subtype polymorphism via single dispatch determined by the type of
the object on which the method is called. However, this does not work for constructors, as constructors create an object of some type, rather
than use an existing object. More concretely, when a constructor is called, there is no object yet on which to dispatch.[®!

Using factories instead of constructors or prototypes allows one to use polymorphism for object creation, not only object use. Specifically,
using factories provides encapsulation, and means the code is not tied to specific classes or objects, and thus the class hierarchy or

Architecture

¢ How are big entities depending on each other?
¢ Design decisions that are hard to change
¢ Architectural patterns

¢ Examples:
¢ Client-Server Architecture

¢ Micro-Services e S s
PATTERNS OF PATTERN-ORIENTED
¢ MV(C, ... ENTERPRISE | . SOFTWARE
APPLICATION . ARCHITECTURE
A RCHITECTURE | A System of Patterns

b

DeSign IM\Rn\ FOWLER

Design Patterns
Elements of Reusable
Object-Oriented, Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

¢ How are small entities depending on each other?

¢ Design decisions that are easier to change

~ Design patterns

©

¢ Examples:

>
o
o
w
O
o
=
m
w
-
m
<
)
by
O
b4
m
w
2
O
e
>
=
(®)
®}
<
)
(=
=
74
O
(%)
m
~
m
(7]

¢ GoF Patterns: Visitor, Strategy, Observer, ... Idioms
¢ External Polymorphism e

Y P ¢ NVI Idiom (Template Method Design Pattern) -
=)

¢ Pimpl Idiom (Bridge Design Pattern)

¢ Temporary-Swap Idiom
¢ RAIl Idiom
¢ How is a design implemented? ¢ enable_if

Implementation Details

¢ Which features are used? < Factory Function
¢ Implementation patterns
¢ Examples:
¢ new, mallog, ...
¢ class vs. struct, lambda, ...
¥ .. 31

WIKIPEDIA

The Free Encyclopedia

Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate

Contribute

Help

Learn to edit
Community portal
Recent changes
Upload file

Tools

What links here
Related changes
Special pages
Permanent link
Page information
Cite this page
Wikidata item

Print/export

Download as PDF
Printable version

In other projects

Wikimedia Commons
Wikibooks

Languages o

Alemannisch

Article Talk

& Not logged in Talk Contributions Create account Log in

Read Edit View history | Search Wikipedia Q

Software design pattern

From Wikipedia, the free encyclopedia

In software engineering, a software design pattern is a general, reusable solution to a commonly occurring problem within a given context in
software design. It is not a finished design that can be transformed directly into source or machine code. Rather, it is a description or template
for how to solve a problem that can be used in many different situations. Design patterns are formalized best practices that the programmer
can use to solve common problems when designing an application or system.

Object-oriented design patterns typically show relationships and interactions between classes or objects, without specifying the final
application classes or objects that are involved. Patterns that imply mutable state may be unsuited for functional programming languages,
some patterns can be rendered unnecessary in languages that have built-in support for solving the problem they are trying to solve, and
object-oriented patterns are not necessarily suitable for non-object-oriented languages.

Design patterns may be viewed as a structured approach to computer programming intermediate between the levels of a programming
paradigm and a concrete algorithm.

In a recent review study, Wedyan and Abufakher investigate design patterns and software quality and conclude: "Our study has shown that the
primary studies provide an empirical evidence on the positive effect of documentation of designs pattern instances on program
comprehension, and therefore, maintainability. While this result is not surprising, it has, however, two indications. First, developers should pay
more effort to add such documentation, even if in the form of simple comments in the source code. Second, when comparing results of
different studies, the effect of documentation has to be considered."!

Contents [hide]

1 History
2 Practice

3 Structure
3.1 Domain-specific patterns
4 Classification and list
4.1 Creational patterns
4.2 Structural patterns
4.3 Behavioural patterns
4.4 Concurrency patterns
5 Documentation
6 Criticism

7 See also

Creational patterns [edit]

In
Name Description Desi In Code Other
ipti ign
- s Completel’d!
Patterns
Abstract Provide an interface for creating families of related or dependent objects without
_— : Yes Yes N/A
factory specifying their concrete classes.

_ Separate the construction of a complex object from its representation, allowing the
Builder , _ _ Yes No N/A
same construction process to create various representations.

Dependency A class accepts the objects it requires from an injector instead of creating the

e : : No No N/A
Injection objects directly.
Factory Define an interface for creating a single object, but let subclasses decide which v v N/A
es es
method class to instantiate. Factory Method lets a class defer instantiation to subclasses.
. Tactic of delaying the creation of an object, the calculation of a value, or some other
az
- yl_ i expensive process until the first time it is needed. This pattern appears in the GoF No No PoEAAL6]
initiglization | T oo P oos BHER TS TSt TTHe T Is TRt TS Pl dpprals T e BT
catalog as "virtual proxy", an implementation strategy for the Proxy pattern.
, Ensure a class has only named insta?s, and provide a global point of access to
Multiton No No N/A
them. o
Avoid expensive acquisition and release of resources by recycling objects that are
Object pool no longer in use. Can be considered a generalisation of connection pool and thread No No N/A
pool patterns.
Specify the kinds of objects to create using a prototypical instance, and create new
Prototype objects from the 'skeleton' of an existing object, thus boosting performance and Yes No N/A
keeping memory footprints to a minimum.
Resource
acquisition is Ensure that resources are properl rs‘!%sed by tying them to the lifespan of suitable
q : , PIOPETY i i No No N/A
initialization objects. ®
(RAII)
Singleton Ensure a class has only one instanc&nd provide a global point of access to it. Yes Yes N/A
o

Structural patterns [edit]

o . In Code
Name Description Design @ e Other

Behavioural patterns |[edit]

Name Description Design nicoae Other
i
e & Completel®!
Patterns
Artificial intelligence pattern for combining disparate sources of data (see blackboard
Blackboard No No N/A
system)
Chaiof Avoid coupling the sender of a request to its receiver by giving more than one object a
ain o
. chance to handle the request. Chain the receiving objects and pass the request along Yes No N/A
responsibility _ _ _ _
the chain until an object handles it.
Encapsulate a request as an object, thereby allowing for the parameterization of
Command clients with different requests, and the queuing or logging of requests. It also allows for Yes No N/A

the support of undoable operations.

Given a language, define a representation for its grammar along with an interpreter
Interpreter _ , _ Yes No N/A
that uses the representation to interpret sentences in the language.

Provide a way to access the elements of an aggregate object sequentially without
Iterator o _ _ Yes Yes N/A
exposing its underlying representation.

Define an object that encapsulates how a set of objects interact. Mediator promotes
Mediator loose coupling by keeping objects from referring to each other explicitly, and it allows Yes No N/A
their interaction to vary independently.

Without violating encapsulation, captu d externalize an object's internal state
Memento _ , _ Yes No N/A
allowing the object to be restored to thisestate later.
Null object Avoid null references by providing a default object. No No N/A
Observer or Define a one-to-many dependency between objects where a state change in one
Yes Yes N/A

Publish/subscribe | object results in all its dependents being notified and updated automatically.

Define common functionality for a group of classes. The servant pattern is also
frequently called helper class or utility class implementation for a given set of classes.

Servant _ _ No No N/A
The helper classes generally have no objects hence they have all static methods that

act upon different kinds of class objects.
Specification Recombinable business logic in a Boolean fashion. No No N/A

Allow an object to alter its behavior when its internal state changes. The object will
State _ Yes No N/A
appear to change its class.

Define a family of algorithms, encapsulate each one, and make them interchangeable.

The Classic Factory Method Designh Pattern

Design Patterns

Elements of Reusable
Object-Oriented.Software

Erich Gamme
Richard Helmr

P
-
p—
7o'
7~
p—
'
-
<
Vo'
<
e,
A
=
-
e
—~
bl
>
N
~
e
<
p—
O
—
—
A—_‘
Vo
A
W

35

The Classic Factory Method Design Pattern

“Define an interface for creating an object, but

let subclasses decide which class to instantiate.

Factory Method lets a class defer instantiation to
subclasses.”

(The Gang of Four, Design Patterns - Elements of Reusable Object-
Oriented Software)

36

The Classic Factory Method Design Pattern

virtual factoryMethod() = 0 QOp=s==ssssasss product = factoryMethod();

---------- ConcreteCreator

virtual factoryMethod() Qe==}=======- return new ConcreteProduct();

ConcreteProduct

37

The Classic Factory Method Design Pattern

virtual factoryMethod() = 0 QOp=s==ssssasss product = factoryMethod();

X
/\

High-level

(stable)
Architectural
Boundary
Low-level Inversion of
(malleable, volatile) dependencies
ConcreteProduct ~ [®=====n=eee ConcreteCreator
virtual factoryMethod() Qe=«|======+=- return new ConcreteProduct();

38

(A

Guideline: The purpose of a design pattern is to introduce a fitting
abstraction for a well known problem.

. J/

(A

Guideline: The name of a design pattern conveys the intent of the
abstraction.

. J/

(A

Guideline: std: :make unique() is an implementation pattern, not a
design pattern.

. J/

39

std: :make unique() ...

V o000 ,
-‘ o ° = ° of o = [4 3 N
* eee 11U = = JU J V J

¢ ... 1s a factory function, but not a design pattern.

)

40

Common misconceptions about design patterns:

< Design patterns are limited to runtime polymorphism;
< Design patterns are limited to OO programming;

¢ Design patterns are language specific idioms;

< Design patterns can be recognized by their structure.

41

The Classic Command Pattern

virtual execute()

0

receiver
ConcreteCommand

scvon) cxecutel) O

state

Receiver

II]

42

The Classic Command Pattern

virtual execute() =0

ConcreteCommand

execute()

state

43

An Example from the Standard Library

Alternatively we could use static polymorphism:

template< typename OP >
void doSomething(OP command);

This form of the command pattern is used in the standard library:

std: :vector<int> numbers{ 1, 2, 3, 4, 5, 6, 7 };

std: :for each(begin(numbers), end(numbers)
, [1(inté& 1){ 1%=10; });

44

The Classic Strategy Design Pattern

strategy

0

context() virtual algorithm()

/\

ConcreteStrategyA ConcreteStrategyB
virtual algorithm() virtual algorithm()

45

The Classic Strategy Design Pattern

Strategy

virtual algorithm() =0

ConcreteStrategyA

virtual algorithm()

46

An Example from the Standard Library

Alternatively we could use static polymorphism:

template< typename OP >
void doSomething(OP strategy);

This form of the strategy pattern is used in the standard library:

std: :vector<int> numbers{ 1, 2, 3, 4, 5, 6, 7 };

std: :accumulate(begin(numbers), end(numbers), ©
, std: :plus<>{});

Wait a second: Isn’t this the Command desigh pattern? ¢

47

An Example from the Standard Library

Well, it depends ...

Command vs. Strategy

virtual execute() =0

ConcreteCommand
virtual execute()

virtual algorithm() =0

ConcreteStrategyA

virtual algorithm()

49

Command vs. Strategy

The Command design pattern:

std: :vector<int> numbers{ 1, 2, 3, 4, 5, 6, 7 };

std: :for each(begin(numbers), end(numbers)
, [1(Aint& 1){ 17=10; });

The Strategy design pattern:

std: :vector<int> numbers{ 1, 2, 3, 4, 5, 6, 7 };

std: :accumulate(begin(numbers), end(numbers), ©
, std: :plus<>{});

50

Design Patterns

Elements of Reusable
Object-Oriented.Software

Erich Gam
Richard Helnr
Ralph Johnsc
John Vlissides

ord by Grady Booch

@

P
-
./
N
7~
p—
'
-
<
Vo'
<
O
A
A
-
¥p
—~
bl
}
N
~
e
<
p—
e,
o
—
h“
Vo
A
V'

51

The GoF’s Explanation

The Command Design Pattern
"Encapsulate a request as an object, thereby letting you parameterize

clients with different requests, queue or log requests, and support
undoable operations.”

The Strategy Design Pattern
“Define a family of algorithms, encapsulate each one, and make them

interchangeable. Strategy lets the algorithm vary independently from
clients that use it.”

52

Command vs. Strategy

Specify what should be done Specify how something should be done
=» Command design pattern -» Strategy design pattern

virtual execute() =0 virtual algorithm() = 0

ConcreteCommand ConcreteStrategy

virtual execute() virtual algorithm()

53

Command vs. Strategy

What should | do with each element? = Command design pattern

std: :vector<int> numbers{ 1, 2, 3, 4, 5, 6, 7 };

std: :for each(begin(numbers), end(numbers)
, [1(Aint& 1){ 17=10; });

How should | accumulate the elements? =» Strategy design pattern

std: :vector<int> numbers{ 1, 2, 3, 4, 5, 6, 7 };

std: :accumulate(begin(numbers), end(numbers), ©
, std: :plus<>{});

54

Guidelines

4)
Guideline: The intent of the Command design pattern is to specify what

should be done.

- /

~

Guideline: The intent of the Strategy design pattern is to specify how
something should be done.

. J/

4 A

Guideline: Remember that the difference between design patterns often
is not the structure, but the intent.

. J/

(A

Guideline: Remember that desigh patterns are neither limited to object-
oriented programming, nor dynamic polymorphism.

. J/

55

Guidelines

4)

Guideline: Consider to include the name of the design pattern into the
class name to help to convey the intent.

- J

56

Command vs. Strategy

What should | do with each element? = Command design pattern

template< class Inputlt, class UnaryFunction >
constexpr UnaryFunction
for each(Inputlt first, Inputlt last, UnaryFunction f);

How should | accumulate the elements? =» Strategy design pattern

template< class Inputlt, class T, class BinaryOperation >
constexpr T accumulate(Inputlt first, Inputlt last, T init,
BinaryOperation op);

57

Command vs. Strategy

What should | do with each element? = Command design pattern

template< class Inputlt, class UnaryCommand >
constexpr UnaryCommand
for each(Inputlt first, Inputlt last, UnaryCommand f);

How should | accumulate the elements? =» Strategy design pattern

template< class Inputlt, class T, class BinaryReductionStrategy >
constexpr T accumulate(Inputlt first, Inputlt last, T init,
BinaryReductionStrategy op);

58

Further misconceptions about design patterns:
< Design patterns are outdated;

< Design patterns have become obsolete.

59

Hpsweist W 3 months ago

Really? Design Patterns in 20217

5 2 GH REPLY

60

“Design patterns are everywhere!”
(Klaus Iglberger)

61

Challenge:

Name as many different design patterns as possible
that are used within the C++ standard library!

You have 20 seconds...

Go!

®© © © 0 0 0 0 0 0 0 00 0 0 0
®© © © 0 0 0 0 0 0 0 0 0 0 0 0

62

1. The Strategy Design Pattern

template< class Inputlt, class T, class BinaryOperation >
constexpr T accumulate(Inputlt first, Inputlt last, T init,
BinaryOperation op);

template<

class T,

class Allocator = std::allocator<I>
> class vector;

template<
class Key,
class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<Key>
> class unordered set;

template<
class T,
class Deleter
> class unique ptr;

std: :default delete<T>

63

2. The Command Design Pattern

template< class Inputlt, class UnaryFunction >
constexpr UnaryFunction

for_each(Inputlt first, Inputlt last, UnaryFunction f);

template< class Inputlt, class Outputlt, class UnaryOperation >
Outputlt transform(Inputlt firstl, Inputlt lastl, Outputlt d first,
UnaryOperation unary op);

64

3. The Iterator Design Pattern

LegacyContiguouslterator

Iterator category

LegacyRandomAccesslterator

LegacyBidirectionallterator

LegacyForwardlIterator

LegacyInputlterator

Defined

operations

read

increment
(without
multiple
passes)

increment
(with
multiple
passes)

decrement

random
access

contiguous
storage

Iterators that fall into one of the above categories and also meet the requirements of LegacyOutputlterator are called mutable iterators.

LegacyOQutputlterator

write

increment
(without
multiple
passes)

65

3. The Iterator Design Pattern

Algorithms

High-level o B
ola

A E

Low-level o
Container

Architectural
Boundary

66

4. The Adapter Design Pattern

template<

class T,

class Container
> class stack;

std: :deque<T>

template<

class T,

class Container
> class queue;

std: :deque<T>

template<

class T,

class Container = std::vector<T>,

class Compare = std::less<typename Container::value type>
> class priority queue;

namespace pmr {
template <class T>
using vector = std::vector<T, std::pmr::polymorphic_allocator<T>>;

67

.

//

The Decorator Design Pattern

#include <memory resource>

int main()

{

std: :array<std: :byte,1000> raw; // Note: not initialized!

std: :pmr: :monotonic_buffer resource buffer{ raw.data(), raw.size()
, std::pmr::null_memory resource() };

std: :pmr: :vector<std::pmr::string> strings{ &buffer };
strings.emplace_back("String longer than what 550 can handle”);

strings.emplace_back("Another Long string that goes beyond 550");
strings.emplace_back("A third long string that cannot be handled by S50");

for(const auto& s : strings) {
std: :cout << std::quoted(s) << '\n';
X

return EXIT SUCCESS;

68

5. The Decorator Design Pattern

Yes, there is a Singleton, but

/] ... Singleton is not a design pattern!
#include <memory resource>

int main()

{
std: :array<std: :byte,1000> raw; // Note: not initialized!

std: :pmr: :monotonic_buffer resource buffer{ raw.data(), raw.size()
, std::pmr::null_memory resource() };

std: :pmr: :vector<std::pmr::string> strings{ &buffer };
strings.emplace_back("String longer than what 550 can handle”);

strings.emplace_back("Another Long string that goes beyond 550");
strings.emplace_back("A third long string that cannot be handled by S50");

for(const auto& s : strings) {
std: :cout << std::quoted(s) << '\n';
X

return EXIT SUCCESS;

69

6. The Template Method Design Pattern

std:pmr::MEMOry resource

Defined in header <memory resource>
class memory resource; (since C++17)

The class std: :pmr::memory resource is an abstract interface to an unbounded set of classes encapsulating memory
resources.

Member functions

constructs a new memory resource
(public member function)

destructs an memory resource
(virtual public member function)

Implicitly declared copy assignment operator
(public member function)

(constructor) (implicitly declared)
(destructor) [virtual]
operator=(implicitly declared)

Public member functions

allocates memory

allocate (public member function)
I
deallocate dea]ocates memory
(public member function)
: mpare for lity with another memory r r
1s_equa1 compare for equality with another memory resource

(public member function)
Private member functions

allocates memory
(virtual private member function)

deallocates memory
(virtual private member function)

compare for equality with another memory resource
(virtual private member function)

do allocate |virtuall
do_deallocate [virtual]

do _1s equal [virtual]

6. The Template Method Design Pattern

class memory resource; (since C++17)

The class std: :pmr::memory resource is an abstract interface to an unbounded set of classes encapsulating memory
resources.

Member functions

constructs a new memo ry resource
(public member function)

destructs an memory resource
(virtual public member function)

Implicitly declared copy assignment operator
(public member function)

(constructor) (implicitly declared)
(destructor) [virtual]
operator=(implicitly declared)

Public member functions

allocates memory

allocate (public member function)
I tes mem
deallocate dea.oca = TS er
(public member function)
. mpare for lity with another memory r r
is_equal compare for equality another memory resource

(public member function)

Private member functions

it s W The Template Method Design Pattern
(vi rivate member function)
do_deallocate [virtual] deallocates memory

(virtual private member function)

compare for equality with another memory resource

: Jirtual ' . |
do_1is_equal [virtual] (virtual private member function)

Non-member-functions

operator== compare two memory resources
operator!=(removed in C++20) (function)

71

/. The Proxy Design Pattern

std: :vector<bool> vec{ false, true, false, true };

— __—// Accessing an element returns

auto&& element = vec[2]; // a proxy representing a "bool’

element = true; // Sets the element (2) to ‘true’

72

/. The Proxy Design Pattern

cppreference.com Create account e

Page Discussion View Edit History
C++ Utilities library std::bitset

std::bitset<N>::0perator|]

bool operator[](std::size t pos) const; 1) (until C++11)
constexpr bool operator[](std::size t pos) const; (since C++11)
reference operator[](std::size t pos); (2)

Accesses the bit at position pos. The first version returns the value of the bit, the second version returns an object of
type std: :bitset: :reference that allows modification of the value.

Unlike test (), does not throw exceptions: the behavior is undefined if pos is out of bounds.

Parameters
pos - position of the bit to return
Return value

1) the value of the requested bit
2) an object of type std: :bitset: :reference, which allows writing to the requested bit.

Exceptions
None

8. ...

namespace std {

template< typename Fn >
class function;

template< typename R, typename... Args >
class function<R(Args...)>
{

template< typename F >
function(F&& £)
: pimpl _(std::make unique<Model<Fn>>(
std: : forward<F>(f)))
{}

R operator()(Args... args) const {
return pimpl_ ->invoke(std::forward<Args>(args)...
H

~function() = default;
function(functioné&&) = default;
function& operator=(function&&) = default;

function(function consté& other)
: pimpl _(other.pimpl ->clone())
{}

function& operator=(const functioné& other)
{

function tmp(other);

std: :swap(pimpl_, tmp.pimpl_);

return *this:

)5

74

8. ...

namespace std {

template< typename Fn >
class function;

template< typename R, typename... Args >
class function<R(Args...)>

{

public:

template< typename F >
function(F&& f)
: pimpl _(std::make unique<Model<Fn>>(
std: :forward<F>(f)))
{}

R operator()(Args... args) const {
return pimpl_ ->invoke(std::forward<Args>(args)...
H

~function() = default;
function(functioné&&) = default;
function& operator=(function&&) = default;

function(function consté& other)
: pimpl _(other.pimpl ->clone())
{}

function& operator=(const functioné& other)
{

function tmp(other);

std: :swap(pimpl_, tmp.pimpl_);

return *this:

)5

75

8. ...

namespace std {

template< typename Fn >
class function;

template< typename R, typename... Args >
class function<R(Args...)>
{

template< typename F >
function(F&& f)
: pimpl_(std::make unique<Model<Fn>>(
std: :forward<rF>(f)))
{}

R operator()(Args... args) const {
return pimpl_ ->invoke(std::forward<Args>(args)...
H

~function() = default;
function(functioné&&) = default;
function& operator=(function&&) = default;

function(function consté& other)
: pimpl _(other.pimpl ->clone())
{}

function& operator=(const functioné& other)
{

function tmp(other);

std: :swap(pimpl_, tmp.pimpl_);

return *this:

)5

76

8. ...

private:
class Concept

{

public:
virtual ~Concept() = default;
virtual std::unique_ ptr<Concept> clone() const
virtual R invoke(Args...) const = 0;

}s

template< typename F >
class Model final : public Concept

{
public:

explicit Model(F £)
: In_(std::move(f))
{}

std: :unique_ptr<Concept> clone() const final {
return std::make _unique<Model>(fn_);
b

R invoke(Args... args) const final {
return fn (std::forward<Args>(args)...);
H

private:
Fn fn_;

}5

std: :unique ptr<Concept> pimpl_;

};

} // namespace std

9;

77

8. ...

private:
class Concept

{

public:
virtual ~Concept() = default;
virtual std::unique ptr<Concept> clone() const
virtual R invoke(Args...) const = 0;

};

template< typename F >
class Model final : public Concept

{
public:

explicit Model(F £)
. ftn_(std::move(f))
{}

std: :unique_ptr<Concept> clone() const final {
return std::make_unique<Model>(fn_);
h

R invoke(Args... args) const final {
return fn_ (std::forward<Args>(args)...);
H

private:
Fn fn_;

}5

std: :unique ptr<Concept> pimpl_;

};

} // namespace std

9;

78

8. The External Polymorphism Design Pattern

private:
class Concept

{

public:
virtual ~Concept(
virtual std::unique’
virtual R invoke(Arg

= default;
tr<Concept> clone() const = 0;
) const = O;

s
template< typename F >
class Model < . public Concgpt
{
public:
explicit Model(F £) The External Polymorphism Design Pattern
. ftn_(std::move(f))
{}

std: :unique_ptr<Concept> clone() const final {
return std::make_unique<Model>(fn_);

¥

R invoke(Args... args) const final {
return fn_ (std::forward<Args>(args)...);

¥

private:
Fn fn_;

}5

std: :unique ptr<Concept> pimpl_;

};

} // namespace std 79

8. The External Polymorphism Design Pattern

External Polymorphism (3rd Pattern Languages of Programming Conference, September 4-6, 1996)

External Polymorphism

An Object Structural Pattern for Transparently Extending C++ Concrete Data Types

Chris Cleeland

chris@envision.com
Envision Solutions, St. Louis, MO 63141

Douglas C. Schmidt and Timothy H. Harrison

schmidt@cs.wustl.edu and harrison@cs.wustl.edu

Department of Computer Science
Washington University, St. Louis, Missouri, 63130

This paper appeared in the Proceedings of the 3"¢ Pat-
tern Languages of Programming Conference, Allerton Park,
[llinois, September 46, 1996.

1 Intent

Allow C++ classes unrelated by inheritance and/or having
no virtual methods to be treated polymorphically. These
unrelated classes can be treated in a common manner by
software that uses them.

2 Motivation

Working with C++ classes from different sources can be dif-
ficult. Often an application may wish to “project” common

1. Space efficiency — The solution must not constrain the
storage layout of existing objects. In particular, classes
that have no virtual methods (i.e., concrete data types)
must not be forced to add a virtual table pointer.

2. Polymorphism — All library objects must be accessed
in a uniform, transparent manner. In particular, if new
classes are included into the system, we won’t want to
change existing code.

Consider the following example using classes from the
ACE network programming framework [3]:

. SOCK Acceptor acceptor; // Global storage

=W
. .

. int main (void) {
SOCK Stream stream; // Automatic storage

80

https://www.dre.vanderbilt.edu/~schmidt/PDF/External-Polymorphism.pdf

9. The Bridge Design Pattern

I.JJ..LVQLC.

class Concept

{

public:
virtual ~Concept() = default;
virtual std::unique_ ptr<Concept> clone() const = 0;
virtual R invoke(Args...) const = 0;

s

template< typename F >
class Model final : public Concept

{
public:
explicit Model(F £)
: fn_(std::move(f))
{}
std: :unique_ptr<Concept> clone() const final {
return std::make_unique<Model>(fn_);
b
R invoke(Args... args) const final {
return fn_ (std::forward<Args>(args)...);
H
private: . .
Fn fn_; The Bridge Design Pattern
std: :unique_ ptr<Concept> pimpl ;

}s

} // namespace std

31

10. The Prototype Design Pattern

function(function consté& other)
: pimpl (other.pimpl ->clone())
{}

function& operator=(const function& other)
{

function tmp(other);

std: :swap(pimpl_, tmp.pimpl_);

return *this;

H
private:

class Concept

{

public:
virtual ~Concept() = default;
virtual std::unique_ ptr<Concept> clone() const = 0;
virtual R invoke(Args...) const 9 0;

s

template< typename F >
class Model final : public Concept
{ The Prototype Design Pattern
public:
explicit Model(F £)
. fIn_(std::move(f))
{}

std: :unique_ptr<Concept> clone() const final {
return std::make_unique<Model>(fn_);
h

R invoke(Args... args) const final {
return fn_ (std::forward<Args>(args)...);

82

11. The Type Erasure Design Pattern

namespace std {

template< typename Fn >
class function;

template< typename R, typename... Args >
class function<R(Args...)>

{
public:

template< typename F >
function(F&& £)
: pimpl _(std::make unique<Model<Fn>>(
std: : forward<F>(f)))
{}

R operator()(Args... args) const {
return pimpl_ ->invoke(std::forward<Args>(args)...
H

~function() = default;
function(functioné&&) = default;
functioné& operator=(function&&) = default;

function(function consté& other)
: pimpl _(other.pimpl ->clone())
{}

function& operator=(const functioné& other)
{

function tmp(other);

std: :swap(pimpl_, tmp.pimpl_);

return *this:

)5

33

11. The Type Erasure Design Pattern

Type Erasure is ...

¢ ... a templated constructor;
¢ ... a completely non-virtual interface;
¢ ... External Polymorphism + Bridge + Prototype.

84

Breaking Dependencies:
Type Erasure - A Design Analysis

KLAUS IGLBERGER

%[]' NA

Thursday, October 28th, 7:45am MDT

Guidelines

4 N
Guideline: Design patterns are not outdated, nor obsolete. The C++

standard library is full of them.

- /

4)

Guideline: Design patterns are everywhere. Learn to recognize them and
use according names to communicate intent.

. J/

86

Summary

Design patterns ...

Vs Y
f)
f
(N]
\)
\\'v/
(N]

4 N\
f \
\)
NS4
o0

. are about dependencies and abstractions;
. are about intent;

. are not limited to OO programming;

.. are not limited to dynamic polymorphism;
.. are not outdated nor obsolete;

.. are everywhere!

87

Design Patterns:
Facts and Misconceptions

KLAUS IGLBERGER

@ Cppcon AN
The C++ Conference 2] October 24-29

