
charley bay
charleyb123 at gmail dot com

Symmetry And Orthogonality

System Design

The Roles of

In Design

charley bay
charleyb123 at gmail dot com

Symmetry And Orthogonality

System Design

The Roles of

In Design

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Either you keep self improving,

or it's time to move into management.

--Niall Douglas
30-Sep-2021

https://old.reddit.com/r/cpp/comments/pye3iv/c_commi

ttee_dont_want_to_fix_rangebased_for_loop/heug4br/

https://old.reddit.com/r/cpp/comments/pye3iv/c_committee_dont_want_to_fix_rangebased_for_loop/heug4br/

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Today’s Agenda

• Levels of “Knowing”

• Role of Symmetry

• Role of Asymmetry

• Role of Orthogonality

• Design Relationships

• Conclusion

What’s going
on here?

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Understanding without tedious scrutiny

Levels of “Knowing”

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

What’s the purpose of this?

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

• Q: What Does “Design” Provide?

• A:

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

• Q: What Does “Design” Provide?

• A: We “Know”:

How the structure and behavior

achieves a desired result

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

• Q: What Does “Design” Provide?

• A: We “Know”:

How the structure and behavior

achieves a desired result

Is “obvious” or “clear”

Our “First” or “Best Guess”

to any question is

usually correct

We understand the inner-workings

of our system

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Levels of “Knowing”

Guarantee
• Inviolate principle or behavior

Always
true

• Examples:

• C++ Language Specification (Is all about “Guarantees”)

• System/Subsystem Design (Defines API boundaries and behavior)

• Implementation details (e.g., “lock-free” and “wait-free” algorithms
provide guarantees for system-wide or per-thread progress)

highest

lowest

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Levels of “Knowing”

• Examples:

• System-specific adapters may require custom handling

• Exceptional events may require special processing

• Custom or adaptive behavior may invoke novel execution paths

Guarantee
• Inviolate principle or behavior

Always
true

Rule
• Highly regarded principle

Exceptions

may apply

• Examples:

• C++ Language Specification (Is all about “Guarantees”)

• System/Subsystem Design (Defines API boundaries and behavior)

• Implementation details (e.g., “lock-free” and “wait-free” algorithms
provide guarantees for system-wide or per-thread progress)

highest

lowest

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Levels of “Knowing”

• Examples:

• System-specific adapters may require custom handling

• Exceptional events may require special processing

• Custom or adaptive behavior may invoke novel execution paths

• Examples:

• Prefer generalized solution, but plugin API allows for custom
processing (such as hardware offloading)

• Prefer default configuration, but permit users to bypass or disable
specific subsystems

• Customization to adapt system to customer-specific environment

Guarantee
• Inviolate principle or behavior

Always
true

Rule
• Highly regarded principle

Exceptions

may apply

Guideline
• General pattern

Violations

not uncommon

• Examples:

• C++ Language Specification (Is all about “Guarantees”)

• System/Subsystem Design (Defines API boundaries and behavior)

• Implementation details (e.g., “lock-free” and “wait-free” algorithms
provide guarantees for system-wide or per-thread progress)

highest

lowest

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Levels of “Knowing”

• Examples:

• System-specific adapters may require custom handling

• Exceptional events may require special processing

• Custom or adaptive behavior may invoke novel execution paths

• Examples:

• Prefer generalized solution, but plugin API allows for custom
processing (such as hardware offloading)

• Prefer default configuration, but permit users to bypass or disable
specific subsystems

• Customization to adapt system to customer-specific environment

• Projection of personal bias independent of actual system:

• “I don’t know, but this is how I would have done it”

• “Seems like it shouldn’t happen, but it does”

Guarantee
• Inviolate principle or behavior

Always
true

Rule
• Highly regarded principle

Exceptions

may apply

Guideline
• General pattern

Violations

not uncommon

Guess
• Bias projection

You

don’t know

• Examples:

• C++ Language Specification (Is all about “Guarantees”)

• System/Subsystem Design (Defines API boundaries and behavior)

• Implementation details (e.g., “lock-free” and “wait-free” algorithms
provide guarantees for system-wide or per-thread progress)

highest

lowest

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Which “Knowing”?

• Q: Which “knowing”?

...
{
Bar b;
// ...

}

...

• Given:

Desired:
b.~Bar()

is called

Guarantee
• Inviolate principle or behavior

Always
true

Rule
• Highly regarded principle

Exceptions

may apply

Guideline
• General pattern

Violations

not uncommon

Guess
• Bias projection

You

don’t know

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Which “Knowing”?

• Q: Which “knowing”?

...
{
Bar b;
// ...

}

...

• Given:

Desired:
b.~Bar()

is called

Guarantee
• Inviolate principle or behavior

Always
true

Rule
• Highly regarded principle

Exceptions

may apply

Guideline
• General pattern

Violations

not uncommon

Guess
• Bias projection

You

don’t know

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Which “Knowing”?

• Q: Which “knowing”?

...
{
Bar b;
// ...

}

...

• Given:

Desired:
b.~Bar()

is called

Guarantee
• Inviolate principle or behavior

Always
true

Rule
• Highly regarded principle

Exceptions

may apply

Guideline
• General pattern

Violations

not uncommon

Guess
• Bias projection

You

don’t know

Desired:
b

Not in scope

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Which “Knowing”?

• Q: Which “knowing”?

...
{
Bar b;
// ...

}

...

• Given:

Desired:
b.~Bar()

is called

Guarantee
• Inviolate principle or behavior

Always
true

Rule
• Highly regarded principle

Exceptions

may apply

Guideline
• General pattern

Violations

not uncommon

Guess
• Bias projection

You

don’t know

Desired:
b

Not in scope

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Which “Knowing”?
• Implement std::variant<Types…>

• Desired:
• variant is “value-type”

• Implementation cannot allocate dynamic memory

• …BUT!

• discover exception may be thrown during move
initialization of contained value (during move assignment)

• …SOLUTION:

Guarantee
• Inviolate principle or behavior

Always
true

Rule
• Highly regarded principle

Exceptions

may apply

Guideline
• General pattern

Violations

not uncommon

Guess
• Bias projection

You

don’t know

• std::variant<Types…>::valueless_by_exception

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Which “Knowing”?
• Implement std::variant<Types…>

• Desired:
• variant is “value-type”

• Implementation cannot allocate dynamic memory

• …BUT!

• discover exception may be thrown during move
initialization of contained value (during move assignment)

• …SOLUTION:

Guarantee
• Inviolate principle or behavior

Always
true

Rule
• Highly regarded principle

Exceptions

may apply

Guideline
• General pattern

Violations

not uncommon

Guess
• Bias projection

You

don’t know

Highly Regarded Principle:
std::variant<Types…> always has a value

Rule through Desired Semantics

meeting Implementation Reality

Exception:
valueless_by_exception

• std::variant<Types…>::valueless_by_exception

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Which “Knowing”?

• Given:
• Concern about throw-within-uncaught-throw

(std::terminate() called)

• …SOLUTION:

• Never throw within dtor (because stack-unwind
during exception handling cannot tolerate a nested
throw)

• Q: Which “knowing”?

Guarantee
• Inviolate principle or behavior

Always
true

Rule
• Highly regarded principle

Exceptions

may apply

Guideline
• General pattern

Violations

not uncommon

Guess
• Bias projection

You

don’t know

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Which “Knowing”?

• Q: Which “knowing”?

Guarantee
• Inviolate principle or behavior

Always
true

Rule
• Highly regarded principle

Exceptions

may apply

Guideline
• General pattern

Violations

not uncommon

Guess
• Bias projection

You

don’t know

Never a Guarantee

…Because no protection against

other scenarios (other than dtor) causing
throw-within-uncaught-throw

If your codebase implements…
• Rule: never throw in dtor

• Guideline: well-defined scenarios
may throw in dtor

• Guess: dtors may throw

• Given:
• Concern about throw-within-uncaught-throw

(std::terminate() called)

• …SOLUTION:

• Never throw within dtor (because stack-unwind
during exception handling cannot tolerate a nested
throw)

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Notional understanding without direct inspection

Role of Symmetry

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Make your point!

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Design Symmetry Symmetry (def):

Agreement in dimensions due

to proportion and arrangement

Symmetric:
• Harmonious or Balanced

• Q: Why is Symmetry good
(for Design)?

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Design Symmetry Symmetry (def):

Agreement in dimensions due

to proportion and arrangement

Symmetric:
• Harmonious or Balanced

• Q: Why is Symmetry good
(for Design)?

• A: Symmetry implies high predictability and
consistent behavior (once pattern is recognized)

Enables system scaling

(in size and complexity)

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetric Does NOT Mean “Sameness”

“The ceiling of Lotfollah mosque, Isfahan, Iran

has 8-fold symmetries.”

Humans are GREAT at

pattern recognition
(identifying that which is “similar”)

“Celtic knotwork

showing p4 symmetry”
Examples from: https://en.wikipedia.org/wiki/Symmetry

“A fractal-like shape that has

reflectional symmetry, rotational

symmetry and self-similarity”

Types of symmetry
(in geometry):

• Reflectional symmetry

• Rotational symmetry

• Translational symmetry

• Helical symmetry

• Scale symmetry

• Glide reflection symmetry

• Rotoreflection symmetry

“Kitchen

kaleidoscope

quilt block”
Symmetric:

• …is “similar”

• …is NOT “sameness”

https://en.wikipedia.org/wiki/Symmetry

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry Examples

• Q: Guess what is hidden?

Enterolobium cyclocarpum

?

We use symmetry
(from what we “see”)

to intuit

that which we do not see

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry Examples

• Q: Guess what is hidden?

Enterolobium cyclocarpum

We use symmetry
(from what we “see”)

to intuit

that which we do not see

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

?

? ?

Symmetry Examples

• Q: Guess what is hidden?

Enterolobium cyclocarpum

We use symmetry
(from what we “see”)

to intuit

that which we do not see

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

? ?

Symmetry Examples

• Q: Guess what is hidden?

Enterolobium cyclocarpum

We use symmetry
(from what we “see”)

to intuit

that which we do not see

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

?

Symmetry Examples

• Q: Guess what is hidden?

Enterolobium cyclocarpum

We use symmetry
(from what we “see”)

to intuit

that which we do not see

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry Examples

• Q: Guess what is hidden?

Enterolobium cyclocarpum

We use symmetry
(from what we “see”)

to intuit

that which we do not see

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry Examples

• Q: Guess what is hidden?

Enterolobium cyclocarpum

We use symmetry
(from what we “see”)

to intuit

that which we do not see

?

? ?

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry Examples

• Q: Guess what is hidden?

Enterolobium cyclocarpum

We use symmetry
(from what we “see”)

to intuit

that which we do not see? ?

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry Examples

• Q: Guess what is hidden?

Enterolobium cyclocarpum

We use symmetry
(from what we “see”)

to intuit

that which we do not see?

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry Examples

• Q: Guess what is hidden?

Enterolobium cyclocarpum

We use symmetry
(from what we “see”)

to intuit

that which we do not see

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry Examples

• Q: Guess what is hidden?

Enterolobium cyclocarpum

We use symmetry
(from what we “see”)

to intuit

that which we do not see

?

? ?

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry Examples

• Q: Guess what is hidden?

Enterolobium cyclocarpum

We use symmetry
(from what we “see”)

to intuit

that which we do not see

? ?

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry Examples

• Q: Guess what is hidden?

Enterolobium cyclocarpum

We use symmetry
(from what we “see”)

to intuit

that which we do not see

?

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry Examples

• Q: Guess what is hidden?

Enterolobium cyclocarpum

We use symmetry
(from what we “see”)

to intuit

that which we do not see

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

The Phi Scaling Angle In Nature

https://cosmometry.net/phi-scaling-angle

Spruce tree is fractal scaling

based on phi angle
Pelicans in flight

with phi angle

Tree bark scaling

at phi angle

• Symmetry naturally occurs in our system
(and in Nature!)

Where there is symmetry,

there is predictability
(actionable understanding) Phi (Φ = 1.618033988749895…)

https://cosmometry.net/phi-scaling-angle

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry allows us to “know” things

that we otherwise should not know
(by enabling projection over

that which is not explicitly inspected)

?

?
?

?

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry Examples (continued)

• Q: Guess what is hidden?

?

? ?

We use symmetry (from what we “see”)

to intuit that which we do not see
This is ONLY effective WHEN the

domain is structured symmetrically

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry Examples (continued)

• Q: Guess what is hidden?

? ?

We use symmetry (from what we “see”)

to intuit that which we do not see
This is ONLY effective WHEN the

domain is structured symmetrically

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry Examples (continued)

• Q: Guess what is hidden?

?

We use symmetry (from what we “see”)

to intuit that which we do not see
This is ONLY effective WHEN the

domain is structured symmetrically

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry Examples (continued)

• Q: Guess what is hidden?

We use symmetry (from what we “see”)

to intuit that which we do not see
This is ONLY effective WHEN the

domain is structured symmetrically

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry Examples (continued)

• Q: Guess what is hidden?

We use symmetry (from what we “see”)

to intuit that which we do not see
This is ONLY effective WHEN the

domain is structured symmetrically

?

? ?

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry Examples (continued)

• Q: Guess what is hidden?

We use symmetry (from what we “see”)

to intuit that which we do not see
This is ONLY effective WHEN the

domain is structured symmetrically

? ?

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry Examples (continued)

• Q: Guess what is hidden?

We use symmetry (from what we “see”)

to intuit that which we do not see
This is ONLY effective WHEN the

domain is structured symmetrically

?

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry Examples (continued)

• Q: Guess what is hidden?

We use symmetry (from what we “see”)

to intuit that which we do not see
This is ONLY effective WHEN the

domain is structured symmetrically

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry Examples (continued)

• Q: Guess what is hidden?

We use symmetry (from what we “see”)

to intuit that which we do not see
This is ONLY effective WHEN the

domain is structured symmetrically

?

? ?

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry Examples (continued)

• Q: Guess what is hidden?

We use symmetry (from what we “see”)

to intuit that which we do not see
This is ONLY effective WHEN the

domain is structured symmetrically

? ?

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry Examples (continued)

• Q: Guess what is hidden?

We use symmetry (from what we “see”)

to intuit that which we do not see
This is ONLY effective WHEN the

domain is structured symmetrically

?

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry Examples (continued)

• Q: Guess what is hidden?

We use symmetry (from what we “see”)

to intuit that which we do not see
This is ONLY effective WHEN the

domain is structured symmetrically

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry In C++ Code

• C++’s most common symmetry example: Resource Management

...
{
Bar b;
//...do stuff with b

}

Enter the block,

object is created

Leave the block,

object is destroyed

Stack-based (automatic) data objects
• Is symmetry to define state based on

control-flow (static lexical scoping)

• Edge cases managed by the C++ Standard
(Guaranteed!)

“The compiler giveth, and

the compiler taketh away”

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry In C++ Code

• C++’s most common symmetry example: Resource Management

...
{
Bar b;
//...do stuff with b

}

Enter the block,

object is created

Leave the block,

object is destroyed

Stack-based (automatic) data objects
• Is symmetry to define state based on

control-flow (static lexical scoping)

• Edge cases managed by the C++ Standard
(Guaranteed!)

“The compiler giveth, and

the compiler taketh away”

Heap-based (dynamic) data objects
• Is symmetry to define state independent of

control-flow (static lexical scoping)

• Edge cases managed by the developer

“The developer giveth, and

the developer better clean

up after oneself”

{
...
Bar* b = new Bar();
ConsumeBar(*b);

}

void ConsumeBar(Bar& b) {
ProcessBar(b);
delete b; //...consume

}

Can implement designs where state

escapes compiler-defined control flow

governed by the C++ Standard

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry of the C++ Stack

...
{

Bar b0;
//...do stuff with b0

//...do stuff with b0
}

b0

Stack-based objects have

outstanding lifecycle symmetry
(Guaranteed!)

Use

whenever

possible!

“Scope Symmetry”

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry of the C++ Stack

...
{

Bar b0;
//...do stuff with b0
{

Bar b1;
//...do stuff with b0, b1

//...do stuff with b0, b1
}
//...do stuff with b0

}

b0
b1

Stack-based objects have

outstanding lifecycle symmetry
(Guaranteed!)

Use

whenever

possible!

“Scope Symmetry”

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry of the C++ Stack

...
{

Bar b0;
//...do stuff with b0
{

Bar b1;
//...do stuff with b0, b1
{

Bar b2;
//...do stuff with b0, b1, b2

}
//...do stuff with b0, b1

}
//...do stuff with b0

}

b0
b1

b2

Stack-based objects have

outstanding lifecycle symmetry
(Guaranteed!)

Use

whenever

possible!

“Scope Symmetry”

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry of the C++ Stack

...
{

Bar b0;
//...do stuff with b0
{

Bar b1;
//...do stuff with b0, b1
{

Bar b2;
//...do stuff with b0, b1, b2

}
//...do stuff with b0, b1

}
//...do stuff with b0

}

b0
b1

b2

Stack-based objects have

outstanding lifecycle symmetry
(Guaranteed!)

Value Semantics

is preferred

in Modern C++,

due to

superior symmetry

in object lifecycle

Use

whenever

possible!

“Scope Symmetry”

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry of the C++ Heap

{
...
{
Bar* b = new Bar();
//...do stuff with b0
{

//...arbitrary code
DoThing0(*b);
DoThing1(*b);

}
ConsumeBar(*b);

}
}

void ConsumeBar(Bar& b)
{
//...do stuff with b
ProcessBar(b);
delete b; //...consume

}

void DoThing0(Bar& b)
{
//...do stuff with b

}

void DoThing1(Bar& b)
{
//...do stuff with b

}

Heap-based objects have

lifecycle symmetry

independent of

(stack-based) control-flow

This is a (useful!)

design feature

Bar()…~Bar()

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry of the C++ Heap

{
...
{
Bar* b = new Bar();
//...do stuff with b0
{

//...arbitrary code
DoThing0(*b);
DoThing1(*b);

}
ConsumeBar(*b);

}
}

void ConsumeBar(Bar& b)
{
//...do stuff with b
ProcessBar(b);
delete b; //...consume

}

void DoThing0(Bar& b)
{
//...do stuff with b

}

void DoThing1(Bar& b)
{
//...do stuff with b

}

Heap-based objects have

lifecycle symmetry

independent of

(stack-based) control-flow

This is a (useful!)

design feature

Your Design defines object lifecycle
• std::unique<> is an implementation tool, not a design decision

Bar()…~Bar()

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry of the C++ Heap

{
...
{
Bar* b = new Bar();
//...do stuff with b0
{

//...arbitrary code
DoThing0(*b);
DoThing1(*b);

}
ConsumeBar(*b);

}
}

void ConsumeBar(Bar& b)
{
//...do stuff with b
ProcessBar(b);
delete b; //...consume

}

void DoThing0(Bar& b)
{
//...do stuff with b

}

void DoThing1(Bar& b)
{
//...do stuff with b

}

Heap-based objects have

lifecycle symmetry

independent of

(stack-based) control-flow

This is a (useful!)

design feature

Using the heap

demands

Design attention to

define and implement

object lifecycle

Your Design defines object lifecycle
• std::unique<> is an implementation tool, not a design decision

Bar()…~Bar()

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

(Strong!) Object Lifecycle Symmetry

The #1 Reason

to go to C++ (from C):

C
Memory is a “Bucket of bits”

Well-defined: Type punning, ptr-casting, memory copying

C++
Memory holds Objects

Well-defined: (Very!) Strong Object Model (ctor…dtor),

explicit rules coercing among types within the type system

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Use Design To Establish Symmetry
• We use “Design” to establish Symmetry

• Example: Restore Symmetry when using new…delete

These are

generalized patterns
(variations may apply)

Factory

Manager
Instantiator that dynamically allocates from

heap, transferring ownership to the caller

Instantiator that dynamically allocates

from heap and which retains ownership
(caller receives handle or light reference)

Symmetry Restored!
Manager type provides options for:

• No leaked instances

• Allocation amortization

• Whole-system reset

• Resource prioritization and recovery

• Resource metrics and runtime monitoring

Composable!

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Use Design To Establish Symmetry
• We use “Design” to establish Symmetry

• Example: Restore Symmetry when using new…delete

These are

generalized patterns
(variations may apply)

Factory

Manager

Performs delete after

instance processing

Instantiator that dynamically allocates from

heap, transferring ownership to the caller

Instantiator that dynamically allocates

from heap and which retains ownership
(caller receives handle or light reference)

Source…Sink:

Sink

Symmetry Restored!
Manager type provides options for:

• No leaked instances

• Allocation amortization

• Whole-system reset

• Resource prioritization and recovery

• Resource metrics and runtime monitoring

Factory

Source

Performs new
(and ownership transfer)

• Single location for new

• Single location for delete

• Well-established resource transfer

Symmetry Restored!

Resource lifecycle is

well-defined

Composable!

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Use Design To Establish Symmetry
• We use “Design” to establish Symmetry

• Example: Restore Symmetry when using new…delete

These are

generalized patterns
(variations may apply)

Factory

Manager

Performs delete after

instance processing

Instantiator that dynamically allocates from

heap, transferring ownership to the caller

Instantiator that dynamically allocates

from heap and which retains ownership
(caller receives handle or light reference)

Source…Sink:

Producer…Consumer:

Sink

Symmetry Restored!
Manager type provides options for:

• No leaked instances

• Allocation amortization

• Whole-system reset

• Resource prioritization and recovery

• Resource metrics and runtime monitoring

Factory

Source

Performs new
(and ownership transfer)

• Single location for new

• Single location for delete

• Well-established resource transfer

Sink
Factory

Source

• Uses Source…Sink

• Typically, across threads or subsystems

Subsystem A Subsystem B

Symmetry Restored!

Resource lifecycle is

well-defined

Composable!

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Expressing Symmetry Through API

ctor() dtor()
Object

Lifecycle

C++ Object Lifecyle
(for class-type)

(since 1983)

Goal: Find a way to emphasize

symmetry in your Design and API

…So Design or

API is “obvious”

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Expressing Symmetry Through API

ctor() dtor()
Object

Lifecycle

C++ Object Lifecyle
(for class-type)

start()

paint()

stop()

destroy()

Born

init()

Running

Idle

Dead

Java

Runtime

alloc

Java Applet Lifecyle
(since 1995)

(since 1983)

Goal: Find a way to emphasize

symmetry in your Design and API

…So Design or

API is “obvious”

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Expressing Symmetry Through API

ctor() dtor()
Object

Lifecycle

C++ Object Lifecyle
(for class-type)

start()

paint()

stop()

destroy()

Born

init()

Running

Idle

Dead

Java

Runtime

alloc

Java Applet Lifecyle
(since 1995)

(since 1983)

thread{}

task()

main() C++ std::thread
(since 2011)

thread{}

join()

join()

task()...

Goal: Find a way to emphasize

symmetry in your Design and API

…So Design or

API is “obvious”

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Investigating Symmetry

• Example questions to investigate symmetry:

• Does each step express clear purpose?

• If yes, is more obvious for enforcing step semantics

• Are the steps symmetric?

• If yes, is more obvious for where a desired action should be placed

• Are the steps guaranteed to occur?

• If yes, complexity is reduced (edge cases are removed)

• Can a step be “empty” (e.g., “do nothing” or “default” behavior is sufficient)?

• If yes, becomes easier to use correctly

• If yes, may introduce edge cases and complexity:

• Can a step be conditionally skipped?

• Can the steps be reordered?

• Can new (user-custom) steps be inserted?

ctor() dtor()…

Increasing
Complexity

Decreasing
Complexity

Domain-specific (or Application-specific)

probing of your components and

subsystems will identify changes

to lower system complexity

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Cheating Symmetry For Fun And Profit

Role of Asymmetry

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Cheating Symmetry: std::move

Motivation for std::move (since C++11):

To violate symmetry for gains in efficiency
(i.e., state pilfering)

Bar bar0;
//...populate bar0
Bar bar1 = std::move(bar0);

bar0

bar1 bar0

“Valid but
Unspecified state”

Pilfered state

Before
std::move

After
std::move

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Cheating Symmetry: std::move

• std::move is tricky because:

• Is NOT symmetric (pilfered-from object
has Unspecified mutation)

• Is NOT orthogonal (pilfered-from and
pilfered-into objects are related)

Motivation for std::move (since C++11):

To violate symmetry for gains in efficiency
(i.e., state pilfering)

Bar bar0;
//...populate bar0
Bar bar1 = std::move(bar0);

bar0

bar1 bar0

“Valid but
Unspecified state”

Pilfered state

std::move is tricky because it

represents a symmetry violation

Before
std::move

After
std::move

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Cheating Resource Symmetry
• C++ Techniques to cheat object lifecycle symmetry:

• (Named-)Return Value Optimization (RVO, NRVO) to transfer instance

• “Pilfer” or transfer object state:

• xvalues (&&) (since C++11)

• std::move<> (since C++11)

• “Light-reference” state managed elsewhere:

• std::string_view (since C++17)

• std::span (since C++20)

https://www.youtube.com/watch?v=hA1WNtNyNbo

Tricky:

Edge cases are

introduced due to

symmetry violations
(of object lifecycle)

https://www.cppstories.com/2013/02/smart-pointers-gotchas/

CppCon 2018: Arthur O'Dwyer

“Return Value Optimization: Harder Than It Looks”

https://www.youtube.com/watch?v=hA1WNtNyNbo
https://www.cppstories.com/2013/02/smart-pointers-gotchas/

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

The name for a symmetry violation:

Asymmetry

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Asymmetry

• If a relation exists which is not symmetric,
then it is asymmetric

Symmetry (def):

Agreement in dimensions due

to proportion and arrangement

Asymmetric
• Unbalanced or Exceptional

Implies edge-cases or
surprising behavior “at-scale”

Symmetric
• Harmonious or Balanced

Implies high predictability
(when pattern is recognized)

Fiddler crab

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Asymmetry Examples

• Q: Guess what is hidden?

Asymmetry prevents intuiting

about what we do not see
(based on what we see)

?

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Asymmetry Examples

• Q: Guess what is hidden?

Asymmetry prevents intuiting

about what we do not see
(based on what we see)

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Asymmetry Examples

• Q: Guess what is hidden?

Asymmetry prevents intuiting

about what we do not see
(based on what we see)

?

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Asymmetry Examples

• Q: Guess what is hidden?

Asymmetry prevents intuiting

about what we do not see
(based on what we see)

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Asymmetry Examples

• Q: Guess what is hidden?

Asymmetry prevents intuiting

about what we do not see
(based on what we see)

https://www.flickr.com/photos/128139955@N02/50811516651

?

https://www.flickr.com/photos/128139955@N02/50811516651

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Asymmetry Examples

• Q: Guess what is hidden?

Asymmetry prevents intuiting

about what we do not see
(based on what we see)

https://www.flickr.com/photos/128139955@N02/50811516651

https://www.flickr.com/photos/128139955@N02/50811516651

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Asymmetry Examples

• Q: Guess what is hidden?

Asymmetry prevents intuiting

about what we do not see
(based on what we see)

https://www.flickr.com/photos/128139955@N02/50811516651

?

? ?

https://www.flickr.com/photos/128139955@N02/50811516651

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Asymmetry Examples

• Q: Guess what is hidden?

Asymmetry prevents intuiting

about what we do not see
(based on what we see)

https://www.flickr.com/photos/128139955@N02/50811516651

? ?

https://www.flickr.com/photos/128139955@N02/50811516651

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Asymmetry Examples

• Q: Guess what is hidden?

Asymmetry prevents intuiting

about what we do not see
(based on what we see)

https://www.flickr.com/photos/128139955@N02/50811516651

?

https://www.flickr.com/photos/128139955@N02/50811516651

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Asymmetry Examples

• Q: Guess what is hidden?

Asymmetry prevents intuiting

about what we do not see
(based on what we see)

https://www.flickr.com/photos/128139955@N02/50811516651

https://www.flickr.com/photos/128139955@N02/50811516651

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

2

1

Where is Asymmetry Used?

• Asymmetry may be considered:

To Gain Efficiencies (examples):

• Short-circuit control flow

• Resource transfer (state pilfering)

• Object lifecycle extension

To Implement Adapter Layers (assembling or adapting among subsystems):

• Asymmetric type-transform (mapping 1:N or N:1 data types across API boundaries)

• Asymmetric data serialization (mapping 1:N or N:1 data objects for marshalling or serializing

across API boundaries)

• Asymmetric control flow adaptation (mapping 1:N or N:1 API calls across API boundaries)

• Asymmetric coordination of threads or event models across subsystem boundaries
(synchronous or asynchronous)

Take care to not abuse this
(it will bite you at-scale)

Asymmetric

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

I use asymmetry all the time,

and it’s never been a problem.

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Concerns About Asymmetry

Desired
system

attributes
(a sampling):

Asymmetry tends to:
• violate desired system aspects

• prevent development of system intuition

Logical: People understand it,

and is intuitive with minimal

onboarding time and effort

Implementable: Complexity

is manageable; resource

contention is reasonable; and

execution model is sufficient for

the system to perform as needed
Unsurprising: Predicted behavior

is typically the actual behavior, and

edge cases are uncommon

Scalable: Subsystem linkages

continue to robustly perform when

under increased stress and load

Maintainable: Remains

manageable as system is grown

or evolved in complexity and size

Adaptable: Remains manageable

as system is adapted to new domains

Efficient: Resources are spent

wisely

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Asymmetry In C

• Examples of asymmetry in C Language:

These are probably “obvious” to experienced developers
(but sometimes surprising to new developers)

• struct (but not array) may be returned
from a function

• Default is pass-by-value, except for array
(which is implicit pass-by-reference)

• Array can be returned if is inside a struct

• struct member can be any data type
(but not void)

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Asymmetry In C++

Examples of asymmetry in C++:

• Short-circuiting of || and && (all operands may not be evaluated)

• Unspecified evaluation order for function parameters (side effects occur in
unspecified order)

• std::shared_ptr<> (object lifecycle varies depending on handles to instance)

• C++ Standard rules for object lifecycle extension

• Copy elision (mandatory or non-mandatory elision of copy/move operations)

• Object Storage Reuse (std::launder, Undefined to reuse static or const memory)

• Member-function binary operator overloads (left-operand is always *this)

• (Named-)Return Value Optimization (RVO, NRVO) to transfer instance

• xvalues (&&) (since C++11) to pilfer or transfer instance state

• std::move<> (since C++11) to transfer instance state

• std::string_view (since C++17) for light-reference to external state

• std::span (since C++20) for light-reference to external state
(Use of) “Lots” of asymmetries is why

new developers sometimes fear C++

(Use of) “Some” asymmetries in

Your System is probably fine

Asymmetry tends to cause

edge cases and

surprising behavior

std::string_view vs. std::span<>
• Similar motivations and use cases:

• Non-owning (light-reference) for bounds-safe view to contiguous element sequence

• span<> is template (string_view is not)

• string_view is read-only (span<> may modify target elements)

• string_view supports std::string-like operations (substr, find, compare, ==, <, >)

• span<> is not Regular, and does not support ==, <, > (see: http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2018/p1085r2.md)

C++ Globals
• Construction order:

• Thread-safe for static instance at

block scope (since C++11)

• Reentrancy invokes undefined

behavior, see:

https://devblogs.microsoft.com/oldnewth

ing/20040308-00/?p=40363

• Uncontrolled initialization order for

static instance at global scope

• Destruction order:
• Uncontrolled dtor order (may invoke

undefined behavior if dependencies are

violated across system global state)

Globals are

inherently

asymmetric

• Coroutines (since C++20) for control-flow asymmetry such as
suspended function (e.g., return, co_return, co_yield, co_await)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1085r2.md
https://devblogs.microsoft.com/oldnewthing/20040308-00/?p=40363

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Asymmetry In Your Codebase

• Asymmetry examples in Your Codebase:

1 Design Hygiene

• Unclear control-flow

• Example: Integration across subsystems is
unnecessarily complex

• Unclear resource management

• Example: Resource lifecycle is conditional or
unnecessarily complex

• Weak Abstractions

• Example: Component API is defined by external
demands, not through internal cohesive purpose
(such as: Adapter component)

2 Implementation Hygiene

• Unnecessarily complex processing

• Example: Eager-compute or Lazy-compute that introduces
stochastic time-shifting of computation and resource
contention, or which encourages branch mis-prediction

• Multiple function returns (resulting in different
control flows within function)

• Multiple abstraction levels within a given
function body

“Every statement in a function body should be at the same
level of abstraction.” (paraphrased)

Hygiene (def): Conditions

and practices to promote health

Tony Van Eerd
@tvaneerdAbuse of class hierarchies may be

“design” or “implementation” (next page)

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Review: Storage Duration
• C++ Storage Duration is one of:

• Automatic (block-begin…block-end)

• Static (program-begin…program-end)

• Dynamic (new…delete)

• Thread (thread-begin…thread-end)
Register storage duration is automatic plus compiler hints (until C++17)

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Review: Storage Duration
• C++ Storage Duration is one of:

• Automatic (block-begin…block-end)

• Static (program-begin…program-end)

• Dynamic (new…delete)

• Thread (thread-begin…thread-end)
Register storage duration is automatic plus compiler hints (until C++17)

// ...
Bar b;

constructing destructing

Object Lifetime

Lifetime ends

when destructor

call starts

Lifetime begins

when initialization

is complete

allocating deallocating

Bar::Bar() {} Bar::~Bar() {}b

(object can be used
without limitations)

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Review: Storage Duration
• C++ Storage Duration is one of:

• Automatic (block-begin…block-end)

• Static (program-begin…program-end)

• Dynamic (new…delete)

• Thread (thread-begin…thread-end)
Register storage duration is automatic plus compiler hints (until C++17)

Surprising behavior

(“bugs”) may occur when

accessing an object

outside its lifetime
// ...
Bar b;

constructing destructing

Object Lifetime

Lifetime ends

when destructor

call starts

Lifetime begins

when initialization

is complete

allocating deallocating

Bar::Bar() {} Bar::~Bar() {}b

(object can be used
without limitations)

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Review: Storage Duration
• C++ Storage Duration is one of:

• Automatic (block-begin…block-end)

• Static (program-begin…program-end)

• Dynamic (new…delete)

• Thread (thread-begin…thread-end)

Object Lifetime
Begins when BOTH of:

1. Storage is obtained

2. Initialization is complete

Ends when EITHER of:
1. Dtor starts

2. Storage is reused or released

Is actually symmetric

(what you would expect to
enforce type invariants)

Register storage duration is automatic plus compiler hints (until C++17)

Surprising behavior

(“bugs”) may occur when

accessing an object

outside its lifetime
// ...
Bar b;

constructing destructing

Object Lifetime

Lifetime ends

when destructor

call starts

Lifetime begins

when initialization

is complete

allocating deallocating

Bar::Bar() {} Bar::~Bar() {}b

(object can be used
without limitations)

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Watch out for asymmetries from:
• std::move() (i.e., leaving “valid but unspecified state”)

• Temporary objects (i.e., prvalue “materialization”)

• xvalues (“eXpiring values”)

• RVO, NRVO (Named-Return Value Optimization)

Review: Storage Duration
• C++ Storage Duration is one of:

• Automatic (block-begin…block-end)

• Static (program-begin…program-end)

• Dynamic (new…delete)

• Thread (thread-begin…thread-end)

Object Lifetime
Begins when BOTH of:

1. Storage is obtained

2. Initialization is complete

Ends when EITHER of:
1. Dtor starts

2. Storage is reused or released

Is actually symmetric

(what you would expect to
enforce type invariants)

Register storage duration is automatic plus compiler hints (until C++17)

Surprising behavior

(“bugs”) may occur when

accessing an object

outside its lifetime
// ...
Bar b;

constructing destructing

Object Lifetime

Lifetime ends

when destructor

call starts

Lifetime begins

when initialization

is complete

allocating deallocating

Bar::Bar() {} Bar::~Bar() {}b

(object can be used
without limitations)

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Hierarchy Hygiene
class A {
public:
virtual void f();
int a;

}; class B : public A {
public:
void f() override;
int b;

}; class C : public B {
public:
void f() override;
int c;

};

A

B

C

C++ inheritance exhibits

outstanding symmetry
(Guaranteed!)

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Special edge cases exist for

hierarchy implementation

Hierarchy Hygiene
class A {
public:
virtual void f();
int a;

}; class B : public A {
public:
void f() override;
int b;

}; class C : public B {
public:
void f() override;
int c;

};

A

B

C

C++ inheritance exhibits

outstanding symmetry
(Guaranteed!)

Why?

Ctor and dtor execute

outside of the

Object Lifetime

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

“During construction or destruction,

the more derived classes do not exist.”
Leads to General Practice (pick one):

Special edge cases exist for

hierarchy implementation

Hierarchy Hygiene
class A {
public:
virtual void f();
int a;

}; class B : public A {
public:
void f() override;
int b;

}; class C : public B {
public:
void f() override;
int c;

};

A

B

C

C++ inheritance exhibits

outstanding symmetry
(Guaranteed!)

1
“Never call virtual functions during

construction or destruction”

2
“Virtual functions aren’t virtual during

construction and destruction”

Why?

Ctor and dtor execute

outside of the

Object Lifetime

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Hierarchy Hygiene

• Special edge cases exist for
hierarchy implementation

class A {
public:
virtual void f();
int a;

}; class B : public A {
public:
void f() override;
int b;

}; class C : public B {
public:
void f() override;
int c;

};

A

B

C

• C++ inheritance exhibits
outstanding symmetry
(Guaranteed!)

Symmetrical in C++, but

Your Implementation may

have assumed asymmetrical

// ...
C my_c;

constructing

allocating

//A::f()A::A() :a(1) { f(); }

memory

my_c

a cb

A exists

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Hierarchy Hygiene

• Special edge cases exist for
hierarchy implementation

class A {
public:
virtual void f();
int a;

}; class B : public A {
public:
void f() override;
int b;

}; class C : public B {
public:
void f() override;
int c;

};

A

B

C

memory

my_c

a cb
• C++ inheritance exhibits

outstanding symmetry
(Guaranteed!)

Symmetrical in C++, but

Your Implementation may

have assumed asymmetrical

// ...
C my_c;

constructing

allocating

//A::f()A::A() :a(1) { f(); }

B::B() :b(2) { f(); } //B::f()

A exists

B exists

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Hierarchy Hygiene

• Special edge cases exist for
hierarchy implementation

class A {
public:
virtual void f();
int a;

}; class B : public A {
public:
void f() override;
int b;

}; class C : public B {
public:
void f() override;
int c;

};

A

B

C

• C++ inheritance exhibits
outstanding symmetry
(Guaranteed!)

Symmetrical in C++, but

Your Implementation may

have assumed asymmetrical

// ...
C my_c;

constructing

Object Lifetimeallocating

my_c

(object can be used
without limitations)

//A::f()A::A() :a(1) { f(); }

B::B() :b(2) { f(); }

C::C() :c(3) { f(); }

//B::f()

//C::f()

Lifetime begins when

initialization is complete

memory

my_c

a cb

C exists

A exists

B exists

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Hierarchy Hygiene

• Special edge cases exist for
hierarchy implementation

class A {
public:
virtual void f();
int a;

}; class B : public A {
public:
void f() override;
int b;

}; class C : public B {
public:
void f() override;
int c;

};

A

B

C

• C++ inheritance exhibits
outstanding symmetry
(Guaranteed!)

Symmetrical in C++, but

Your Implementation may

have assumed asymmetrical

// ...
C my_c;

constructing destructing

Object Lifetimeallocating

my_c

(object can be used
without limitations)

//A::f()A::A() :a(1) { f(); }

B::B() :b(2) { f(); }

C::C() :c(3) { f(); }

//B::f()

//C::f() C::~C() {}

Lifetime ends when

destructor call starts

Lifetime begins when

initialization is complete

A exists

B exists

C exists

memory

my_c

a cb

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Hierarchy Hygiene

• Special edge cases exist for
hierarchy implementation

class A {
public:
virtual void f();
int a;

}; class B : public A {
public:
void f() override;
int b;

}; class C : public B {
public:
void f() override;
int c;

};

A

B

C

• C++ inheritance exhibits
outstanding symmetry
(Guaranteed!)

Symmetrical in C++, but

Your Implementation may

have assumed asymmetrical

// ...
C my_c;

constructing destructing

Object Lifetimeallocating

my_c

(object can be used
without limitations)

//A::f()A::A() :a(1) { f(); }

B::B() :b(2) { f(); }

C::C() :c(3) { f(); }

//B::f()

//C::f()

B::~B() {}

C::~C() {}

Lifetime ends when

destructor call starts

Lifetime begins when

initialization is complete

A exists

B exists

C exists

memory

my_c

a cb

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Hierarchy Hygiene

• Special edge cases exist for
hierarchy implementation

class A {
public:
virtual void f();
int a;

}; class B : public A {
public:
void f() override;
int b;

}; class C : public B {
public:
void f() override;
int c;

};

A

B

C

• C++ inheritance exhibits
outstanding symmetry
(Guaranteed!)

Symmetrical in C++, but

Your Implementation may

have assumed asymmetrical

// ...
C my_c;

constructing destructing

Object Lifetimeallocating deallocating

my_c

(object can be used
without limitations)

//A::f()A::A() :a(1) { f(); }

B::B() :b(2) { f(); }

C::C() :c(3) { f(); }

//B::f()

//C::f()

A::~A() {}

B::~B() {}

C::~C() {}

Lifetime ends when

destructor call starts

Lifetime begins when

initialization is complete

A exists

B exists

C exists

memory

my_c

a cb

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Other Asymmetry in Class Hierarchies

• Other examples of class hierarchy implementation asymmetry:
• Override asymmetry: If Base::~Base() is not virtual, then delete ptr_to_Base

will not invoke Derived::~Derived()

• API asymmetry: Overloads in the Derived will “shadow/hide” virtual in the Base
(unless using Base::name)

• API asymmetry: Overloads with the same name as overrides can “shadow/hide” the
override signature

• *this used in base/member initializer list:

• Take care to not access Derived members in the Base::Base() (because derived ctor
did not start, so derived members do not exist, so is Undefined behavior to access members

• Why? Because: What if virtual inheritance is used where Base::Base needed the vptr
to access the Derived member?

With attention (or practice), it becomes

easy to identify asymmetry within our implementation

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

(Example):

• IF: Your concept requires “plus”

• SHOULD: You also requires “minus”?

• BECAUSE:
• “Addable➔ likely a poor concept, try Number”

– Jeff Garland

• Perhaps want to “plus” a negative number?

• Perhaps want implementation flexibility

(enabling future maintenance)?

• Math symmetry makes your types consistent,

flexible, and adaptable to custom algorithms
(and is implied for optimization through compiler

canonicalization)

Defining C++ Concepts (Since C++11)

Q: What is the
role of Symmetry in
defining a concept?

https://www.youtube.com/watch?v=IXbf5lxGtr0

Using Concepts: C++ Design in a Concept World

(part 2 of 2) - Jeff Garland - [CppNow 2021]

“Good concepts express more

than just what an algorithm needs”
-- Jeff Garland

https://www.youtube.com/watch?v=IXbf5lxGtr0

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Removing edge cases and coupling by making things unrelated

Role of Orthogonality

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

I’m Old School,

Are you sure this is useful?

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Orthogonality In Programming
• Concept introduced to programming in the design of Algol 68 (1968)

Adriaan "Aad" van Wijngaarden

(1916-1987)

The number of independent primitive concepts has been

minimized in order that the language be easy to describe,

to learn, and to implement. On the other hand, these

concepts have been applied “orthogonally” in order to

maximize the expressive power of the language while

trying to avoid deleterious superfluities.
-- Adriaan van Wijngaarden et al.,

Revised Report on the Algorithmic Language ALGOL 68,

section 0.1.2, Orthogonal design

Dutch mathematician

and computer scientist:
• Numerical analysis

• Programming languages

• Design principles

• Essential for design of complex systems:

• System becomes implementable

• Emergent system behavior is strictly controlled by logic
(not by side effects of integration artifacts)

• Reduces testing and development time
(because is easier to verify designs that do not
cause nor depend upon side effects)

• Achieved through:

• Separation of Concerns

• Encapsulation

• Guarantees that modifying a component does not create
nor propagate side effects to other components

See: Edsger W. Dijkstra
Separation of Concerns

Want to
Learn More?

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Orthogonality In Practice

• Orthogonal goal:

• Have composable units without surprising cross-linkages

• Orthogonal components:

• Can be used independent of context

• Can be used in arbitrary combinations with consistent results

Orthogonal (def):

1. (mathematics) Perpendicular

2. (programming) Unrelated

At right-angles

Orthogonal:
• Unrelated (no relation exists)

We use orthogonality to:

1. Remove interactions

2. Reduce coupling

Benefits:
• Less complexity
• Fewer edge cases
• Increased stability
• Greater reuse
• Better scaling

Make things “unrelated”

• Orthogonal design:

• Associated with simplicity
(the more orthogonal the design,
the fewer the exceptions)

Today, orthogonality is used in:
• Design of instruction sets

• Design of programming languages

• Design of APIs

• Design of user interfaces

A
B

Orthogonality grants simplicity to

dismiss as a possibility some

behaviors or component interactions

within the resulting system.

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Orthogonality allows us to

dismiss as a possibility some

behaviors or component interactions
(without tedious inspection)

A
B

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Case Study: Thread-Stealing Work Queue

Is great design because is both
symmetrical and orthogonal

Thread-Stealing Work Queue
A design (or pattern) for atomizing or distributing work
• Classic Pattern (very old, and re-discovered many times)

• Is Well-Understood (common understanding for How It Works™,

and possible variations)

• Is Highly Robust (correctly, properly, and robustly applied because

we know what it solves and how to defend against edge cases)

Thread-Stealing

Work Queue

worker

worker

worker

Work Engine

Foo

Subsystem A

Bar

Subsystem B

Baz

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Case Study: Thread-Stealing Work Queue

Is great design because is both
symmetrical and orthogonal

Thread-Stealing Work Queue
A design (or pattern) for atomizing or distributing work
• Classic Pattern (very old, and re-discovered many times)

• Is Well-Understood (common understanding for How It Works™,

and possible variations)

• Is Highly Robust (correctly, properly, and robustly applied because

we know what it solves and how to defend against edge cases)

Symmetry:
Producer ➔ Consumer: Work items are arbitrarily

produced; and each is consumed exactly once
• Benefits: Creating work is obviously correlated with

understanding for how work is completed (consumed)

• Costs: Special handling is required to violate design

symmetry when asymmetry is desired (such as special handling

to execute one work item many times)

Thread-Stealing

Work Queue

worker

worker

worker

Work Engine

Foo

Subsystem A

Bar

Subsystem B

Baz

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Case Study: Thread-Stealing Work Queue

Is great design because is both
symmetrical and orthogonal

Thread-Stealing Work Queue
A design (or pattern) for atomizing or distributing work
• Classic Pattern (very old, and re-discovered many times)

• Is Well-Understood (common understanding for How It Works™,

and possible variations)

• Is Highly Robust (correctly, properly, and robustly applied because

we know what it solves and how to defend against edge cases)

Symmetry:
Producer ➔ Consumer: Work items are arbitrarily

produced; and each is consumed exactly once
• Benefits: Creating work is obviously correlated with

understanding for how work is completed (consumed)

• Costs: Special handling is required to violate design

symmetry when asymmetry is desired (such as special handling

to execute one work item many times)

Orthogonality:
Work Item execution (consumption) is unrelated

to the producer (e.g., execution is delegated to

“work-engine” composed of queues and threads)
• Benefits: Greater scaling as threads/workers/resources

are made available

• Costs: Producer cannot directly monitor work progress
(but indirect monitoring can be implemented)

Thread-Stealing

Work Queue

worker

worker

worker

Work Engine

Foo

Subsystem A

Bar

Subsystem B

Baz

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Orthogonal Design Examples
• Designs leveraging orthogonal behavior:

Orthogonal Because:

Work item creation is “orthogonal”

(unrelated) to work item processing

Thread-stealing Work Queue:
RAII work items transferred to queue,

which are consumed by worker threads

Orthogonal Because:

Work item creation is “orthogonal”

(unrelated) to work item processing

Independent Agent:
RAII work items are instantiated as independent

actors, which autonomously progress through a

lifecycle or are early-terminated

Trigger-interface APIs:
Trigger, handler, or callback invokes subsystem

orthogonally to normal system execution flow (e.g., handling

raised exceptions, system events, queued callbacks)

Resource Sharing APIs:
Multiple subsystems share access to the same resource
(implementation detail may rely upon external manager, or

std::shared_ptr to ensure lifecycle of shared resource)

Orthogonal Because:

API is invoked orthogonal to

normal system control flow

Orthogonal Because:

Resource lifecycle is orthogonal

to resource usage over time

So Orthogonal !

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Orthogonal Design Examples (continued)

• Designs leveraging orthogonal behavior:

Implementation Bridge:
API provides no interface for an essential internal operation
(which is internally bridged through the public interface)

Orthogonal Because:

Public interface is independent of

internal execution and implementation

Example: Synchronous/Asynchronous bridge (such
as to implement proactive or reactive read/write)

Fire-And-Forget:
Function immediate-return with work transferred

to alternate thread

Orthogonal Because:

Application-specific control flow and custom types

are defined orthogonal to system invocation

Orthogonal Because:

Function call is orthogonal to execution time

required to perform the operation implementation

Execution Interface:
Control flow proceeds through composition of

custom types adhering to defined interface

Example: High-Speed Logging (immediate-

return, where implementation is transferred to a
thread other than that which made the call)

Examples: Plugin APIs,

Dependency Injection

of subsystems

So Orthogonal !

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Orthogonal, Symmetric, or Asymmetric

Design Relationships

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

A Design Relationship

is the degree to which

a component relies upon

another component

(“is aware of”)

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Can you map that
out for me?

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Design Relationships

1 Orthogonal
• No relation exists

PREFERED whenever possible

• Lower component coupling

• Greater flexibility (more implementation options)

• Higher component reuse

• More robust system under load

• Greater system scaling

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Design Relationships

1 Orthogonal
• No relation exists

2 Symmetric
• Relation is balanced or harmonious

PREFERED whenever possible

DESIRED

• Lower component coupling

• Greater flexibility (more implementation options)

• Higher component reuse

• More robust system under load

• Greater system scaling

• Consistent behavior

• Can intuit what we do not see (from what we do see)

• System scales in size and complexity

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Design Relationships

1 Orthogonal
• No relation exists

2 Symmetric
• Relation is balanced or harmonious

3 Asymmetric
• Relation is unbalanced or exceptional

PREFERED whenever possible

DESIRED

DISCOURAGED

• Has edge cases, surprising behavior

• Cannot intuit what we do not see

• Difficult to scale system in size and complexity

• Lower component coupling

• Greater flexibility (more implementation options)

• Higher component reuse

• More robust system under load

• Greater system scaling

• Consistent behavior

• Can intuit what we do not see (from what we do see)

• System scales in size and complexity

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Design Relationships

1 Orthogonal
• No relation exists

2 Symmetric
• Relation is balanced or harmonious

3 Asymmetric
• Relation is unbalanced or exceptional

PREFERED whenever possible

DESIRED

DISCOURAGED

• Has edge cases, surprising behavior

• Cannot intuit what we do not see

• Difficult to scale system in size and complexity

• Lower component coupling

• Greater flexibility (more implementation options)

• Higher component reuse

• More robust system under load

• Greater system scaling

• Consistent behavior

• Can intuit what we do not see (from what we do see)

• System scales in size and complexity

All

Possible

Design

Relationships

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Relationship Strength

Given A, I know B
• Example: B is computed from A

Strong Relationship
(is guaranteed) Useful and Robust!

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Relationship Strength

Given A, I know B
• Example: B is computed from A

Strong Relationship
(is guaranteed)

Given A, I know nothing about B
• Example: B and A exist in different threads within thread-local storage

No Relationship

(B is orthogonal to A)

Useful and Robust!

Useful and Robust!

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Relationship Strength

B value may have causation or correlation to one or both of:

A value, A deltas (such as increments)

Given A, I know B
• Example: B is computed from A

Strong Relationship
(is guaranteed)

Given A, I know something about B
• Example: B tends express based on value and amplitude of A (or to A deltas)

Weak Relationship
(relationship not guaranteed)

Given A, I know nothing about B
• Example: B and A exist in different threads within thread-local storage

No Relationship

(B is orthogonal to A)

Useful and Robust!

Useful and Robust!

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Relationship Strength

B value may have causation or correlation to one or both of:

A value, A deltas (such as increments)

Given A, I know B
• Example: B is computed from A

Strong Relationship
(is guaranteed)

Given A, I know something about B
• Example: B tends express based on value and amplitude of A (or to A deltas)

Weak Relationship
(relationship not guaranteed)

Given A, I know nothing about B
• Example: B and A exist in different threads within thread-local storage

No Relationship

(B is orthogonal to A)

Useful and Robust!

Useful and Robust!

Tricky!

• Correlations imply dependencies (with

implications for scalability and side-effects)
• Assumptions may be invalid for your scenario

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Relationship Strength

B value may have causation or correlation to one or both of:

A value, A deltas (such as increments)

Given A, I know B
• Example: B is computed from A

Strong Relationship
(is guaranteed)

Given A, I know something about B
• Example: B tends express based on value and amplitude of A (or to A deltas)

Weak Relationship
(relationship not guaranteed)

Given A, I know nothing about B
• Example: B and A exist in different threads within thread-local storage

No Relationship

(B is orthogonal to A)

Useful and Robust!

Useful and Robust!

Tricky!

• Correlations imply dependencies (with

implications for scalability and side-effects)
• Assumptions may be invalid for your scenario

Knowing “something” can be more

dangerous than knowing “nothing”
(orthogonality provides stronger guarantees)

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Prefer Stronger Two-Way Relationships

• Prefer Stronger Guarantees (one of):

• (strong-)Symmetry

• Orthogonality

Given A, I know nothing about B

Given B, I know A

Given A, I know nothing about B

Given B, I know nothing about A

Given A, I know B

Given B, I know A

Given A, I know B

Given B, I know nothing about A

Why?
• Greater “Knowing”

• Fewer assumptions

• Reduced edge cases

Design work may be required to make a relationship orthogonal
(to gain stronger guarantees)

Bidirectional
Symmetry

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Prefer Stronger Two-Way Relationships

• Prefer Stronger Guarantees (one of):

• (strong-)Symmetry

• Orthogonality

Given A, I know nothing about B

Given B, I know A

Given A, I know nothing about B

Given B, I know nothing about A

Given A, I know nothing about B

Given B, I know something about A

Given A, I know something about B

Given B, I know A

Given A, I know something about B

Given B, I know nothing about A

Given A, I know something about B

Given B, I know something about A

Given A, I know B

Given B, I know A

Given A, I know B

Given B, I know nothing about A

Given A, I know B

Given B, I know something about A

Why?
• Greater “Knowing”

• Fewer assumptions

• Reduced edge cases

Design work may be required to make a relationship orthogonal
(to gain stronger guarantees)

Bidirectional
Symmetry

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Relationships
In Theory…

Relationship Exists?

Symmetric

Asymmetric Orthogonal

Yes No

Relationships

can be complicated

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Relationships
In Theory…

Relationship Exists?

Symmetric

Asymmetric Orthogonal

Yes No

In Reality…

Relationship Exists?

Yes No
Symmetric

Asymmetric Orthogonal

Relationships

can be complicated

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Relationships
In Theory…

Relationship Exists?

Symmetric

Asymmetric Orthogonal

Yes No

In Reality…

Relationship Exists?

Yes No
Symmetric

Asymmetric OrthogonalNot perfectly Symmetric

• Create…destroy (e.g., globals)

• Some operations do not fully go backwards
• Init…uninit
• Load…unload
• Start…shapshot-save…shutdown

• Lifecycle Exception or Error Tracing
• Source…sink
• Producer…consumer
• Push…pull (how to leak back failed operation from

previous push)

Relationships

can be complicated

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Relationships
In Theory…

Relationship Exists?

Symmetric

Asymmetric Orthogonal

Yes No

In Reality…

Relationship Exists?

Yes No
Symmetric

Asymmetric OrthogonalNot perfectly Symmetric

• Create…destroy (e.g., globals)

• Some operations do not fully go backwards
• Init…uninit
• Load…unload
• Start…shapshot-save…shutdown

• Lifecycle Exception or Error Tracing
• Source…sink
• Producer…consumer
• Push…pull (how to leak back failed operation from

previous push)

Asymmetric patterns exhibiting
symmetric correlations

• Ranged object lifetimes (e.g., std::smart_ptr<>,
std::unique_ptr<>)

• Time-shifted computation (i.e., lazy-compute, eager-
compute)

• Double-compute (e.g., in iterators, or when using
std::range)

• Synchronization of async calls or across threads

Relationships

can be complicated

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Relationships
In Theory…

Relationship Exists?

Symmetric

Asymmetric Orthogonal

Yes No

In Reality…

Relationship Exists?

Yes No
Symmetric

Asymmetric OrthogonalNot perfectly Symmetric

• Create…destroy (e.g., globals)

• Some operations do not fully go backwards
• Init…uninit
• Load…unload
• Start…shapshot-save…shutdown

• Lifecycle Exception or Error Tracing
• Source…sink
• Producer…consumer
• Push…pull (how to leak back failed operation from

previous push)

Asymmetric patterns exhibiting
symmetric correlations

• Ranged object lifetimes (e.g., std::smart_ptr<>,
std::unique_ptr<>)

• Time-shifted computation (i.e., lazy-compute, eager-
compute)

• Double-compute (e.g., in iterators, or when using
std::range)

• Synchronization of async calls or across threads

Orthogonal components
exhibiting symmetric correlations

• Custom control flows, data flows
• Special Use Case handling
• Competition for Resources

• CPU cache pressures
• Cache line false sharing
• System calls
• File handles
• Network traffic
• Other OS resources
• Other hardware resources

Relationships

can be complicated

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Relationships
In Theory…

Relationship Exists?

Symmetric

Asymmetric Orthogonal

Yes No

In Reality…

Relationship Exists?

Yes No
Symmetric

Asymmetric OrthogonalNot perfectly Symmetric

• Create…destroy (e.g., globals)

• Some operations do not fully go backwards
• Init…uninit
• Load…unload
• Start…shapshot-save…shutdown

• Lifecycle Exception or Error Tracing
• Source…sink
• Producer…consumer
• Push…pull (how to leak back failed operation from

previous push)

Asymmetric patterns exhibiting
symmetric correlations

• Ranged object lifetimes (e.g., std::smart_ptr<>,
std::unique_ptr<>)

• Time-shifted computation (i.e., lazy-compute, eager-
compute)

• Double-compute (e.g., in iterators, or when using
std::range)

• Synchronization of async calls or across threads

Orthogonal components
exhibiting symmetric correlations

• Custom control flows, data flows
• Special Use Case handling
• Competition for Resources

• CPU cache pressures
• Cache line false sharing
• System calls
• File handles
• Network traffic
• Other OS resources
• Other hardware resources

Orthogonal components
exhibiting asymmetric

correlations

• System event handling
• Event loop competition (e.g.,

GUI, network, work-queues, etc.)

• Control flow exceptions

Relationships

can be complicated

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Relationship Space
(Huge!) Design Space

to define relationships
(one-way, two-way)Relationship Attributes:

• Coupling (none…indirect…direct)

• Symmetry (none…weak…strong)

Relationship

Coupling

Relationship Symmetry

None Weak Strong

Relationship Space
(one way: A➔B)

(orthogonal) (weak symmetry) (strong symmetry)

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Relationship Space
(Huge!) Design Space

to define relationships
(one-way, two-way)Relationship Attributes:

• Coupling (none…indirect…direct)

• Symmetry (none…weak…strong)

Relationship

Coupling

API Coupling

Implementation

Resource

Competition

Relationship Symmetry

None Weak Strong

Relationship Space
(one way: A➔B)

Indirect

Coupling

Direct

Coupling
Implementation

(orthogonal) (weak symmetry) (strong symmetry)

No

Coupling

Resource

Competition

Truly Uncoupled

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Leverage Symmetry and Orthogonality

Conclusion

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Symmetry vs. Orthogonality

These are NOT opposites!

A
B

?
?

Symmetric
Means Similar
(NOT “the same”)

Orthogonal
Means Unrelated

(no relationship exists)

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Roles In Design

• In Design…

NO: Tedious

inspection

requiredIF is NOT symmetric and NOT orthogonal,

THEN you have an Asymmetry (special pattern

or interaction)

• Typically manifests as edge cases

• Can be “surprising” at-scale or under system-load

• Can manifest complex behavior
• Good: Efficiencies (e.g., std::move)

• Bad: Gotchas (e.g., “valid but Unspecified”)

Role of Symmetry: To make similar (through balance and proportion)

• Why: To increase consistency and predictability

Role of Orthogonality: To make unrelated (non-interacting)

• Why: To eliminate possible interactions
YES: Intuitive

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Leveraging Symmetry
And Orthogonality

• Component Relationships:
1. Symmetry leverages “similarity”

2. Orthogonality leverages “unrelatedness”

3. In combined consideration, symmetry and orthogonality
define all possible design relationships

• Symmetric: Balanced relationship

• Asymmetric: Unbalanced relationship

• Orthogonal: No relationship

Benefits:
• Less complexity
• Fewer edge cases
• Increased stability
• Greater reuse
• Better scaling
• Enhanced system intuition

Relationships can be complicated

Therefore, whenever possible leverage

symmetry and orthogonality as tools to

simplify system coupling and dependencies

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Example Relationships Design: “How It Works”

Example Symmetry (for Data Flows):
• Flow One-Way: “All data flows left-to-right”

• Flow Wave: “Flow left during computation; flow right during draw-frame”

• Flow Circular: “All components hand-to-the-left (completing a circuit)”

Example Orthogonality:
• Entirely independent: Network traffic flows and frame-draw

• Entirely independent: Log traffic processing and main thread

• Entirely independent: Work item processing and allocator amortization

Example Asymmetry:
• Thresholding: Processing sometimes short-circuits (such as when system is under-load)

• Preemption: Work item may be aborted (perhaps revisited) if not completed within time limit

• Conditional Reuse: Work item may be sometimes re-used (if repeat-processing is needed)

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Reducing Risk

Risk
(edge case discovery)

Relationship Symmetry

None Weak Strong

Inter-Component Relationship Risk

(orthogonal) (weak symmetry) (strong symmetry)

More edge cases for

asymmetric relationships

Fewer edge cases for

symmetric relationships
Fewer edge cases for

orthogonal relationships

Safer
(fewer edge cases)

Danger
(more edge cases)

Inter-component edge cases

tend to present when system is:
• At-Scale

• Under-Load
Leverage Symmetry and Orthogonality

to improve system safety (and reduce risk

as presented through surprising interactions)

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Common Design Error:

Establishing unbalanced relationship where:
1. Benefits (such as efficiency) do not justify added complexity

2. Unbalanced relationship was accidental (missed opportunity for one of):

• Separation of Concerns: Could have established Orthogonality

• Design Elegance: Could have established Symmetry

Design In-Practice Your Design Relationship

is always one-or-both of:

1. State relationship

2. Control-flow relationship

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Common Design Error:

Establishing unbalanced relationship where:
1. Benefits (such as efficiency) do not justify added complexity

2. Unbalanced relationship was accidental (missed opportunity for one of):

• Separation of Concerns: Could have established Orthogonality

• Design Elegance: Could have established Symmetry

Design In-Practice Your Design Relationship

is always one-or-both of:

1. State relationship

2. Control-flow relationship

Limitations and Surprises:
Even with balanced relationships, we sometimes see:

• For Symmetry: Surprising variations, or edge cases

• For Orthogonality: Surprising interactions

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

(For our systems),

Symmetry is a processing amplification

which is desirable because

subsystems in sympathetic resonance

manifest complex behavior and computation

that is otherwise not achievable

Closing Thought:

Charley Bay - charleyb123 at gmail dot comThe Roles of Symmetry And Orthogonality In Designcppcon 2021

Questions?

Thank you!

for listening

Questions?

