-Iﬂ
Back to Basics:

Designing Classes (part 1 of 2)

KLAUS IGLBERGER

1leie

mailto:klaus.iglberger@gmx.de

C++ Trainer/Consultant
Author of the bI/\ze C++ math library
(Co-)Organizer of the Munich C++ user group

Chair of the CppCon B2B and SD tracks

Email: klaus.iglberger@gmx.de

Klaus Iglberger

Content

Back to Basics: Class Design (Part 1)

¢ The Challenge of Class Design
¢ Design Guidelines
¢ Design for Readability
¢ Design for Change and Extension
¢ Design for Testability
¢ Implementation Guidelines
¢ Resource Management

Back to Basics: Class Design (Part 2)

¢ Implementation Guidelines
¢ Data Member Initialization
¢ Implicit Conversions
¢ Order of Data Members
¢ Const Correctness
¢ Encapsulating Design Decisions
¢ Qualified/Modified Member Data
¢ Visibility vs. Accessibility

The Challenge of Class Design

Back to Basics: Class Design (Part 1)

¢ The Challenge of Class Design
¢ Design Guidelines
¢ Design for Readability
¢ Design for Change and Extension
¢ Design for Testability
¢ Implementation Guidelines
¢ Resource Management

Back to Basics: Class Design (Part 2)

¢ Implementation Guidelines
¢ Data Member Initialization
¢ Implicit Conversions
¢ Order of Data Members
¢ Const Correctness
¢ Encapsulating Design Decisions
¢ Qualified/Modified Member Data
¢ Visibility vs. Accessibility

The Challenge of Class Design

What is the root source of all problems in software
development?

Change

The Challenge of Class Design

The truth in our industry:

Software must be
adaptable to frequent
changes

The Challenge of Class Design

The truth in our industry:

Software must be
adaptable to frequent
changes

The Challenge of Class Design

What is the core problem of adaptable software
and software development in general?

Dependencies

The Challenge of Class Design

”"Dependency is the key problem in software development at all scales.”
(Kent Beck, TDD by Example)

The Challenge of Class Design

- p
Guideline: Design classes for easy change.

N Y

- p
Guideline: Design classes for easy extensions.

N Y

10

Design Guidelines

Back to Basics: Class Design (Part 1)

¢ The Challenge of Class Design
¢ Design Guidelines
¢ Design for Readability
¢ Design for Change and Extension
¢ Design for Testability
¢ Implementation Guidelines
¢ Resource Management

Back to Basics: Class Design (Part 2)

¢ Implementation Guidelines

¢ Data Member Initialization

¢ Implicit Conversions

¢ Order of Data Members

¢ Const Correctness

¢ Encapsulating Design Decisions

¢ Qualified/Modified Member Data
¢ Visibility vs. Accessibility

(ri

11

Design for Readability

Back to Basics: Class Design (Part 1)

¢ The Challenge of Class Design
¢ Design Guidelines
¢ Design for Readability
¢ Design for Change and Extension
< Design for Testability
¢ Implementation Guidelines
¢ Resource Management

Back to Basics: Class Design (Part 2)

¢ Implementation Guidelines
¢ Data Member Initialization
¢ Implicit Conversions
¢ Order of Data Members
¢ Const Correctness
¢ Encapsulating Design Decisions
¢ Qualified/Modified Member Data
¢ Visibility vs. Accessibility

12

Design for Readability

.

Guideline: Spent time to find good names for all entities.

template<
class T,
std::size t N
> struct array;

<— What does 'N’ represent?

13

Design for Readability

Guideline: Spent time to find good names for all entities.

.

template<

class T,

std::size t Size <«— Now it’s clear!
> struct array;

Design for Readability

/

Guideline: Spent time to find good names for all entities.

.

template<
class T,
class Allocator = std::allocator<T>

> class vector;‘K\\\\\
Container or numerical vector?

15

Design for Readability

/

Guideline: Spent time to find good names for all entities.

-

template<
class T,

class Allocator = std::allocator<T>
> class vector

{
public:

Action or query?
/] ... I y

[[nodiscard]] constexpr bool empty() const noexcept;

/] ...
}s

Design for Readability

@Cppcnn ‘ 2019

The C++ Conference cppcon.org

Kate Gregory

L TS __N Kate Gregory

kate@gregcons.com

www.gregcons.com/kateblog

Naming is Hard: | \ ||[/S
Let's Do Better @gregcons

) Sponsorship Provided By

— allSAtZ
P Pl o) 05275935

17

Design for Readability

(

Guideline: Spent time to find good names for all entities.

.

"Naming requires Empathy.”
(Kate Gregory, Naming is Hard: Let’s Do Better, CppCon 2019)

18

Design for Change and Extension

Back to Basics: Class Design (Part 1)

¢ The Challenge of Class Design
¢ Design Guidelines
¢ Design for Readability
¢ Design for Change and Extension
¢ Design for Testability
¢ Implementation Guidelines
¢ Resource Management

Back to Basics: Class Design (Part 2)

¢ Implementation Guidelines
¢ Data Member Initialization
¢ Implicit Conversions
¢ Order of Data Members
¢ Const Correctness
¢ Encapsulating Design Decisions
¢ Qualified/Modified Member Data
¢ Visibility vs. Accessibility

19

Our First Toy Problem: Shapes

”I’'m tired of this example, but | don’t know any better one.”

(Lukas Bergdoll, MUC++ organizer)

20

Designing the Shape Hierarchy

virtual draw() =0
virtual serialize() = 0

virtual draw()

/\

virtual draw()

/\

OpenGLCircle MetalCircle OpenGLSquare MetalSquare

virtual draw() virtual draw() virtual draw()

OpenGLLittleEndianSquare

virtual serialize()

virtual draw()

OpenGLBigEndianSquare

virtual serialize()

21

Designing the Shape Hierarchy

virtual draw() =0
virtual serialize() = 0

Circle

> I

/\

OpenGLLittleEndianCircle OpenGLBigEndianCircle OpenGLSquare MetalSquare

virtual draw() virtual draw()

virtual draw() virtual draw()

virtual serlallze() virtual serlallze()

MetallLittleEndianCircle MetalBigEndianCircle
OpenGLLittleEndianSquare

virtual draw() virtual draw()

virtual serlallze() virtual serlallze()

virtual serialize()

OpenGLBigEndianSquare

virtual serialize()

22

Designing the Shape Hierarchy

class OpenGLLittleEndianCircle : public Circle

{
public:
//
virtual void draw(Screen& s, /¥*¥...*¥/) const;
virtual void serialize(ByteStream& bs, /*...*/) const;
//
¥

Using inheritance naively to solve our problem easily leads to ...

.. many derived classes;

.. ridiculous class names;

.. deep inheritance hierarchies;

.. duplication between similar implementations (DRY);
.. (almost) impossible extensions (OCP);

.. impeded maintenance.

© OO0 0 O

23

Designing the Shape Hierarchy

- p
Guideline: Resist the urge to put everything into one class. Separate

concerns!

Guideline: If you use OO programming, use it properly.
N Y

24

Designing the Shape Hierarchy

- p
Guideline: Design classes for easy change.

N Y

- p
Guideline: Design classes for easy extensions.

N Y

25

Designing the Shape Hierarchy

’Inheritance is Rarely the Answer.
Delegate to Services: Has-A Trumps Is-A.”
(Andrew Hunt, David Thomas, The Pragmatic Programmer)

27

The Solution: Design Principles and Patterns

The Solution: Design Principles and Patterns

Single-Responsibility Principle (SRP)

Open-Closed Principle (OCP)

Don’t Repeat Yourself (DRY)

The Single-Responsibility Principle (SRP)

“Everything should do just one thing.”

(Common Knowledge?)

30

The Single-Responsibility Principle (SRP)

“The Single-Responsibility Principle advices to
separate concerns to isolate and simplify change.”
(Klaus Iglberger)

The SRP is also known as

¢ Separation of Concerns
¢ High cohesion / low coupling
¢ Orthogonality

31

The Open-Closed Principle (OCP)

“The Open-Closed Principle advices to
prefer design that simplifies the extension by
types or operations.”

(Klaus Iglberger)

32

Don’t Repeat Yourself (DRY)

“The DRY Principle advices to reduce
duplication in order to simplify change.”
(Klaus Iglberger)

33

The Solution: Design Principles and Patterns

Design Patterns

Flements of Reusable

EriCh Gamma
Richard Helm
Ralph Johnsor
JOhn :% SS1des

b

N/
o/
T2
P
j—
'

-
<
=,

-~
e,
D
f‘\‘
p—
1
W
o
—
—
p-=
P
~
~
<
—
B,
—
—_
f\’

S3143S

The Gang-of-Four (GoF) book: Origin of
23 of the most commonly used design
patterns.

A design pattern ...

©

.. has a nhame;

... carries an intent;

... aims at reducing dependencies;

.. provides some sort of abstraction;
.. has proven to work over the years.

©

© © ©

34

The Strategy Design Pattern

This represents any concrete shape, The aspect that changes is
i.e. Circle, Square, etc., and not extracted and isolated; this
a base class fulfills the Single-Responsibility

Principle (SRP)

strategy
)

virtual draw(Circle) = 0

New “responsibilities” can OpenGLStrategy TestStrategy
be added without modifying

any existing code; this fulfills : : : :
the Open-Closed Principle (OCP) virtual draw(Circle) virtual draw(Circle)

35

A Strategy-Based Solution

class Shape

{

public:
Shape() = default;
virtual ~Shape() = default;
virtual void draw(/*...%*/) const = 0;
virtual void serialize(/*...*/) const = 0;
//

s

class Circle;

class DrawCircleStrategy
{
public:
virtual ~DrawCircleStrategy() {}

virtual void draw(Circle consté& circle, /*...*/) const

};

class Circle : public Shape
{
public:
Circle(double rad
, std::unique_ptr<DrawCircleStrategy> strategy)
: radius{ rad }
, // ... Remaining data members

9;

36

A Strategy-Based Solution

class Shape

{

public:
Shape() = default;
virtual ~Shape() = default;
virtual void draw(/*...*/) const = 0;
virtual void serialize(/*...%*/) const = 0O;
//

s

class Circle;

class DrawCircleStrategy
{
public:
virtual ~DrawCircleStrategy() {}

virtual void draw(Circle consté& circle, /*...%*/) const

};

class Circle : public Shape
{
public:
Circle(double rad
, std::unique_ptr<DrawCircleStrategy> strategy)
: radius{ rad }
, // ... Remaining data members

9;

37

A Strategy-Based Solution

class Shape

{

public:
Shape() = default;
virtual ~Shape() = default;
virtual void draw(/*...%*/) const = 0;
virtual void serialize(/*...*/) const = 0;
//

s

class Circle;

class DrawCircleStrategy
{
public:
virtual ~DrawCircleStrategy() {}

virtual void draw(Circle const& circle, /*...%/) const = 0;

15

class Circle : public Shape
{
public:
Circle(double rad
, std::unique_ptr<DrawCircleStrategy> strategy)
: radius{ rad }
, // ... Remaining data members

A Strategy-Based Solution

class Circle : public Shape

{
public:

Circle(double rad
, std::unique_ptr<DrawCircleStrategy> strategy)

. radius{ rad }
, // ... Remaining data members .R\

, drawing{ std::move(strategy) }
{} Dependency Injection

double getRadius() const noexcept;
// ... getCenter(), getRotation(),

void draw(/*...*/) const override

{
h

void serialize(/*...%*/) const override;

drawing->draw(this, /*...%/);

//

private:
double radius;
// ... Remaining data members
std:unique_ ptr<DrawStrategy> drawing;

}s

class Sauare:

39

A Strategy-Based Solution

private:
double radius;
// ... Remaining data members
std:unique_ptr<DrawStrategy> drawing;

};

class Square;

class DrawSquareStrategy
{
public:
virtual ~DrawSquareStrategy() {}

virtual void draw(Square const& square, /*...%*/) const

}s

class Square : public Shape
{
public:
Square(double s
, std::unique ptr<DrawSquareStrategy> strategy)
side{ s }
, // ... Remaining data members
, drawing{ std::move(strategy) }

{1

double getSide() const noexcept;

0;

40

A Strategy-Based Solution

class Square : public Shape

{
public:

Square(double s
, std::unique ptr<DrawSquareStrategy> strategy)

side{ s }
, // ... Remaining data members
, drawing{ std::move(strategy) }

{1

double getSide() const noexcept;
// ... getCenter(), getRotation(),

void draw(/*...*/) const override

{
h

void serialize(/*...%*/) const override;

drawing->draw(this, /*...%/);

//

private:
double side;
// ... Remaining data members
std: :unique_ptr<DrawSquareStrategy> drawing;

}s
41

-1 F w ¥ 3 n“ﬂ“ﬂl pq. Mh1 Ao*“ﬂ*ﬂh\' a -‘--k‘ -.- nMﬂl,lpq. Mh1 Ao*“ﬂ*ﬂh\'

A Strategy-Based Solution

private:
double side;
// ... Remaining data members

std: :unique_ptr<DrawSquareStrategy> drawing;

};

class OpenGLCircleStrategy : public DrawCircleStrategy

{
public:

virtual ~OpenGLStrategy() {}

void draw(Circle const& circle) const override;

}5

class OpenGLSquareStrategy : public DrawSquareStrategy

{
public:

virtual ~OpenGLStrategy() {}

void draw(Square const& square) const override;

}5

int main()

{

using Shapes = std::vector<std: :unique_ ptr<Shape>>;

// Creating some shapes
Shapes shapes;
shapes.emplace back(std::make unigue<Circle>(C 2.0

42

A Strategy-Based Solution

class OpenGLSquareStrategy : public DrawSquareStrategy

{
public:

virtual ~OpenGLStrategy() {}

void draw(Square const& square) const override;

};

int main()

{

using Shapes = std::vector<std: :unique_ ptr<Shape>>;

// Creating some shapes
Shapes shapes;
shapes.emplace back(std::make unique<Circle>(2.0

, std::make unique<OpenGLCircleStrategy>()));
shapes.emplace back(std::make unique<Square>(1.5

, std::make unique<OpenGLSquareStrategy>()));
shapes.emplace back(std: :make unique<Circle>(4.2

, std::make unique<OpenGLCircleStrategy>()));

// Drawing all shapes
drawAllShapes(shapes);

43

A Strategy-Based Solution — Summary

By means of the Strategy design pattern we have ...

©

... extracted implementation details (SRP);

... Created the opportunity for easy change;

... Created the opportunity for easy extension (OCP);
... reduced duplication (DRY);

... limited the depth of the inheritance hierarchy;

... sSimplified maintainance.

©

44

A Strategy-Based Solution — Guidelines

4 N

Guideline: Design classes for easy change.
N Y

4 N

Guideline: Design classes for easy extensions.
N Y

- ™
Guideline: Don’t guess! If you expect change, prefer design that makes

this change easy. If you don’t expect any change, learn from the next

change.
N Y

45

A Strategy-Based Solution

The guidelines make sense, but still you complain ...

”That’s the style of the 90s and early 2000s, not Modern C++!”
(You)

And you are correct. Today we favor a value-semantics style...

46

A Strategy-Based Solution

class Circle;

using DrawCircleStrategy = std::function<void(Circle const&)>;

class Circle : public Shape

{
public:

Circle(double rad, DrawCircleStrategy strategy)
: radius{ rad }
, // ... Remaining data members
, drawing{ std::move(strategy) }

{}

double getRadius() const noexcept;
// ... getCenter(), getRotation(),

void draw(/*...*/) const override

{
h

void serialize(/*...%*/) const override;

drawing(this, /*...%/);

//

private:
double radius;
// ... Remaining data members
DrawCircleStrategy drawing;

};

A Strategy-Based Solution

template< typename DrawStrategy > —— |t’S still the same intent:

Elass Circle : public Shape Separation of concerns (SRP)

public:
Circle(double rad)
: radius{ rad }
, // ... Remaining data members

{}

double getRadius() const noexcept;
// ... getCenter(), getRotation(),

void draw(/*...*/) const override

{
¥

void serialize(/*...*/) const override;

DrawStrategy{}(this, /*...*/);

/] ...

private:
double radius;
// ... Remaining data members

};

48

A Strategy-Based Solution — Guidelines

- p
Guideline: Design classes for easy change.

N Y

- p
Guideline: Design classes for easy extensions.

N Y

49

Our Second Toy Problem: Persistence Systems

class Persistencelnterface

{

public:
Persistencelnterface();

virtual ~Persistencelnterface();

virtual bool write(const Blob& blob) = 0;

virtual bool write(const Blob& blob, WriteCallback callback) = 0;
virtual bool read (Blob& blob, uint timeout) = 0;

virtual bool read (Blob& blob, ReadCallback callback, uint timeout) = 0;

/] ...
}s

50

Our Second Toy Problem: Persistence Systems

class Persistencelnterface

{
public:
Persistencelnterface();
virtual ~Persistencelnterface();
virtual bool write(const Blob& blob) = 0;
virtual bool write(const Blob& blob, WriteCallback callback) = 0;
virtual bool read (Blob& blob, uint timeout) = 0;
virtual bool read (Blob& blob, ReadCallback callback, uint timeout) = 0;
//
s

The virtual functions may pose a problem in the future ...

©

.. because they represent the interface to callers;
.. because they represent the interface for deriving classes;

.. don’t separate concerns;
.. potentially introduces a lot of duplication;
.. make changes harder (and sometimes impossible).

©

51

The Template Method Design Pattern

The templateMethod()
represents a sequence of
operations that cannot be
changed

AbstractClass

templateMethod() O
virtual primitiveOperation1()
virtual primitiveOperation2()

0 primitiveOperation1()
0
primitiveOperation2()

ConcreteClass

virtual primitiveOperation1()
virtual primitiveOperation2()

Only some steps in the sequence
of operations can be changed in
deriving classes

52

The Template Method-Based Solution

class Persistencelnterface

{
blic:
pu Pli stenceTnterface(): No virtual function in the public interface (except for the
€rsis ’ destructor).
virtual ~PersistenceInterface(); In C++ we call this the Non-Virtual Interface Idiom (NVI)
bool write(const Blobé& blob);
bool write(const Blob& blob, WriteCallback callback);
bool read (Blob& blob, uint timeout);
bool read (Blob& blob, ReadCallback callback, uint timeout);
//
private:

virtual bool doWrite(const Blob& blob) = 0;

virtual bool doWrite(const Blob& blob, WriteCallback callback) = 0;
virtual bool doRead (Blob& blob, uint timeout) = 0;

virtual bool doRead (Blob& blob, ReadCallback callback, uint timeout) = 0;

//
}5

53

The Template Method-Based Solution

bool Persistencelnterface: :write(const Blob& blob)

{

LOG_INFO("Persistencelnterface::write(Blob), name = " <<
blob.name() << ": starting...");

if (blob.name().empty())

{
LOG_ERROR("Persistencelnterface::write(Blob): Attempt to"

" write unnamed blob failed");
return false;

¥

const auto start = std::chrono::high resolution clock()::now();
const bool success = doWrite(blob);

const uint32 t time = std::chrono::high_resolution_clock: :now() - start;

LOG_INFO("Persistencelnterface::write(Blob), name = " <<
blob.name() << ": Writing blob of size " << blob.size() <<
" bytes " << (success 7 "succeeded" : "failed") << "
“ duration = " << time.count() << "ms'");

return success,;

54

The Template Method-Based Solution

class Persistencelnterface

{
public:

Persistencelnterface();
virtual ~Persistencelnterface();
bool write(const Blob& blob);

/] ...

private:

virtual bool doWrite(const Blob& blob) = 0;

/] ...
}5

55

The Template Method-Based Solution

class Persistencelnterface

{

public:
Persistencelnterface();
virtual ~Persistencelnterface();
bool write(const Blob& blob);
/] ...

private:
virtual bool prepareWrite() = 0;
virtual bool doWrite(const Blob& blob) = 0;
/] ...

s

By means of the Non-Virtual Interface Idiom (NVI) we have ...

... separated concerns and simplified change (SRP);
... enabled internal changes with no impact on callers;

... reduced duplication (DRY).

©

©

©

56

A Template Method-Based Solution — Guidelines

- p
Guideline: Design classes for easy change.

N Y

- p
Guideline: Design classes for easy extensions.

N Y

57

Design for Change and Extension

Design for Change and Extension

4 I
Guideline: Classes should be ...

e ... concise and focused on one purpose (SRP)
e ... developed with extensibility in mind (OCP)
e ... split into smaller pieces to favor reuse (DRY)

Design for Testability

Back to Basics: Class Design (Part 1)

¢ The Challenge of Class Design
¢ Design Guidelines
¢ Design for Readability
¢ Design for Change and Extension
¢ Design for Testability
¢ Implementation Guidelines
¢ Resource Management

Back to Basics: Class Design (Part 2)

¢ Implementation Guidelines
< Data Member Initialization
¢ Implicit Conversions
¢ Order of Data Members
¢ Const Correctness
¢ Encapsulating Design Decisions
¢ Qualified/Modified Member Data
¢ Visibility vs. Accessibility

60

Design for Testability

template< typename Type, size t Capacity > €4—— Note the choice of names!
class FixedVector

{
public:

//

private:

/] ...

void destroy(Type* first, Type* last)

{
for(; first '™ st; ++first) {
first->~Type();
} You want to test this function

} (and not just as part of some public function) ...

size t size_ ;
std: :byte raw_[Capacity*sizeof(Type)];
}s

61

Design for Testability

NS

stack overflow

About

Products For Teams

Unit testing c++. How to test private members?

Asked 8 years, 9 months ago Active 3daysago Viewed 41k times

50

| would like to make unit tests for my C++ application.

What is the correct form to test private members of a class? Make a friend class which will test the
private members, use a derived class, or some other trick?

Which technique does the testing APIs use?

c++ unit-testing testing

Share Improve this question Follow edited Dec 16 '15 at 6:34 asked Jan 6 '13 at 20:11

a Trevor Hickey
wises 32.6k ©25 138 @242

e Daniel Saad
779 »1 6 *10

12 With unit tests you are testing a behaviour of the interface. So you shouldn't care of the object's internal
state — zerkms Jan 6 '13 at 20:12 /

2 In C++ you can always do #define private public, #define class struct andthen
nothing is private anymore! — BeniBela Jan 6 13 at 20:13

O A alvamam 1220 Aamied addatamss2abm & Asmsnnsnnsatnd 2D AarmiIiDAala | lnarma 1220202 pamltaa Slacd 2200 000 Al tsusemandsmasn ta Asrders sl 2

62

Design for Testability

2 In C++ you can always do #define private public , #define class struct andthen
nothing is private anymore! — BeniBela Jan 6 "13 at 20:13

9 A shame we can't downvote a comment. @BeniBela | hope you realize that your suggestion is extremely
bad coding practice. Pretty funny though. — Steven Lu Jan 6 "13 at 20:22

1 But what is the correct way to test private members? They have to be tested, right? - Daniel Saad Jan 6
"3 at 20:26
5 @jimmy_keen | agree that unittests are to test 'contract'. However, you might have some parts of your

code governed by (internal) 'contract' that you don't want to expose to users of your code. public and
private is mainly for access control for consumers of your code, and not necessarily for separating
contract-governed and not. - jdm Jan 6 13 at 271:01

Show 10 more comments

Active Oldest Votes

8 Answers

Typically, one only tests the public interface as discussed in the question's comments.

A7 There are times however when it is helpful to test private or protected methods. For example, the
implementation may have some non-trivial complexities that are hidden from users and that can be
tested more precisely with access to non-public members. Often it's better to figure out a way to

V remove that complexity or figure out how to expose the relevant portions publicly, but not always.

One way to allow unit tests access to non-public members is via the friend construct.

Share Improve this answer Follow edited Jan 6 '13 at 21:10 answered Jan 6 '13 at 20:40 63

“ v
’A’.\ :’; Mr Fooz

KUBY Al - o 0O =07

Design f

or Testability

The choices to test private members:

@:,\

¢ #define private public @

¢ Make the test a friend &
¢ Make the member public &

@ Derive the test class from the tested class &

¢ Separate concerns &

¢ Move the member into a private namespace ...
¢ ... or into another class (as a separate service).

64

Design for Testability

This is the design favored by the C++ standard library:

template<
class T,

class Allocator = std::allocator<T>
> class vector;

template< class Forwardlt >
constexpr void destroy(Forwardlt first, ForwardIt Llast);

65

Design for Testability

- p
Guideline: Resist the urge to put everything into one class.

N Y
- p
Guideline: Design classes to be testable.

N Y

66

Implementation Guidelines

Back to Basics: Class Design (Part 1)

¢ The Challenge of Class Design
¢ Design Guidelines
¢ Design for Readability
¢ Design for Change and Extension
¢ Design for Testability
¢ Implementation Guidelines
¢ Resource Management

Back to Basics: Class Design (Part 2)

¢ Implementation Guidelines
< Data Member Initialization
¢ Implicit Conversions
¢ Order of Data Members
¢ Const Correctness
¢ Encapsulating Design Decisions
¢ Qualified/Modified Member Data
¢ Visibility vs. Accessibility

Resource Management

Back to Basics: Class Design (Part 1)

¢ The Challenge of Class Design
¢ Design Guidelines
¢ Design for Readability
¢ Design for Change and Extension
© Design for Testability
¢ Implementation Guidelines
¢ Resource Management

Back to Basics: Class Design (Part 2)

¢ Implementation Guidelines
¢ Data Member Initialization
¢ Implicit Conversions
¢ Order of Data Members
¢ Const Correctness
¢ Encapsulating Design Decisions
¢ Qualified/Modified Member Data
@ Visibility vs. Accessibility

Resource Management

class Widget

{
public:

//
Widget();

Widget(Widget consté& other);

Widgeté& operator=(Widget consté& other);
Widget(Widgeté&& other) noexcept;

Widgeté& operator=(Widgeté&& other) noexcept;

~Widget();
//

private:

}s

//
//
//
//
//
//

Default constructor

Copy constructor

Copy assignment operator
Move constructor

Move assignment operator

Destructor

69

Resource Management

class Widget

{

public:
//
widget(); // Default constructor
Widget(Widget const& other); // Copy constructor
Widgeté& operator=(Widget consté& other); // Copy assignment operator
Widget(Widgeté&& other) noexcept; // Move constructor

Widgeté& operator=(Widgeté&é& other) noexcept; // Move assignment operator

~Widget();
//

private:

}5

int 1;
std: :string s;

// Destructor

// - 1 as a representative of a fundamental type

// - s as a representative of a class (user-defined) type

70

Resource Management

class Widget

{
public:

/] ...

4)

Core Guideline C.20: If you can avoid defining default operations, do

K The Rute of 0

/] ...

private:

int 1i;

std: :string s;
s

71

Resource Management

class Widget

{
public:

/] ...

4)

Core Guideline C.32: If a class has a raw pointer (T*) or reference (T&),
consider whether it might be owning

. J
4)
Core Guideline C.33: If a class has an owning pointer member, define a
destructor

. J

~Widget() { delete pr; }
/] ...

private:
int 1i;
std: :string s;
Resource* pr; // - pr as representative of a possible resource

}s

72

Resource Management

class Widget

{
public:

/] ...

p

~

Core Guideline C.32: If a class has a raw pointer (T*) or reference (T&),

consider whether it might be owning
-

)

p

~

Core Guideline C.33: If a class has an owning pointer member, define a

destructor
_

)

p

Core Guideline R.3: A raw pointer (a T*) is non-owning

.

~

private:
int 1i;
std: :string s;
Resource* pr; // - pr as representative of a possible resource

}s

73

Resource Management

class Widget

{
public:

/] ...

-

consider whether it might be owning

_

Core Guideline C.32: If a class has a raw pointer (T*) or reference (T&),

~

)

-

destructor

_

Core Guideline C.33: If a class has an owning pointer member, define a

~

)

-

Core Guideline R.3: A raw pointer (a T*) is non-owning

_

~

private:
int 1;
std: :string s;
std: :unique_ ptr<Resource> pr;

}s

74

Resource Management

class Widget

{
public:

/] ...

4)
Core Guideline R.1: Manage resources automatically using resource

handles and RAIll (Resource Acquisition Is Initialization)
- /

/] ...

private:
int 1;
std: :string s;
std: :unique_ ptr<Resource> pr;

}5

75

Resource Management

C++’s most important idiom:

RAII

(Resource Acquisition Is Initialization)

76

Resource Management

2019

cppcon.org

Cppcon

The C++ Conference

i @

/\
S

] L 1
}X‘-_,
'

B

Arthur O'D w,@r

® \

«
!

Back to Basics:
RAIl and the Rule of Zero

Back to Basics: RAII

Arthur O'Dwyer and the Rule of Zero

2019-09-17

Video S Provided By

. })()H.‘;(H.‘;}]I;) 1OV
anNSatZ

_} Pl o) 037/1:0217 O @ & (=] m -

77

Back to Basics:
Smart Pointers and RAIl

INBAL LEVI

lheie

Thursday, October 28th, 3:15pm MDT

Resource Management

class Widget

{
public:

/] ...

4)
Core Guideline R.1: Manage resources automatically using resource

handles and RAIll (Resource Acquisition Is Initialization)
- /

\

p
Guideline: Strive for the Rule of 0: Classes that don’t require an explicit
destructor, explicit copy operations and explicit move operations are
much (!) easier to handle.

o

J

/] ...

std::unique_ptr cannot be copied!
private:
int 1;
std: :string s;

std: :unique_ ptr<Resource> pr;
3

79

Resource Management

class Widget

{
public:

//

Widget(Widget const& other);

Widgeté& operator=(Widget consté& other);

// Widget(Widget&& other) noexcept;

// Widget& operator=(Widget&& other) noexcept;

//

private:
int 1;
std: :string s;
std: :unique ptr<Resource> pr;

}5

// not declared
// not declared

80

Resource Management

class Widget

{
public:

/] ...

4)
Core Guideline C.21: If you define or =delete any default operation,

define or =delete them all

; The Ruleof 5—

Widget(Widget consté& other);
Widgeté& operator=(Widget const& other);

Widget(Widgeté&& other) noexcept = default;

Widgeté& operator=(Widget&& other) noexcept = default;

~Widget() = default;
// ...

private:
int 1;
std: :string s;
std: :unique ptr<Resource> pr;

}s

81

Resource Management

class Widget

{
public:

/] ...

4 N
Core Guideline C.21: If you define or =delete any default operation,

define or =delete them all

; The Ruleof 5—

Widget(Widget consté& other);

Widgeté& operator=(Widget consté& other);
Widget(Widgeté&& other) noexcept = default;

Widgeté& operator=(Widget&& other) noexcept = default;
~Widget() = default;
// ...

private:
int 1;
std: :string s;

std: :shared ptr<Resource> pr; // fundamentally changes the semantics!

}s

82

Resource Management

class Widget

{
public:

/] ...

Core Guideline C.21: If you define or =delete any default operation,

define or =delete them all

; The Ruleof 5—

4)

Core Guideline C.20: If you can avoid defining default operations, do

\ The Ruteof O0—

/] ...

private:
int 1i;
std: :string s;
std: :shared_ptr<Resource> pr; // fundamentally changes the semantics!

}5

83

Resource Management

4)

Guideline: Strive for the Rule of 0, but if it cannot be achieved (e.g.

because the class implements RAll itself), follow the Rule of 5.
. J

4)

Guideline: Design classes for easy change.
N Y

84

Back to Basics:
The Special Member Functions

+W4

h

KLAUS IGLBERGER

20
21

Wednesday, October 27th, 7:45am MDT

NA

October 24-29

Content

Back to Basics: Class Design (Part 1)

¢ The Challenge of Class Design
@ Design Guidelines
¢ Design for Readability
¢ Design for Change and Extension
¢ Design for Testability
¢ Implementation Guidelines
¢ Resource Management

Back to Basics: Class Design (Part 2)

¢ Implementation Guidelines
¢ Data Member Initialization
¢ Implicit Conversions
¢ Order of Data Members
¢ Const Correctness
¢ Encapsulating Design Decisions
¢ Qualified/Modified Member Data
¢ Visibility vs. Accessibility

86

-Iﬂ
Back to Basics:

Designing Classes (part 1 of 2)

KLAUS IGLBERGER

1leie

