
Back to Basics

Designing Classes
(part 1 of 2)

Klaus Iglberger, CppCon 2021

klaus.iglberger@gmx.de

mailto:klaus.iglberger@gmx.de

2

Klaus Iglberger

C++ Trainer/Consultant

Author of the C++ math library

(Co-)Organizer of the Munich C++ user group

Chair of the CppCon B2B and SD tracks

Email: klaus.iglberger@gmx.de

Content

3

Back to Basics: Class Design (Part 1)

The Challenge of Class Design
Design Guidelines

Design for Readability
Design for Change and Extension
Design for Testability

Implementation Guidelines
Resource Management

Back to Basics: Class Design (Part 2)

Implementation Guidelines
Data Member Initialization
Implicit Conversions
Order of Data Members
Const Correctness
Encapsulating Design Decisions
Qualified/Modified Member Data
Visibility vs. Accessibility

Implementation Guidelines

4

Back to Basics: Class Design (Part 1)

The Challenge of Class Design
Design Guidelines

Design for Readability
Design for Change and Extension
Design for Testability

Implementation Guidelines
Resource Management

Back to Basics: Class Design (Part 2)

Implementation Guidelines
Data Member Initialization
Implicit Conversions
Order of Data Members
Const Correctness
Encapsulating Design Decisions
Qualified/Modified Member Data
Visibility vs. Accessibility

Data Member Initialization

5

Back to Basics: Class Design (Part 1)

The Challenge of Class Design
Design Guidelines

Design for Readability
Design for Change and Extension
Design for Testability

Implementation Guidelines
Resource Management

Back to Basics: Class Design (Part 2)

Implementation Guidelines
Data Member Initialization
Implicit Conversions
Order of Data Members
Const Correctness
Encapsulating Design Decisions
Qualified/Modified Member Data
Visibility vs. Accessibility

Data Member Initialization

6

Interactive Task: What is the initial value of the three data members i,
s, and pi?

struct Widget
{

 int i;
 std::string s;
 int* pi;
};

int main()
{
 Widget w;
}

// Uninitialized
// Default (i.e. empty string)
// Uninitialized

// Default initialization

Data Member Initialization

7

The compiler generated default constructor …
• initializes all data members of class (user-defined) type …
• but not the data members of fundamental type.

struct Widget
{

 int i;
 std::string s;
 int* pi;
};

int main()
{
 Widget w;
}

// Uninitialized
// Default (i.e. empty string)
// Uninitialized

// Default initialization: Calls
// the default constructor

Data Member Initialization

8

Interactive Task: What is the initial value of the three data members i,
s, and pi?

struct Widget
{

 int i;
 std::string s;
 int* pi;
};

int main()
{
 Widget w{};
}

// Initialized to 0
// Default (i.e. empty string)
// Initialized to nullptr

// Value initialization

Data Member Initialization

9

If no default constructor is declared, value initialization …
• zero-initializes the object
• and then default-initializes all non-trivial data members.

struct Widget
{

 int i;
 std::string s;
 int* pi;
};

int main()
{
 Widget w{};
}

// Initialized to 0
// Default (i.e. empty string)
// Initialized to nullptr

// Value initialization: No default
// ctor -> zero+default init

Data Member Initialization

10

Guideline: Prefer to create default objects by means of an empty set of
braces (value initialization).

Data Member Initialization

11

Interactive Task: What is the initial value of the three data members i,
s, and pi?

struct Widget
{
 Widget() {}
 int i;
 std::string s;
 int* pi;
};

int main()
{
 Widget w{};
}

// Explicit default constructor
// Uninitialized
// Default (i.e. empty string)
// Uninitialized

// Value initialization

Data Member Initialization

12

An empty default constructor …
• initializes all data members of class (user-defined) type …
• but not the data members of fundamental type.

struct Widget
{
 Widget() {}
 int i;
 std::string s;
 int* pi;
};

int main()
{
 Widget w{};
}

// Explicit default constructor
// Uninitialized
// Default (i.e. empty string)
// Uninitialized

// Value initialization: Declared
// default ctor -> calls ctor

Data Member Initialization

13

Guideline: Avoid writing an empty default constructor.

Data Member Initialization

14

Via the default constructor, we can properly initialize all data members:

struct Widget
{
 Widget()
 {
 i = 42; // Initialize the int to 42
 s = "CppCon"; // Initialize the string to “CppCon"
 pi = nullptr; // Initialize the pointer to nullptr
 }

 int i;
 std::string s;
 int* pi;
};

Data Member Initialization

15

Via the default constructor, we can properly initialize all data members:

struct Widget
{
 Widget()
 {
 i = 42; // Assignment, not initialization
 s = "CppCon"; // Assignment, not initialization
 pi = nullptr; // Assignment, not initialization
 }

 int i;
 std::string s;
 int* pi;
};

Data Member Initialization

16

Via the default constructor, we can properly initialize all data members:

struct Widget
{
 Widget()
 : s{} // Initialization happens in the
 // member initializer list
 {
 i = 42; // Assignment, not initialization
 s = "CppCon"; // Assignment, not initialization
 pi = nullptr; // Assignment, not initialization
 }

 int i;
 std::string s;
 int* pi;
};

Data Member Initialization

17

Via the default constructor, we can properly initialize all data members:

struct Widget
{
 Widget()
 : s{"CppCon"} // Initialization of the string
 // in the member initializer list
 {
 i = 42; // Assignment, not initialization

 pi = nullptr; // Assignment, not initialization
 }

 int i;
 std::string s;
 int* pi;
};

Data Member Initialization

18

Via the default constructor, we can properly initialize all data members:

struct Widget
{
 Widget()
 : i {42} // Initializing to 42
 , s {"CppCon"} // Initializing to "CppCon"
 , pi{} // Initializing to nullptr
 {}

 int i;
 std::string s;
 int* pi;
};

Data Member Initialization

19

Core Guideline C.49: Prefer initialization to assignment in constructors.

Core Guideline C.47: Define and initialise member variables in the order
of member declaration

Data Member Initialization

20

Let’s assume that a colleague adds another constructor…

struct Widget
{
 Widget()
 : i {42} // Initializing to 42
 , s {"CppCon"} // Initializing to "CppCon"
 , pi{} // Initializing to nullptr
 {}

 Widget(int j)
 : i {j} // Initialization to j
 {}

 int i;
 std::string s;
 int* pi;
};

Data Member Initialization

21

Let’s assume that a colleague adds another constructor…

struct Widget
{
 Widget()
 : i {42} // Initializing to 42
 , s {"CppCon"} // Initializing to "CppCon"
 , pi{} // Initializing to nullptr
 {}

 Widget(int j)
 : i {j} // Initialization to j
 , s {"CppCon"} // Initialization to "CppCon"
 , pi{} // Initialization to nullptr
 {}

 int i;
 std::string s;
 int* pi;
};

Data Member Initialization

22

Let’s assume that a colleague adds another constructor…

struct Widget
{
 Widget()
 : i {42} // Initializing to 42
 , s {"CppCon"} // Initializing to "CppCon"
 , pi{} // Initializing to nullptr
 {}

 Widget(int j)
 : i {j} // Initialization to j
 , s {"CppCon"} // Initialization to “CppCon" (duplication)
 , pi{} // Initialization to nullptr (duplication)
 {}

 int i;
 std::string s;
 int* pi;
};

Data Member Initialization

23

Guideline: Avoid duplication to enable you to change everything in one
place (the DRY principle).

Guideline: Design classes for easy change.

Data Member Initialization

24

struct Widget
{
 Widget()
 : Widget(42) // Delegating constructor
 {}

 Widget(int j)
 : i {j} // Initialization to j
 , s {"CppCon"} // Initialization to "CppCon" (duplication)
 , pi{} // Initialization to nullptr (duplication)
 {}

 int i;
 std::string s;
 int* pi;
};

In order to reduce duplication, we could use delegating constructors …

// Note that the lifetime of the object
// begins with the closing brace of the
// delegated constructor!

Data Member Initialization

25

Core Guideline C.51: Use delegating constructors to represent common
actions for all constructors of a class

Data Member Initialization

26

… or we could use in-class member initializers.

struct Widget
{
 Widget()
 {}

 Widget(int j)
 : i {j} // Initializing to j
 {}

 // Data members with in-class initializers
 int i{42}; // initializing to 42
 std::string s{"CppCon"}; // initializing to "CppCon"
 int* pi{}; // initialising to nullptr
};

In-class member initializers are used if the data member is not explicitly
listed in the member initializer list.

Data Member Initialization

27

struct Widget
{
 Widget() = default;

 Widget(int j)
 : i {j} // Initializing to j
 {}

 // Data members with in-class initializers
 int i{42}; // initializing to 42
 std::string s{"CppCon"}; // initializing to "CppCon"
 int* pi{}; // initialising to nullptr
};

In-class member initializers are used if the data member is not explicitly
listed in the member initializer list.

… or we could use in-class member initializers.

Data Member Initialization

28

Core Guideline C.48: Prefer in-class initializers to member initializers in
constructors for constant initializers

Core Guideline C.44: Prefer default constructors to be simple and non-
throwing

Guideline: Prefer to initialize pointer members to nullptr with in-class
member initializers.

Implicit Conversions

29

Back to Basics: Class Design (Part 1)

The Challenge of Class Design
Design Guidelines

Design for Readability
Design for Change and Extension
Design for Testability

Implementation Guidelines
Resource Management

Back to Basics: Class Design (Part 2)

Implementation Guidelines
Data Member Initialization
Implicit Conversions
Order of Data Members
Const Correctness
Encapsulating Design Decisions
Qualified/Modified Member Data
Visibility vs. Accessibility

Implicit Conversions

30

class Widget
{
 public:
 Widget(int) { std::puts("Widget(int)"); }
 // ...
};

void f(Widget);

int main()
{
 f(42);

 return EXIT_SUCCESS;
}

// Calls the Widget ctor, then f
// (probably unintentionally)

Implicit Conversions

31

class Widget
{
 public:
 explicit Widget(int) { std::puts("Widget(int)"); }
 // ...
};

void f(Widget);

int main()
{
 f(42);

 return EXIT_SUCCESS;
}

// Compilation error! No matching
// function for ‘f(int)’ (as it should be)

Implicit Conversions

32

Core Guideline C.46: By default, declare single-argument constructors
explicit.

Order of Data Members

33

Back to Basics: Class Design (Part 1)

The Challenge of Class Design
Design Guidelines

Design for Readability
Design for Change and Extension
Design for Testability

Implementation Guidelines
Resource Management

Back to Basics: Class Design (Part 2)

Implementation Guidelines
Data Member Initialization
Implicit Conversions
Order of Data Members
Const Correctness
Encapsulating Design Decisions
Qualified/Modified Member Data
Visibility vs. Accessibility

Order of Member Data

34

Task, Step 1: Assuming the x64 architecture, what is the size of the
given struct Widget?

struct Widget {
 bool b1;
 float f;
 bool b2;
};

std::cout << sizeof(Widget) << '\n'; // prints 12

Order of Member Data

35

Task, Step 1: Assuming the x64 architecture, what is the size of the
given struct Widget?

struct Widget {
 bool b1;
 float f;
 bool b2;
};

std::cout << sizeof(Widget) << '\n'; // prints 12

// Needs to be 4-byte aligned on x64
char padding1[3];

char padding2[3];

Order of Member Data

36

Task, Step 2: Assuming the x64 architecture, what is the size of the
given struct Widget?

struct Widget {
 bool b1;
 double d;
 bool b2;
};

std::cout << sizeof(Widget) << '\n'; // prints 24

Order of Member Data

37

Task, Step 2: Assuming the x64 architecture, what is the size of the
given struct Widget?

struct Widget {
 bool b1;
 double d;
 bool b2;
};

std::cout << sizeof(Widget) << '\n'; // prints 24

// Needs to be 8-byte aligned on x64
char padding1[7];

char padding2[7];

Order of Member Data

38

Task, Step 3: Assuming the x64 architecture, what is the size of the
given struct Widget?

struct Widget {
 double d; // Largest first
 bool b1;
 bool b2;
};

std::cout << sizeof(Widget) << '\n'; // prints 16

Order of Member Data

39

Task, Step 3: Assuming the x64 architecture, what is the size of the
given struct Widget?

struct Widget {
 double d; // Largest first
 bool b1;
 bool b2; char padding[6];
};

std::cout << sizeof(Widget) << '\n'; // prints 16

Order of Member Data

40

Task, Step 4: Assuming the x64 architecture, what is the size of the
given struct Widget?

struct Widget {
 std::string s; // Assumption: consumes 24 bytes
 bool b1;
 bool b2;
};

std::cout << sizeof(Widget) << '\n'; // prints 32

Order of Member Data

41

Task, Step 4: Assuming the x64 architecture, what is the size of the
given struct Widget?

struct Widget {
 std::string s; // Assumption: consumes 24 bytes
 bool b1;
 bool b2; char padding[6];
};

std::cout << sizeof(Widget) << '\n'; // prints 32

Guideline: Consider the alignment of data members when adding
member data to a struct or class.

Order of Member Data

42

Core Guideline C.47: Define and initialise member variables in the order
of member declaration

Const Correctness

43

Back to Basics: Class Design (Part 1)

The Challenge of Class Design
Design Guidelines

Design for Readability
Design for Change and Extension
Design for Testability

Implementation Guidelines
Resource Management

Back to Basics: Class Design (Part 2)

Implementation Guidelines
Data Member Initialization
Implicit Conversions
Order of Data Members
Const Correctness
Encapsulating Design Decisions
Qualified/Modified Member Data
Visibility vs. Accessibility

Const Correctness

44

Task: What is wrong with the declaration of the begin() and end()
functions?

std::ostream& operator<<(std::ostream& os
 , FixedVector<int,10>
{
 for(int i : v) { /*...*/ }

 return EXIT_SUCCESS;
}

v)

template< typename Type, size_t Capacity >
class FixedVector final
{
 public:
 // ...

 // ...
};

Type begin() noexcept;*
Type end() noexcept;*

Const Correctness

45

Task: What is wrong with the declaration of the begin() and end()
functions?

std::ostream& operator<<(std::ostream& os
 , FixedVector<int,10>
{
 for(int i : v) { /*...*/ }

 return EXIT_SUCCESS;
}

v)

// Compilation error!

template< typename Type, size_t Capacity >
class FixedVector final
{
 public:
 // ...

 // ...
};

Type begin() noexcept;*
Type end() noexcept;*

const&

Const Correctness

46

Task: What is wrong with the declaration of the begin() and end()
functions?

template< typename Type, size_t Capacity >
class FixedVector final
{
 public:
 // ...

 // ...
};

Type begin() noexcept;const*
Type end() noexcept;const*

Const Correctness

47

Task: What is wrong with the declaration of the begin() and end()
functions?

template< typename Type, size_t Capacity >
class FixedVector final
{
 public:
 // ...

 // ...
};

Type begin() noexcept;constconst*
Type end() noexcept;constconst*

Huh? A const pointer?

const

Detour: West Coast vs. East Coast

48

Type*

Type const*

Commonly known as

Commonly known as East-Coast const

constWest-Coast

”const modifies what is on its left. Unless there is nothing on its left, in which
case it modifies what’s on its right.”

(Jon Kalb, A Foolish Consistency)

const

Detour: West Coast vs. East Coast

49

Type*

Type const*

Commonly known as

Commonly known as East-Coast const

const West-Coast

”const modifies what is on its left. Unless there is nothing on its left, in which
case it modifies what’s on its right.”

(Jon Kalb, A Foolish Consistency)

Const Correctness

50

Task: What is wrong with the declaration of the begin() and end()
functions?

template< typename Type, size_t Capacity >
class FixedVector final
{
 public:
 // ...

 // ...
};

int main()
{
 FixedVector<int,10> v{ /*...*/ };

 std::fill(v.begin(), v.end(), 42);

 return EXIT_SUCCESS;
}

// Compilation error!

Type begin() noexcept;constconst*
Type end() noexcept;constconst*

Const Correctness

51

Task: What is wrong with the declaration of the begin() and end()
functions?

template< typename Type, size_t Capacity >
class FixedVector final
{
 public:
 // ...

 // ...
};

Type begin() noexcept;constconst*
Type end() noexcept;constconst*
Type* begin() noexcept;
Type* end() noexcept;

Const Correctness

52

Task: What is wrong with the declaration of the begin() and end()
functions?

template< typename Type, size_t Capacity >
class FixedVector final
{
 public:
 // ...

 // ...
};

Type begin() noexcept;constconst*
Type end() noexcept;constconst*

Type const* cbegin() const noexcept;
Type const* cend() const noexcept;

Type* begin() noexcept;
Type* end() noexcept;

Const Correctness

53

namespace std {

template< typename T
 , typename Deleter = std::default_delete<T> >
class unique_ptr
{
 public:
 using pointer = T*; // Simplified!

 pointer get() const noexcept;
 // ...
};

} // namespace std

// const member function returning
// a pointer to non-const T!

int main()
{
 std::unique_ptr<int
 int

 return EXIT_SUCCESS;
}

// Semantically equivalent> const ptr1;
* const ptr2;

Const Correctness

54

namespace std {

template< typename T
 , typename Deleter = std::default_delete<T> >
class unique_ptr
{
 public:
 using pointer = T*; // Simplified!

 pointer get() const noexcept;
 // ...
};

} // namespace std

int main()
{
 std::unique_ptr<int
 int

 return EXIT_SUCCESS;
}

// Semantically equivalent> const ptr1;
* const ptr2;

const
const

// const member function returning
// a pointer to non-const T!

Const Correctness

55

Core Guideline Con.2: By default, make member functions const

Guideline: Const correctness is part of the semantics of your class.

56

Tuesday, October 26th, 10:30am MDT

Encapsulating Design Decisions

57

Back to Basics: Class Design (Part 1)

The Challenge of Class Design
Design Guidelines

Design for Readability
Design for Change and Extension
Design for Testability

Implementation Guidelines
Resource Management

Back to Basics: Class Design (Part 2)

Implementation Guidelines
Data Member Initialization
Implicit Conversions
Order of Data Members
Const Correctness
Encapsulating Design Decisions
Qualified/Modified Member Data
Visibility vs. Accessibility

Encapsulating Design Decisions

58

Task: You decide that you want to represent iterators by means of class
types. Why is that a problem?

template< typename Type, size_t Capacity >
class FixedVector final
{
 public:
 // ...

 // ...
};

Type const*
Type const*
Type*
Type*
Type const*
Type const*

begin() const noexcept;
end() const noexcept;
begin() noexcept;
end() noexcept;
cbegin() const noexcept;
cend() const noexcept;

Encapsulating Design Decisions

59

Task: You decide that you want to represent iterators by means of class
types. Why is that a problem?

template< typename Type, size_t Capacity >
class FixedVector final
{
 public:
 // ...

 // ...
};

Type const*
Type const*
Type*
Type*
Type const*
Type const*

begin() const noexcept;
end() const noexcept;
begin() noexcept;
end() noexcept;
cbegin() const noexcept;
cend() const noexcept;

Encapsulating Design Decisions

60

Task: You decide that you want to represent iterators by means of class
types. Why is that a problem?

template< typename Type, size_t Capacity >
class FixedVector final
{
 public:
 // ...

 // ...
};

Type const*
Type const*
Type*
Type*
Type const*
Type const*

begin() const noexcept;
end() const noexcept;
begin() noexcept;
end() noexcept;
cbegin() const noexcept;
cend() const noexcept;

using iterator = Type*;
using const_iterator = const Type*;

Encapsulating Design Decisions

61

Task: You decide that you want to represent iterators by means of class
types. Why is that a problem?

template< typename Type, size_t Capacity >
class FixedVector final
{
 public:
 // ...

 // ...
};

const_iterator
const_iterator
iterator
iterator
const_iterator
const_iterator

begin() const noexcept;
end() const noexcept;
begin() noexcept;
end() noexcept;
cbegin() const noexcept;
cend() const noexcept;

using iterator = Type*;
using const_iterator = const Type*;

Encapsulating Design Decisions

62

namespace std {

template< typename T
 , typename Allocator = std::allocator<T> >
class vector
{
 public:
 constexpr T* data() noexcept;
 constexpr T const* data() const noexcept;
 // ...
};

} // namespace std

// data() is expected to
// return a pointer to the
// first element

Encapsulating Design Decisions

63

Guideline: Encapsulate design decisions (i.e. variation points).

Guideline: Design classes for easy change.

Qualified/Modified Member Data

64

Back to Basics: Class Design (Part 1)

The Challenge of Class Design
Design Guidelines

Design for Readability
Design for Change and Extension
Design for Testability

Implementation Guidelines
Resource Management

Back to Basics: Class Design (Part 2)

Implementation Guidelines
Data Member Initialization
Implicit Conversions
Order of Data Members
Const Correctness
Encapsulating Design Decisions
Qualified/Modified Member Data
Visibility vs. Accessibility

Qualified/Modified Member Data

65

struct Widget
{
 int const i;
 double& d;

};

Task: What is the problem of the given struct Widget?

Assignment to const data members or references doesn’t work, so the
compiler cannot generate the two assignment operators!

 // Widget& operator=(Widget const&);
 // Widget& operator=(Widget&&);

// implicitly deleted
// not declared

Qualified/Modified Member Data

66

struct Widget
{
 public:
 Widget(double& d) : pd_(&d) {}

 double& get() noexcept { return *pd_; }
 double const& get() const noexcept { return *pd_; }

 private:
 double* pd_;
};

Reference members can be stored as pointers …

Qualified/Modified Member Data

67

… or as std::reference_wrapper.

#include <functional>

struct Widget
{
 public:
 Widget(double& d) : d_(d) {}

 double& get() noexcept { return d_; }
 double const& get() const noexcept { return d_; }

 private:
 std::reference_wrapper<double> d_;
};

Qualified/Modified Member Data

68

Guideline: Remember that a class with const or reference data member
cannot be copy/move assigned by default.

Guideline: Strive for symmetry between the two copy operations.

Guideline: Strive for symmetry between the two move operations.

Core Guideline C.12: Don’t make data members const or references

Visibility vs. Accessibility

69

Back to Basics: Class Design (Part 1)

The Challenge of Class Design
Design Guidelines

Design for Readability
Design for Change and Extension
Design for Testability

Implementation Guidelines
Resource Management

Back to Basics: Class Design (Part 2)

Implementation Guidelines
Data Member Initialization
Implicit Conversions
Order of Data Members
Const Correctness
Encapsulating Design Decisions
Qualified/Modified Member Data
Visibility vs. Accessibility

Visibility vs. Accessibility

70

Task: Which of the following two functions is called in the subsequent
function call?

class Widget
{
 public:
 void doSomething(int); // (1)
 private:
 void doSomething(double); // (2)
};

Widget w{};
w.doSomething(1.0);

The compiler tries to call function (2), but quits the compilation process
with an error about an access violation: function (2) is declared private!

Visibility vs. Accessibility

71

Task: Which of the following two functions is called in the subsequent
function call?

glass Widget
{
 public:
 void doSomething(int); // (1)
 private:
 void doSomething(double); // (2)
};

Widget w{};
w.doSomething(1.0);

Visibility vs. Accessibility

72

Task: Which of the following two functions is called in the subsequent
function call?

class Widget
{
 public:
 void doSomething(int); // (1)
 private:
 void doSomething(double); // (2)
};

Widget w{};
w.doSomething(1U);

This results in an ambiguous function call. The compiler still sees both
functions and cannot decide which conversion to perform!

Visibility vs. Accessibility

73

Remember the four steps of the compiler to resolve a function call:

1. Name lookup: Select all (visible) candidate functions with a certain
name within the current scope. If none is found, proceed into the next
surrounding scope.

2. Overload resolution: Find the best match among the selected candidate
functions. If necessary, apply the necessary argument conversions.

3. Access labels: Check if the best match is accessible from the given call
site.

4. =delete: Check if the best match has been explicitly deleted.

Content

74

Back to Basics: Class Design (Part 1)

The Challenge of Class Design
Design Guidelines

Design for Readability
Design for Change and Extension
Design for Testability

Implementation Guidelines
Resource Management

Back to Basics: Class Design (Part 2)

Implementation Guidelines
Data Member Initialization
Implicit Conversions
Order of Data Members
Const Correctness
Encapsulating Design Decisions
Qualified/Modified Member Data
Visibility vs. Accessibility

Summary

75

Guideline: Design classes for easy change.

Guideline: Design classes for easy extensions.

Guideline: Separate concerns!

Guideline: Design classes to be testable.

Klaus Iglberger, CppCon 2021

klaus.iglberger@gmx.de

Back to Basics

Class Design
(part 1 of 2)

