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Interactive Task: What is the initial value of the three data members i, 
s, and pi?

struct Widget 
{ 

   int i; 
   std::string s; 
   int* pi; 
}; 

int main() 
{ 
   Widget w; 
}

// Uninitialized
// Default (i.e. empty string)
// Uninitialized

// Default initialization
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The compiler generated default constructor … 
• initializes all data members of class (user-defined) type … 
• but not the data members of fundamental type.

struct Widget 
{ 

   int i; 
   std::string s; 
   int* pi; 
}; 

int main() 
{ 
   Widget w; 
}

// Uninitialized
// Default (i.e. empty string)
// Uninitialized

// Default initialization: Calls 
// the default constructor
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Interactive Task: What is the initial value of the three data members i, 
s, and pi?

struct Widget 
{ 

   int i; 
   std::string s; 
   int* pi; 
}; 

int main() 
{ 
   Widget w{}; 
}

// Initialized to 0
// Default (i.e. empty string)
// Initialized to nullptr

// Value initialization
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If no default constructor is declared, value initialization … 
• zero-initializes the object 
• and then default-initializes all non-trivial data members.

struct Widget 
{ 

   int i; 
   std::string s; 
   int* pi; 
}; 

int main() 
{ 
   Widget w{}; 
}

// Initialized to 0
// Default (i.e. empty string)
// Initialized to nullptr

// Value initialization: No default 
// ctor -> zero+default init
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Guideline: Prefer to create default objects by means of an empty set of 
braces (value initialization).
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Interactive Task: What is the initial value of the three data members i, 
s, and pi?

struct Widget 
{ 
   Widget() {} 
   int i; 
   std::string s; 
   int* pi; 
}; 

int main() 
{ 
   Widget w{}; 
}

// Explicit default constructor
// Uninitialized
// Default (i.e. empty string)
// Uninitialized

// Value initialization
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An empty default constructor … 
• initializes all data members of class (user-defined) type … 
• but not the data members of fundamental type.

struct Widget 
{ 
   Widget() {} 
   int i; 
   std::string s; 
   int* pi; 
}; 

int main() 
{ 
   Widget w{}; 
}

// Explicit default constructor
// Uninitialized
// Default (i.e. empty string)
// Uninitialized

// Value initialization: Declared 
// default ctor -> calls ctor
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Guideline: Avoid writing an empty default constructor.
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Via the default constructor, we can properly initialize all data members:

struct Widget 
{ 
  Widget() 
  { 
    i  = 42;        // Initialize the int to 42 
    s  = "CppCon";  // Initialize the string to “CppCon" 
    pi = nullptr;   // Initialize the pointer to nullptr 
  } 

  int i; 
  std::string s; 
  int* pi; 
};
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Via the default constructor, we can properly initialize all data members:

struct Widget 
{ 
  Widget() 
  { 
    i  = 42;        // Assignment, not initialization 
    s  = "CppCon";  // Assignment, not initialization 
    pi = nullptr;   // Assignment, not initialization 
  } 

  int i; 
  std::string s; 
  int* pi; 
};
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Via the default constructor, we can properly initialize all data members:

struct Widget 
{ 
  Widget() 
    : s{}  // Initialization happens in the 
           // member initializer list 
  { 
    i  = 42;        // Assignment, not initialization 
    s  = "CppCon";  // Assignment, not initialization 
    pi = nullptr;   // Assignment, not initialization 
  } 

  int i; 
  std::string s; 
  int* pi; 
};
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Via the default constructor, we can properly initialize all data members:

struct Widget 
{ 
  Widget() 
    : s{"CppCon"}   // Initialization of the string 
                    // in the member initializer list 
  { 
    i  = 42;        // Assignment, not initialization 

    pi = nullptr;   // Assignment, not initialization 
  } 

  int i; 
  std::string s; 
  int* pi; 
};
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Via the default constructor, we can properly initialize all data members:

struct Widget 
{ 
  Widget() 
    : i {42}        // Initializing to 42 
    , s {"CppCon"}  // Initializing to "CppCon" 
    , pi{}          // Initializing to nullptr 
  {} 

  int i; 
  std::string s; 
  int* pi; 
};
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Core Guideline C.49: Prefer initialization to assignment in constructors.

Core Guideline C.47: Define and initialise member variables in the order 
of member declaration
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Let’s assume that a colleague adds another constructor…

struct Widget 
{ 
  Widget() 
    : i {42}        // Initializing to 42 
    , s {"CppCon"}  // Initializing to "CppCon" 
    , pi{}          // Initializing to nullptr 
  {} 

  Widget( int j ) 
    : i {j}         // Initialization to j 
  {} 

  int i; 
  std::string s; 
  int* pi; 
};
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Let’s assume that a colleague adds another constructor…

struct Widget 
{ 
  Widget() 
    : i {42}        // Initializing to 42 
    , s {"CppCon"}  // Initializing to "CppCon" 
    , pi{}          // Initializing to nullptr 
  {} 

  Widget( int j ) 
    : i {j}         // Initialization to j 
    , s {"CppCon"}  // Initialization to "CppCon" 
    , pi{}          // Initialization to nullptr 
  {} 

  int i; 
  std::string s; 
  int* pi; 
};



Data Member Initialization

22

Let’s assume that a colleague adds another constructor…

struct Widget 
{ 
  Widget() 
    : i {42}        // Initializing to 42 
    , s {"CppCon"}  // Initializing to "CppCon" 
    , pi{}          // Initializing to nullptr 
  {} 

  Widget( int j ) 
    : i {j}         // Initialization to j 
    , s {"CppCon"}  // Initialization to “CppCon" (duplication) 
    , pi{}          // Initialization to nullptr (duplication) 
  {} 

  int i; 
  std::string s; 
  int* pi; 
};
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Guideline: Avoid duplication to enable you to change everything in one 
place (the DRY principle).

Guideline: Design classes for easy change.
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struct Widget 
{ 
  Widget() 
    : Widget(42)  // Delegating constructor 
  {} 

  Widget( int j ) 
    : i {j}         // Initialization to j 
    , s {"CppCon"}  // Initialization to "CppCon" (duplication) 
    , pi{}          // Initialization to nullptr (duplication) 
  {} 

  int i; 
  std::string s; 
  int* pi; 
};

In order to reduce duplication, we could use delegating constructors …

// Note that the lifetime of the object 
// begins with the closing brace of the 
// delegated constructor!
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Core Guideline C.51: Use delegating constructors to represent common 
actions for all constructors of a class
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… or we could use in-class member initializers.

struct Widget 
{ 
  Widget() 
  {} 

  Widget( int j ) 
    : i {j} // Initializing to j 
  {} 

  // Data members with in-class initializers 
  int i{42};                // initializing to 42 
  std::string s{"CppCon"};  // initializing to "CppCon" 
  int* pi{};                // initialising to nullptr 
};

In-class member initializers are used if the data member is not explicitly 
listed in the member initializer list.
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struct Widget 
{ 
  Widget() = default; 

  Widget( int j ) 
    : i {j} // Initializing to j 
  {} 

  // Data members with in-class initializers 
  int i{42};                // initializing to 42 
  std::string s{"CppCon"};  // initializing to "CppCon" 
  int* pi{};                // initialising to nullptr 
};

In-class member initializers are used if the data member is not explicitly 
listed in the member initializer list.

… or we could use in-class member initializers.
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Core Guideline C.48: Prefer in-class initializers to member initializers in 
constructors for constant initializers

Core Guideline C.44: Prefer default constructors to be simple and non-
throwing

Guideline: Prefer to initialize pointer members to nullptr with in-class 
member initializers.
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class Widget 
{ 
 public: 
   Widget( int ) { std::puts( "Widget(int)" ); } 
   // ... 
};

void f( Widget );

int main() 
{ 
   f( 42 ); 

   return EXIT_SUCCESS; 
}

// Calls the Widget ctor, then f 
//   (probably unintentionally)
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class Widget 
{ 
 public: 
   explicit Widget( int ) { std::puts( "Widget(int)" ); } 
   // ... 
};

void f( Widget );

int main() 
{ 
   f( 42 ); 

   return EXIT_SUCCESS; 
}

// Compilation error! No matching 
// function for ‘f(int)’ (as it should be)
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Core Guideline C.46: By default, declare single-argument constructors 
explicit.
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Task, Step 1: Assuming the x64 architecture, what is the size of the 
given struct Widget?

struct Widget { 
   bool b1; 
   float f; 
   bool b2; 
}; 

std::cout << sizeof(Widget) << '\n'; // prints 12
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Task, Step 1: Assuming the x64 architecture, what is the size of the 
given struct Widget?

struct Widget { 
   bool b1; 
   float f; 
   bool b2; 
}; 

std::cout << sizeof(Widget) << '\n'; // prints 12

// Needs to be 4-byte aligned on x64
char padding1[3]; 

char padding2[3];
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Task, Step 2: Assuming the x64 architecture, what is the size of the 
given struct Widget?

struct Widget { 
   bool b1; 
   double d; 
   bool b2; 
}; 

std::cout << sizeof(Widget) << '\n'; // prints 24
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Task, Step 2: Assuming the x64 architecture, what is the size of the 
given struct Widget?

struct Widget { 
   bool b1; 
   double d; 
   bool b2; 
}; 

std::cout << sizeof(Widget) << '\n'; // prints 24

// Needs to be 8-byte aligned on x64
char padding1[7]; 

char padding2[7];
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Task, Step 3: Assuming the x64 architecture, what is the size of the 
given struct Widget?

struct Widget { 
   double d;   // Largest first 
   bool b1; 
   bool b2; 
}; 

std::cout << sizeof(Widget) << '\n'; // prints 16
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Task, Step 3: Assuming the x64 architecture, what is the size of the 
given struct Widget?

struct Widget { 
   double d;   // Largest first 
   bool b1; 
   bool b2; char padding[6]; 
}; 

std::cout << sizeof(Widget) << '\n'; // prints 16
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Task, Step 4: Assuming the x64 architecture, what is the size of the 
given struct Widget?

struct Widget { 
   std::string s;  // Assumption: consumes 24 bytes 
   bool b1; 
   bool b2; 
}; 

std::cout << sizeof(Widget) << '\n'; // prints 32
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Task, Step 4: Assuming the x64 architecture, what is the size of the 
given struct Widget?

struct Widget { 
   std::string s;  // Assumption: consumes 24 bytes 
   bool b1; 
   bool b2; char padding[6]; 
}; 

std::cout << sizeof(Widget) << '\n'; // prints 32



Guideline: Consider the alignment of data members when adding 
member data to a struct or class.

Order of Member Data
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Core Guideline C.47: Define and initialise member variables in the order 
of member declaration
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Task: What is wrong with the declaration of the begin() and end() 
functions?

std::ostream& operator<<( std::ostream& os 
                        , FixedVector<int,10> 
{ 
   for( int i : v ) { /*...*/ } 

   return EXIT_SUCCESS; 
}

v )

template< typename Type, size_t Capacity > 
class FixedVector final 
{ 
 public: 
   // ...

   // ... 
};

Type begin() noexcept;*
Type end() noexcept;*
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Task: What is wrong with the declaration of the begin() and end() 
functions?

std::ostream& operator<<( std::ostream& os 
                        , FixedVector<int,10> 
{ 
   for( int i : v ) { /*...*/ } 

   return EXIT_SUCCESS; 
}

v )

// Compilation error!

template< typename Type, size_t Capacity > 
class FixedVector final 
{ 
 public: 
   // ...

   // ... 
};

Type begin() noexcept;*
Type end() noexcept;*

const&
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Task: What is wrong with the declaration of the begin() and end() 
functions?

template< typename Type, size_t Capacity > 
class FixedVector final 
{ 
 public: 
   // ...

   // ... 
};

Type begin() noexcept;const*
Type end() noexcept;const*
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Task: What is wrong with the declaration of the begin() and end() 
functions?

template< typename Type, size_t Capacity > 
class FixedVector final 
{ 
 public: 
   // ...

   // ... 
};

Type begin() noexcept;constconst*
Type end() noexcept;constconst*

Huh? A const pointer?



const

Detour: West Coast vs. East Coast

48

Type*

Type const*

Commonly known as

Commonly known as East-Coast const

constWest-Coast

”const modifies what is on its left. Unless there is nothing on its left, in which 
case it modifies what’s on its right.” 

(Jon Kalb, A Foolish Consistency)
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Type*

Type const*

Commonly known as

Commonly known as East-Coast const

const West-Coast

”const modifies what is on its left. Unless there is nothing on its left, in which 
case it modifies what’s on its right.” 

(Jon Kalb, A Foolish Consistency)
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Task: What is wrong with the declaration of the begin() and end() 
functions?

template< typename Type, size_t Capacity > 
class FixedVector final 
{ 
 public: 
   // ...

   // ... 
};

int main() 
{ 
   FixedVector<int,10> v{ /*...*/ }; 

   std::fill( v.begin(), v.end(), 42 ); 

   return EXIT_SUCCESS; 
}

// Compilation error!

Type begin() noexcept;constconst*
Type end() noexcept;constconst*
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Task: What is wrong with the declaration of the begin() and end() 
functions?

template< typename Type, size_t Capacity > 
class FixedVector final 
{ 
 public: 
   // ...

   // ... 
};

Type begin() noexcept;constconst*
Type end() noexcept;constconst*
Type*       begin()        noexcept;
Type*       end()          noexcept;
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Task: What is wrong with the declaration of the begin() and end() 
functions?

template< typename Type, size_t Capacity > 
class FixedVector final 
{ 
 public: 
   // ...

   // ... 
};

Type begin() noexcept;constconst*
Type end() noexcept;constconst*

Type const* cbegin() const noexcept;
Type const* cend()   const noexcept;

Type*       begin()        noexcept;
Type*       end()          noexcept;



Const Correctness

53

namespace std { 

template< typename T 
        , typename Deleter = std::default_delete<T> > 
class unique_ptr 
{ 
 public: 
   using pointer = T*;  // Simplified! 

   pointer get() const noexcept; 
   // ... 
}; 

} // namespace std

// const member function returning 
// a pointer to non-const T!

int main() 
{ 
   std::unique_ptr<int 
   int 

   return EXIT_SUCCESS; 
}

// Semantically equivalent> const ptr1;
* const ptr2;
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namespace std { 

template< typename T 
        , typename Deleter = std::default_delete<T> > 
class unique_ptr 
{ 
 public: 
   using pointer = T*;  // Simplified! 

   pointer get() const noexcept; 
   // ... 
}; 

} // namespace std

int main() 
{ 
   std::unique_ptr<int 
   int 

   return EXIT_SUCCESS; 
}

// Semantically equivalent> const ptr1;
* const ptr2;

const
const

// const member function returning 
// a pointer to non-const T!
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Core Guideline Con.2: By default, make member functions const

Guideline: Const correctness is part of the semantics of your class.
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Task: You decide that you want to represent iterators by means of class 
types. Why is that a problem?

template< typename Type, size_t Capacity > 
class FixedVector final 
{ 
 public: 
   // ...

   // ... 
};

Type const* 
Type const* 
Type* 
Type* 
Type const* 
Type const*

begin()  const noexcept; 
end()    const noexcept; 
begin()        noexcept; 
end()          noexcept; 
cbegin() const noexcept; 
cend()   const noexcept;
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Task: You decide that you want to represent iterators by means of class 
types. Why is that a problem?

template< typename Type, size_t Capacity > 
class FixedVector final 
{ 
 public: 
   // ...

   // ... 
};

Type const* 
Type const* 
Type* 
Type* 
Type const* 
Type const*

begin()  const noexcept; 
end()    const noexcept; 
begin()        noexcept; 
end()          noexcept; 
cbegin() const noexcept; 
cend()   const noexcept;
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Task: You decide that you want to represent iterators by means of class 
types. Why is that a problem?

template< typename Type, size_t Capacity > 
class FixedVector final 
{ 
 public: 
   // ...

   // ... 
};

Type const* 
Type const* 
Type* 
Type* 
Type const* 
Type const*

begin()  const noexcept; 
end()    const noexcept; 
begin()        noexcept; 
end()          noexcept; 
cbegin() const noexcept; 
cend()   const noexcept;

using iterator = Type*; 
using const_iterator = const Type*;
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Task: You decide that you want to represent iterators by means of class 
types. Why is that a problem?

template< typename Type, size_t Capacity > 
class FixedVector final 
{ 
 public: 
   // ...

   // ... 
};

const_iterator 
const_iterator 
iterator 
iterator 
const_iterator 
const_iterator

begin()  const noexcept; 
end()    const noexcept; 
begin()        noexcept; 
end()          noexcept; 
cbegin() const noexcept; 
cend()   const noexcept;

using iterator = Type*; 
using const_iterator = const Type*;
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namespace std { 

template< typename T 
        , typename Allocator = std::allocator<T> > 
class vector 
{ 
 public: 
   constexpr T*       data()       noexcept; 
   constexpr T const* data() const noexcept; 
   // ... 
}; 

} // namespace std

// data() is expected to 
// return a pointer to the 
// first element
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Guideline: Encapsulate design decisions (i.e. variation points).

Guideline: Design classes for easy change.
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struct Widget 
{ 
   int const i; 
   double& d; 

};

Task: What is the problem of the given struct Widget?

Assignment to const data members or references doesn’t work, so the 
compiler cannot generate the two assignment operators!

   // Widget& operator=( Widget const& ); 
   // Widget& operator=( Widget&& );

// implicitly deleted 
// not declared 
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struct Widget 
{ 
 public: 
   Widget( double& d ) : pd_( &d ) {} 

   double&       get()       noexcept { return *pd_; } 
   double const& get() const noexcept { return *pd_; } 

 private: 
   double* pd_; 
};

Reference members can be stored as pointers …
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… or as std::reference_wrapper.

#include <functional> 

struct Widget 
{ 
 public: 
   Widget( double& d ) : d_( d ) {} 

   double&       get()       noexcept { return d_; } 
   double const& get() const noexcept { return d_; } 

 private: 
   std::reference_wrapper<double> d_; 
};
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Guideline: Remember that a class with const or reference data member 
cannot be copy/move assigned by default.

Guideline: Strive for symmetry between the two copy operations.

Guideline: Strive for symmetry between the two move operations.

Core Guideline C.12: Don’t make data members const or references
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Task: Which of the following two functions is called in the subsequent 
function call?

class Widget 
{ 
 public: 
   void doSomething( int );     // (1) 
 private: 
   void doSomething( double );  // (2) 
}; 

Widget w{}; 
w.doSomething( 1.0 );

The compiler tries to call function (2), but quits the compilation process 
with an error about an access violation: function (2) is declared private!
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Task: Which of the following two functions is called in the subsequent 
function call?

glass Widget 
{ 
 public: 
   void doSomething( int );     // (1) 
 private: 
   void doSomething( double );  // (2) 
}; 

Widget w{}; 
w.doSomething( 1.0 );
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Task: Which of the following two functions is called in the subsequent 
function call?

class Widget 
{ 
 public: 
   void doSomething( int );     // (1) 
 private: 
   void doSomething( double );  // (2) 
}; 

Widget w{}; 
w.doSomething( 1U );

This results in an ambiguous function call. The compiler still sees both 
functions and cannot decide which conversion to perform!
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Remember the four steps of the compiler to resolve a function call: 

1. Name lookup: Select all (visible) candidate functions with a certain 
name within the current scope. If none is found, proceed into the next 
surrounding scope. 

2. Overload resolution: Find the best match among the selected candidate 
functions. If necessary, apply the necessary argument conversions. 

3. Access labels: Check if the best match is accessible from the given call 
site. 

4. =delete: Check if the best match has been explicitly deleted.
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Guideline: Design classes for easy change.

Guideline: Design classes for easy extensions.

Guideline: Separate concerns!

Guideline: Design classes to be testable.
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