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About Us

Ben, PhD Candidate at UC Berkeley Scott, Principal Engineer at CMU SEI

Data structures and algorithms for parallel Graph/ML/AI algorithms for large- and small-

programs. Working on C++ library of distributed scale parallel systems. Working on GBTL, a linear

data structures. Please hire me! algebra-based C++ library for graph analytics.
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This Talk

Background: How and why to use matrix algebra for graphs?
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This Talk

Background: How and why to use matrix algebra for graphs?

What are the important data structures and concepts?
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This Talk

Background: How and why to use matrix algebra for graphs?

What are the important data structures and concepts?

Prior work in the GraphBLAS community, C AP|
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This Talk

Background: How and why to use matrix algebra for graphs?

What are the important data structures and concepts?
Prior work in the GraphBLAS community, C AP|

Overview of our draft C++ API
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This Talk

Background: How and why to use matrix algebra for graphs?

What are the important data structures and concepts?
Prior work in the GraphBLAS community, C AP|

Overview of our draft C++ API

How might this interoperate with standard C++, graph library proposal?
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What This Talk Is Not

- A C++ standards proposal

- A complete evaluation of graph programming models
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- A C++ standards proposal
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Background: How and why to use
matrix algebra for graphs
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Graphs: Understanding relationships between items
Graph: A visual representation of a set of vertices and the connections between them (edges).
Graph is a pair (V, E):

-V is a set of vertices
— E is a set of paired vertices (edges)

V=1{0,1,23,4,5,6}

E ={(0,1),(0,3),(1,4),(1,6),(2,5),(3,0),
(3)2)1 (4,5), (512): (6:2)1 (61 3)1 (6'4)}

Ordered pairs results in directed graphs (shown)
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Graph Analysis is Important and Pervasive

Social
O......a:. ......
4 ﬂ- """"""""""
\ N : i3 ‘
Rk | ) FEL=
T - -
@ - \\\ E : : a y
. A LT =
;r‘.' w"‘-
ol o

* Graphs represent
relationships between
individuals or documents

* 100,000s — 100,000,000s
individuals and interactions
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* Graphs represent
communication patterns of
computers on a network

* 1,000,000s — 1,000,000,000s
network events
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« Graphs represent organization
of neural interactions within
the brain

« 10" - 10" neurons and
connections
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Graphs as Adjacency Matrices -
<

Graphs are represented as adjacency =
matrices that usually have sparse and AOODO@6Oe ® 06 ®
irregular structure. ©
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GraphBLAS Timeline

Book — Papers — — SuiteSparse:GraphBLAS releases

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

40 51

1.0 2.2

3 [ ] ‘
dited by T — Design of the APIfor C LAGraph: A Community Effort to Collect Graph A + APL
Jeremy Kepner and John Gilbert BLAS

Graph Algorithms Standards for Seven good Mathematical C API, LAGraph, C++ API
in the Language  graph algorithm reasons, foundations, @ GABB@ GrAPL@ Roadmap,
of Linear Algebra primitives, ICCS HPEC IPDPS IPDPS GrAPL@

HPEC IPDPS


https://dspace.mit.edu/handle/1721.1/115964
https://dspace.mit.edu/handle/1721.1/115964
https://arxiv.org/ftp/arxiv/papers/1504/1504.01039.pdf
https://arxiv.org/ftp/arxiv/papers/1504/1504.01039.pdf
https://arxiv.org/pdf/1606.05790.pdf
https://arxiv.org/pdf/1606.05790.pdf
https://people.eecs.berkeley.edu/~aydin/LAGraph19.pdf
https://people.eecs.berkeley.edu/~aydin/LAGraph19.pdf
https://arxiv.org/ftp/arxiv/papers/1408/1408.0393.pdf
https://arxiv.org/ftp/arxiv/papers/1408/1408.0393.pdf

The GraphBLAS “standard”

Goal: separate the concerns of the hardware/library/application designers.

1979: BLAS Basic Linear Algebra Subprograms (BLAS 2 '88, BLAS 3 '90)

Numerical applications
LINPACK/LAPACK
API: Separation of concerns

BLAS

Hardware architecture
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The GraphBLAS “standard”

Goal: separate the concerns of the hardware/library/application designers.

1979: BLAS Basic Linear Algebra Subprograms (BLAS 2 '88, BLAS 3 '90)

2001: Sparse BLAS  an extension to BLAS (little uptake)

Numerical applications
LINPACK/LAPACK
API: Separation of concerns

BLAS

Hardware architecture
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The GraphBLAS “standard”

Goal: separate the concerns of the hardware/library/application designers.

1979: BLAS Basic Linear Algebra Subprograms (BLAS 2 '88, BLAS 3 '90)
2001: Sparse BLAS  an extension to BLAS (little uptake)

2013: GraphBLAS an effort to define standard building blocks
for graph algorithms in the language of linear algebra
Graph analytical apps

Numerical applications
LINPACK/LAPACK LAGraph
API: Separation of concerns

BLAS GraphBLAS

Hardware architecture Hardware architecture
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Graphs as Adjacency Matrices

dest.
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Graphs as Adjacency Matrices

dest.
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Graphs as Adjacency Matrices

® dest.
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Graph Operations as Matrix Operations

ATODQO ® 06 ® ATO.Qf
dest. (D T
Ol
dest. @ @ . BN )
L @ =

CECECKS,

» Matrix-vector multiply - find neighbors
- In-neighbors: use A
- Out-neighbors: use AT
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Graph Operations as Matrix Operations

Finding out-neighborsisused  1t10 v o 0 @ © ® ATH.Q f
many graph algorithms. dest. O o |

Ole
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» Matrix-vector multiply - find neighbors
- In-neighbors: use A
- Out-neighbors: use AT
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Graph Operations as Matrix Operations g f
Another way to look at matrix-vector multiply... 2
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Whatis 6.&Q 7?7
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Matrix multiplication

Conventional matrix multiplication uses arithmetic plus (+) and times (x):

y =AX
vy = ) AGK) - x(0)
k
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Matrix multiplication on semirings

Conventional matrix multiplication uses arithmetic plus (+) and times (x):

y=AX
vy = ) AGK) - x(0)
k

The generalized form uses “arbitrary” operators “plus” () and “times” (®)):

y=AD.Qx
y(@) =D AG D@x(k)
k
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Matrix multiplication on semirings

Conventional matrix multiplication uses arithmetic plus (+) and times (x):

y=AX
vy = ) AGK) - x(0)
k

The generalized form uses “arbitrary” operators “plus” () and “times” (®)):

y=AD.Qx
y(@) =D AG D@x(k)
k

A cornerstone of GraphBLAS: Supports arbitrary semirings
that override the addition and multiplication operators (6.®).
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GraphBLAS semirings ©.Q

* @ is commutative binary operator with an identity, 0  (called a monoid)
* @ Is a binary operator.
 The identity of @, is the annihilator of ®*

ca=a®P0=0P a

*0=a®@0=0Ra

Semiring Valid values P Graph semantics

integer arithmetic a €N ot 0  number of paths

real arithmetic a €R + 0  strength of all paths

boolean a € {false, true} Vv A  false connectivity

min-plus (tropical) a € RU {4} min 4+ 4o shortest path

max-plus a € RU {—oo} max + —oo |ongest path
o In GraphBLAS this is not enforced nor required
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GraphBLAS Primitives

 Basic objects (opaque types)
— Matrices (sparse or dense), vectors (sparse or dense), algebraic operators (semirings)
* Fundamental operations over these objects

Sparse matrix times Sparse matrix times
sparse matrix ®@ sparse vector ®@

Element-wise Sparse matrix
multiplication X extraction EEE «>
(and addition) (and assignment)

...plus reduction, transpose, Kronecker product, filtering, transform, etc.
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One more thing... write masks: (m) g f
Often not interested in some nodes... 2 =
@
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. . © f
One more thing... write masks: (m) D
Often not interested in some nodes... 2 =
ANOTHER feature of GraphBLAS: @
All operations support a write mask. ®
@_
(m) f’
o
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Example: Breadth-First Search (levels)
f(src) = ®

©@O0®00O e
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Example: Breadth-First Search (levels) g | f Ol v
level =0 @ level =0
v += level * { 5 —

@
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Example: Breadth-First Search (levels) g of f Ol v
level = () ®
v+=Jlevel x f //Usevasamask,(V). 5
@
®
@ P
ATOD Q0 ®06 ® =
o o | (V)
Dle
@ & C K )
©IK &
@ & ®
® & ®
® ®
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Example: Breadth-First Search (levels)

level = 0

v += level x {
f(v) = AT®.®f // Boolean semiring

©0®0 000
[TT T LTI T Jef
| [ [of o] ]| ]
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Example: Breadth-First Search (levels)  ©| |f Of v
level = 0 g °
v += Jevel x { ole
f'(v) = ATP. f @
f=f ©
®

ATO O

©

ofe

@

Gle

@

®

®
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Example: Breadth-First Search (levels)

level =1

v += level x {
f'(V) = ATO. Qf
f =1

CNONCNEON-—NC)
[T T IXEIXD] L] o] [of |
o —
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|
_ — _sol
<
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Example: Breadth-First Search (levels) g f ‘13 v
[e_II/_d:] . Jx f O|®| /evel=2 |2
V = /evel * © 1
f'(V) = AT®. Qf " = -
f=f ©

Ole

2]
EF
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Example: Breadth-First Search (levels)

level = 3

v += level * {

f' (V) = ATP. Qf

f =1

if f.empty() returnv

level =3

©@O®O®O0O06
ﬂ =

3

ATO D@0 ®0 ®

©@O0®WwE e
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Example: Breadth-First Search (levels)

* Input: adjacency matrix A (Boolean), source vertex src (integer)
« Output: visited vertices vector, v (integer)

« Workspace: frontier vector f (Boolean)

1. f(src) = true

2. level= 0

3. while !f.empty()
4 v += level x {
5

f(\_/> — AT@ ®f // using the Boolean semiring (OR.AND)
0 ++ Jevel
Carnegie Mellon University a1
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Prior work: GraphBLAS C APl and Onwards
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GraphBLAS C API

in-vertex

A1 2 34567
1 o o
- Provides uniform API for graph algorithms i 2 °.°
in the language of linear algebra 2 o
3 )
° 6 ®
7 o 00

Carnegie Mellon University 43
Software Engineering Institute Bﬁﬂ(ﬁlﬁy

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



GraphBLAS C API

in-vertex
A1 2 34567
1 o ®
- Provides uniform API for graph algorithms 3 2 ° o
-: .
in the language of linear algebra $ oo
> °®
° 6 ®
7 o o e

- Revolve around sparse matrix and vector
operations which can use arbitrary semirings instead of classical (+, )
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GraphBLAS C API

in-vertex
A1 2 34567
1 o )
- Provides uniform API for graph algorithms i 2 ° o
2 3 °
in the language of linear algebra 2 oo
> °
° 6 ®
. 7 ® 00
- Revolve around sparse matrix and vector
operations which can use arbitrary semirings instead of classical (+, *)

- Current version of C API spec. is 1.3 (2.0 arriving imminently!)
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GraphBLAS C API

in-vertex
A1 2 34567
1 o ®
- Provides uniform API for graph algorithms 3 2 ° o
-: .
in the language of linear algebra $ e e
> °®
° 6 °
7 o o e

- Revolve around sparse matrix and vector
operations which can use arbitrary semirings instead of classical (+, *)

- Current version of C API spec. is 1.3 (2.0 arriving imminently!)

- C offers great portability (Python, bindings, etc.), but has some disadvantages...

Carnegie Mellon University 46
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.




The Problem with Types...

- If you’re familiar with the
. . float* a_ptr = get matrix(...);
(C)BLAS, there IS a funCthn fOr cblas sgemm(..., m, n, k, 1.0f, a ptr, ...);
each scalar type
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The Problem with Types...

- If you’re familiar with the

. . float* a_ptr = get matrix(...);
(C)BLAS, there IS a funCthn fOr cblas sgemm(..., m, n, k, 1.0f, a ptr, ...);
each scalar type

double* a_ptr = get_matrix(...);
cblas dgemm(..., m, n, k, 1.9, a _ptr, ...);

Carnegie Mellon University 48
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.




The Problem with Types...

- If you’re familiar with the
. . float* a_ptr = get matrix(...);
(C)BLAS, there IS a funCUOn fOI' cblas sgemm(..., m, n, k, 1.0f, a ptr, ...);
each scalar type

. double* a_ptr = get matrix(...);
- Gl’aphBLAS supports a wide cblas _dgemm(..., m, n, k, 1.0, a_ptr, ...);

variety of scalar types and
binary operators

- Combinatorial explosion
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C API: Quality of Life Issues

- For each predefined GraphBLAS operator, the C APl requires a
separate C function for each of 11 predefined types:

GrB_PLUS_BOOL, GrB_PLUS_INT8, GrB_PLUS UINT8, GrB_PLUS_INT16, GrB_PLUS UINT16, GrB_PLUS_INT32,
GrB_PLUS_UINT32, GrB_PLUS_INT64, GrB_PLUS UINT64, GrB_PLUS FP32, GrB_PLUS_FP64.
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C API: Quality of Life Issues

- For each predefined GraphBLAS operator, the C API requires a
separate C function for each of 11 predefined types:

GrB_PLUS_BOOL, GrB_PLUS_INT8, GrB_PLUS UINT8, GrB_PLUS_INT16, GrB_PLUS UINT16, GrB_PLUS_INT32,
GrB_PLUS_UINT32, GrB_PLUS_INT64, GrB_PLUS UINT64, GrB_PLUS FP32, GrB_PLUS_FP64.

- There are over 1000 combinations of predefined operators and types.
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C API: Quality of Life Issues

- For each predefined GraphBLAS operator, the C API requires a
separate C function for each of 11 predefined types:

GrB_PLUS_BOOL, GrB_PLUS_INT8, GrB_PLUS UINT8, GrB_PLUS_INT16, GrB_PLUS UINT16, GrB_PLUS_INT32,
GrB_PLUS_UINT32, GrB_PLUS_INT64, GrB_PLUS UINT64, GrB_PLUS FP32, GrB_PLUS_FP64.

- There are over 1000 combinations of predefined operators and types.

- Creates a large burden on implementers, who mostly resort to
automatic code generation
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C API: Quality of Life Issues

- For each predefined GraphBLAS operator, the C API requires a
separate C function for each of 11 predefined types:

GrB_PLUS_BOOL, . 5, GrB_PLUS_UINT16, GrB_PLUS_INT32,
GrB_PLUS_UINT eSCﬂptOrS HONS 32, GrB_PLUS_FP64.
n
for transformatio
- There are | 71395 structure-only, ef¢. ned operators and types.

Transpose, complement,

- Creates a large burden on implementers, who mostly resort to
automatic code generation
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C API: Quality of Life Issues

e User-defined types must be trivially copyable types (i.e. memcpy-able).

struct MyComplex {
int ireal; int iimag;

}s
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C API: Quality of Life Issues

e User-defined types must be trivially copyable types (i.e. memcpy-able).

struct MyComplex {
int ireal; int iimag;

}s
e This simplifies APl and improves performance, but limits expressiveness.

GrB_Type complex type;
GrB_Type_new(&complex_type,
sizeof (MyComplex));
GrB_Matrix A;
GrB_Matrix_new(&A, complex type, 100, 100);
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C API: Quality of Life Issues

e User-defined types must be trivially copyable types (i.e. memcpy-able).

struct MyComplex {
int ireal; int iimag;

}s
e This simplifies APl and improves performance, but limits expressiveness.

GrB_Type complex type;
GrB_Type_new(&complex_type,
sizeof (MyComplex));
GrB_Matrix A;
GrB_Matrix_new(&A, complex type, 100, 100);

e Users have already run into cases where they wish to use more complex
types.
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C API: Issues with Types

C APl users pass function pointers to custom operators

void scale 2(void *out, const void *in) {
*(int*)out = 2 * (*(int*)in);
}

GrB_UnaryOp my scale 2;
GrB_UnaryOp_new(&my_scale_2, scale 2,
GrB_INT32, GrB_INT32);
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C API: Issues with Types

C APl users pass function pointers to custom operators

void scale 2(void *out, const void *in) {
*(int*)out = 2 * (*(int*)in);
}

GrB_UnaryOp my scale 2;
GrB_UnaryOp_new(&my_scale_2, scale 2,
GrB_INT32, GrB_INT32);

Required for any operator on user-defined types, but also allows for operators on
built-in types left out of the spec
Function pointers (e.g. scale_2) then used in performance-critical inner loops:

GrB_apply(C, ..., my scale 2, A, desc);
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Drafting a GraphBLAS C++ API

Carnegie Mellon University 59
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

() Berkeley

UNIVERSITY OF CALIFORNIA




C++ Has a Rich Type System

- User-defined types are first-class types
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C++ Has a Rich Type System

- User-defined types are first-class types

- They simply need be copy constructible, etc.
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C++ Has a Rich Type System

- User-defined types are first-class types
- They simply need be copy constructible, etc.

- Things like views can simplify APIs
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Disclaimer: APl in Progress

- The GraphBLAS C++ APl is still in draft process

- Specific names and APIs may change

- There are currently two draft implementations, GBTL and RGRI

- Some slide contents may be in RGRI, but not necessarily in C++
spec (yet)
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GraphBLAS Matrix

- A matrix is a collection of stored values Matrix
- It has a shape (humber of rows, cols)

- It has a size (hnumber of stored values)

- Can access individual locations

Can iterate over values
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GraphBLAS Matrix

- A matrix is a collection of stored values

- It has a shape (humber of rows, cols)

- Can iterate over values
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Sparse Matrix - Similarities to std: :unordered_map

- Distinct set of keys

[((X))] . E 12@

[€€77] — 122
- Individual lookup/insertion by key [€y?] mm—> 121
[“b”] ”98

- Each key associated with a value

- Iteration over unordered range of
values
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Sparse Matrix - *Differences™ from std: :unordered _map

- key_ type is pair-like type filled with
integral values [{6, 1}] =~ 179

- Matrix shape restricts valid key values [{2, 3}] =——— 122

- Implementation will use highly [{4, 3}] =————>>121
specialized sparse matrix formats {7, 0} 3 98

- Indices and value may not be
materialized in memory
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Sparse Matrix - *Differences* from std: :unordered_map

- key type is pair-like type filled with
integral values [{6, 1}] = 170

- Matrix shape restricts valid key values [{2, 3} =——122

- Implementation will use highly [{4, 3}] =————>>121
specialized sparse matrix formats {7, 0}] 3 98

- Indices and value may not be
materialized in memory
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Sparse Matrix - *Differences* from std: :unordered_map

using key type

std: :pair<int, int>; 0
using map_type [{ ?

int;

1] =——=»120
[{2, 3} =122
[{4, 3}]=——>121
[{7, 0}] =228

unordered map<key type, map_type> x = ...;

auto iter = x.begin();

[blank] value = *iter;
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Sparse Matrix - *Differences* from std: :unordered_map

std::pair<int, int>;
int;

using key type
using map_type

unordered map<key type, m

auto iter = x.begin();

[blank] value = *iter;

[{7, ©}] == 98
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Sparse Matrix - *Differences* from std: :unordered_map

using key type

std: :pair<int, int>; 0
using map_type [{ ?

int;

unordered map<key type, map_type> x = ...;

[{2, 3} ] =—————122

[{4, 3}] —>121
using value _type = std::pair<const key type,
map_type>; [{7, @}] ”98

auto iter = x.begin();

value_type& value = *iter;
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Sparse Matrix - *Differences* from std: :unordered_map

: 0, 1

h element exists 10, 1 === 120
using key_ type = s 1. Bac ialized SOmeWhere
using map_type = ir materia [{2, 3}] q 122

. ence

unordered map<key t in int& refer

n obtal :

2 fava\ue const pa|r<,,.>& [{4, 3}] ”121
O
auto iter = x.begin( refefence to key. (7. o} . o8
using value type = sle—pair<const key type,
map_type>;
value type& value = *iter; (Possible) Physical Memory Layout
{{0, 1}, 120} | {{4, 3}, 121} | {{7, O}, 98} |{{2, 3}, 122}
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Sparse Matrix - *Differences* from std: :unordered_map

: [{0, 1}] = —
Each element exists 120
using key type = s 1. ea Alized somewhefe
using map_type = ir mate“a“z [{2, 3}] % 122
. ence
unordered map<key_ t in int& refer
n obtal :
O ’
auto iter = x.begin( refereﬂce to key. 7, o} . 08
using value type = sle—pair<const key type,
map_type>;
value type& value = *iter; (Possible) Physical Memory Layout
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Sparse Matrix - *Differences™ from std: :unordered _map
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Sparse Matrix - *Differences™ from std: :unordered _map
ment exists ({6, 1}] > 196

&refefe“‘;e [{2, 3} —— 122

[{4, 3}] == 121
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const pair<int, int>&

(Possible) Physical Memory Layout
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Spa rse Matrix Formats Compressed Sparse Row (CSR)

Storage Format

- Need to enable a variety of different Row Pointers
sparse matrix formats 0|2(3]3]3[6]6|7
Column Indices Values

9012|12(2|3]|4(3 812|5|7|1|2|9

8 2
7 1 2
Sparse Matrix
Representation 1
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Matrix Data Structure

grb::matrix<float>

/

Type of stored values
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Matrix Data Structure

grb::matrix<float, int>

/ b\

Type of stored values (Integer) type
used to store
indices

Carnegie Mellon University 100
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.




Matrix Data Structure: Attributes

Attributes
Shape
Dimensions of matrix

grb: :matrix<float> x({1024, 1024});

(Graph: number of vertices) size_t m = x.shape()[0];

. size t n = x.shape()[1];
Size

Number of stored values size_t nnz = x.size();

(Graph: number of edges)
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Matrix Data Structure: Element Access

Element Access grb: :matrix<float, int> m({1024, 1024});
Direct access to stored values m[{0, 0}] = 12;

m:{lJ 1}: = 12;

m:{zJ 2}: = 12;
operator/] ({3, 3}] = 12;

Find or insert value by index
if (m.find({3, 3}) != m.end()) {

// Should run, just set elem 3, 3 to 12.

find }
Find value by index if (m.find({4, 4}) != m.end()) {
// Will not run, have not yet set elem 4, 4
}
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Matrix Data Structure: Iteration

Iteration grb::matrix<float, int> m = ...;
lteration over stored values for (auto iter = m.begin(); iter != m.end();
++iter) {

Can read: row, column, value float x = *iter;

}
Can write: value only for (autosd [i, 4, v] : m) {

v = 12;

lteration allows support for printf(“Elem. %d, %d set to %f\n”, i, j, Vv);
standard C++ algorithms. )

std: :reduce(m.begin(), m.end(), float(9));
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- Many potential sparse

matrix formats
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Matrix Data Structure

grb::matrix<float, int, grb::column>

/ N X

Type of stored values (Integer) type Compile-time
used to store hint about
indices storage format
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Matrix Data Structure: Iteration

- Unordered iteration over stored | 8P :matrix<float, int> m = ..

values for (auto iter = m.begin(); iter != m.end();
++iter) {
float x = *iter;

¥

for (auto&& [i, j, v] : m) {
v = 12;
printf(“Elem. %d, %d set to %f\n”,

i, J, V);

std: :reduce(m.begin(), m.end(), float(9));
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Matrix Data Structure: Iteration

- Unordered iteration over stored | 80 :matrix<float, int> m = ...;

values for (auto iter = m.begin(); iter != m.end();
++iter) {
float x = *iter;

- Range of size() \
matrix_entry<T, I> elements
for (auto&& [i, j, v] : m) {

v = 12;

printf(“Elem. %d, 7%d set to %f\n”,

i, J, V);

std: :reduce(m.begin(), m.end(), float(9));
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Matrix Data Structure: Iteration

- Unordered iteration over stored | 8rb::matrix<float, int> m = ...;
values for (auto iter = m.begin(); iter != m.end();
++iter)

. float x = *iter;
- Range of size() \

matrix_entry<T, I> elements
for (auto&& [i, j, v] : m) {

v = 12;
- Tuple-like type with access to printf(“Elem. %d, %d set to %f\n”,
indices and T& reference to L3, V)
value }
std: :reduce(m.begin(), m.end(), float(9));
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GraphBLAS Concepts

Algorithms Matrix
Generalized Matrix Multiply  Elementwise Ops Tra nspose View MaSk

Monoid Binary Op

Semiring
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Binary Operators

grb::ewise add(c, ..., a, b,

Functors that operate on two
std: :plus<int>());

inputs, producing a single output

auto my op = [|(auto a, auto b) {

T x U ->V return a*b + 2;
¥

Rule: types T, U, and V are grb::ewise mult(c, ..., a, b, my op);
determined by matrices. Op. must
acceptT, U, V.
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Monoids: Binary Operators with an ldentity

- Monoids are mathematical objects, consisting of:
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Monoids: Binary Operators with an ldentity

- Monoids are mathematical objects, consisting of:

- A commutative binary operator
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Monoids: Binary Operators with an ldentity

- Monoids are mathematical objects, consisting of:

- A commutative binary operator

- Atype T
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Monoids: Binary Operators with an ldentity

- Monoids are mathematical objects, consisting of:

- A commutative binary operator
- Atype T

- A mathematical identity
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Monoids

using grb;

- Given a binary operator fn and
a type T, we Can ask: bool test = is monoid v<std::plus<>, int>;
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Monoids

using grb;

- Given a binary operator fn and
a type T, we Can aSk: bool test = is monoid v<std::plus<>, int>;

Does binary op. fn form a // Prints “1” for true

std::cout << test << std::endl;
monoid on type T?
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Monoids

using grb;

- Given a binary operator fn and
a type T, we Can aSk: bool test = is monoid v<std::plus<>, int>;

Does binary op. fn form a // Prints “1” for true

std::cout << test << std::endl;
monoid on type T?

int identity = monoid traits<std::plus<>,
int>::identity();
- Depends on whether

monoid_traits specialization

exists
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Monoids

using grb;

- Given a binary operator fn and
a type T, we Can ask: bool test = is monoid v<std::plus<>, int>;

Does binary op. fn form a // Prints “1” for true
std::cout << test << std::endl;

monoid on type T?

int identity = monoid traits<std::plus<>,
int>::identity();

- Depends on whether

' ' Alig At Prints “@”, since identity for std::pl
monoid_traits SpeCIallzatlon // Prints since identity for s plus<>

// on type int 1is ©°

exists std::cout << identity << std::endl;
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Obtaining a Monoid

- Use pre-defined binary ops such
as grb::plus, grb::multiplies

using grb;

// Using a pre-defined binary op
grb: :plus<> fn;
std::plus<> fn_stl;

bool g
bool s

is _monoid<grb::plus<>, int>::value;
is _monoid<std: :plus<>, int>::value;

std::cout << g << “ »” << s << std::endl;

Carnegie Mellon University 121
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.




Obtaining a Monoid

- Use pre-defined binary ops such
as grb::plus, grb::multiplies

Define a specialization of
grb::monoid traits

using grb;

// Using a pre-defined binary op
grb: :plus<> fn;
std::plus<> fn_stl;

bool g
bool s

is _monoid<grb::plus<>, int>::value;
is _monoid<std::plus<>, int>::value;

std::cout << g << “ »” << s << std::endl;
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Obtaining a Monoid

. . struct my plus {
- Use pre'deflned blnary Oops such float operator()(float a, float b) {

as grb::plus, grb::multiplies return a + b;
}

Define a specialization of float identity() {

' ] turn 0.0f;
grb: :monoid_traits }Peum

}s5
Add identity() method to op

int i =
grb::monoid traits<my plus, int>::identity();
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Obtaining a Monoid

. . struct my plus {
- Use pre'deflned blnary Oops such float operator()(float a, float b) {

as grb::plus, grb::multiplies return a + b;
}

Define a specialization of float identity() {

. . t 0.0f;
grb: :monoid_traits L

}s5
Add identity() method to op

int i =
grb::monoid traits<my plus, int>::identity();
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Obtaining a Monoid

- Use pre-defined binary ops such
as grb::plus, grb::multiplies
auto my op = [](auto a, auto b) {
return a * b;

- Define a specialization of };
grb::monoid traits

auto my monoid = make_monoid(my op, 1);

Add identity() method to op

- Use make_monoid helper function
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Semirings

auto semiring =

Semlrlngs combine a blnary op b grb::plus multiplies semiring();

and a monoid m, where b
distributes over m

Carnegie Mellon University 126
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.




Semirings

o o . o auto semiring =
Se;nrlngs C.Odmbmeha blnbary °P o grb::plus_multiplies_semiring();
dnd a monoia m, wnere

distributes over m

1) Pre-define a number of semirings
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Semirings

Semirings combine a binary op b auto semiring - L .
grb::plus multiplies semiring();

and a monoid m, where b

auto my times = [](auto a, auto b) {

distributes over m
return a*b;

}s
1) Pre-define a number of semirings | auto my plus - [](auto a, auto b) {

return a+b;

2) Users can build semirings with }s
.. auto m_plus = grb::make_monoid(my_plus, 0);
make semiring
auto my_semiring =
grb: :make_semiring(m_plus, my_times);
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Semirings

o o . o auto semiring =
Se;nrlngs C.Odmbmeha blnbary °P o grb::plus_multiplies_semiring();
dnd a monoia m, wnere

auto my_times auto a, auto b) {
return a*b;

¥
1) Pre-define a number of semirings | auto my plus = [](auto a, auto b) {

return a+b;

distributes over m

2) Users can build semirings with }s
.. auto m_plus = grb::make_monoid(my_plus, 0);
make semiring
auto my_semiring =
grb: :make_semiring(m_plus, my_times);
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Semirings

Semirings combine a binary op b auto semiring - L .
grb::plus multiplies semiring();

and a monoid m, where b

auto my times = [](auto a, auto b) {

distributes over m
return a*b;

. }s
1) Pre-define a number of semirings | auto my plus auto a, auto b) {
return a+b;
2) Users can build semirings with s
.. auto m_plus = grb::make_monoid(my_plus, 0);
make semiring
auto my_semiring =
grb: :make_semiring(m_plus, my_times);
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Semirings

Semirings combine a binary op b auto semiring - L .
grb::plus multiplies semiring();
and a monoid m, where b
auto my times = [](auto a, auto b) {
return a*b;
}s
1) Pre-define a number of semirings | auto my plus - [](auto a, auto b) {

return a+b;

distributes over m

2) Users can build semirings with s
L. auto m plus = grb::make monoid(my plus, ©0);
make semiring
auto my semiring =
grb: :make_semiring(m_plus, my_ times);
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Semirings

Semirings combine a binary op b auto semiring - L .
grb::plus multiplies semiring();
and a monoid m, where b
auto my times = [](auto a, auto b) {
return a*b;
}s
1) Pre-define a number of semirings | auto my plus - [](auto a, auto b) {

return a+b;

distributes over m

2) Users can build semirings with }s
.. auto m_plus = grb::make_monoid(my plus, ©0);
make semiring
auto my semiring
grb::make semiring(m plus, my times);
Carnegie Mellon University 132

Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.




GraphBLAS Concepts

Algorithms Matrix
Generalized Matrix Multiply  Elementwise Ops Tra nspose View MaSk

=H EH@kEH
Monoid Binary Op

Semiring Vector
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Views

Views provide a (typically transformed)
view of a matrix grb::matrix<float> a = ...;

, , auto a_t = grb::transpose(a);
We can create views representing
transpose, structure, complement, etC. | jyto0 b = grb::multiply(a, a t);
This simplifies API, removes some of
need for descriptors.
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Views

Views provide a (typically transformed)
view of a matrix grb::matrix<float> a = ...;

, , auto a_t = grb::transpose(a);
We can create views representing
transpose, structure, complement, etC. | jyto0 b = grb::multiply(a, a t);
This simplifies API, removes some of
need for descriptors.
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Matrix Transform Views

Provide a const view of a matrix
with each stored value
transformed
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grb::matrix<float> a = ...;

auto t =
[ 1(grb::matrix_entry<float> e) {
return true;

}s
auto a_t = grb::transform view(a, t);

for (auto&& [i, j, v] : a_ t) {
printf(“Elem (%d, %d): %f\n”,

i, j, v);




Matrix Transform Views

Provide a const view of a matrix grb::matrix<tloat> a = ...;

with each stored value auto t -
[ 1(grb::matrix_entry<float> e) {

return true;

s

transformed

- Can be used to create
structure-only view

auto a_t = grb::transform view(a, t);

for (auto&& [i, j, v] : a_ t) {
printf(“Elem (%d, %d): %f\n”,

i, j, v);
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Matrix Transform Views

Matrix A

Provide a const view of a matrix
with each stored value
transformed

- Can be used to create
structure-only view
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Matrix Transform Views

Matrix A

Provide a const view of a matrix
with each stored value
transformed

- Can be used to create
structure-only view
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GraphBLAS Masks
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GraphBLAS Masks
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GraphBLAS Masks

X
Il

Carnegie Mellon University 142
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

AL
0% O,
& A 'P'L,
£ 7.
H i
| 2
2 7 Rk .

UNIVERSITY OF CALIFORNIA




GraphBLAS Masks

Apply output maskK
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GraphBLAS Masks

Apply output maskK

10
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GraphBLAS Masks

Apply output maskK

10
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GraphBLAS Masks

Apply output maskK

- Range of matrix elements -
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GraphBLAS Masks

Apply output maskK

- Range of matrix elements

10

- Element-wise access methods X1 @

Ol=a|la|l
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GraphBLAS Masks

Apply output maskK

- Range of matrix elements

10

- Element-wise access methods X1 @

Ol=a|la|l

- Shape
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GraphBLAS Masks -
Apply output mas
- Range of matrix elements
8 1 1 10
1| |5
- Element-wise access methods X1 @ 11
7 1 2 1 0

- Shape

- Stored values convertible to bool
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GraphBLAS Concepts

Algorithms Matrix
Generalized Matrix Multiply  Elementwise Ops Tra nspose View MaSk

=H EH@kEH
Monoid Binary Op

Semiring Vector
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Algorithms

he primary algorithms of interest are:

1) Generalized matrix multiplication -- using mask and arbitrary
semiring

2) Elementwise operations
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Matrix Multiply

using grb;

Accepts matrices, mask, semiring, , ,
matrix<float> a = get matrix(...);

accumulator, and flag to control matrix<float> b = get matrix(...);

merge behavior
matrix<float> c({a.shape()[0], b.shape()[1]});

mxm(c, plus<>{}, a, b,
no_mask{}, plus multiplies semiring{});

Carnegie Mellon University 152
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.




Matrix Multiply

using grb;

Accepts matrices, mask, semiring, , ,
matrix<float> a = get matrix ;

accumulator, and flag to control matrix<float> b = get matrix .

merge behavior
matrix<float> c({a.shape()[0], b.shape()[1]});

mxm(c, plus<>{}, a, b,
no_mask{}, plus multiplies semiring{});
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Matrix Multiply

using grb;

Accepts matrices, mask, semiring, , ,
matrix<float> a = get matrix(...);

accumulator, and flag to control matrix<float> b = get matrix(...);

merge behavior
matrix<float> c({a.shape()[0], b.shape()[1]});

mxm(c, plus<>{}, a, b,
no_mask{}, plus multiplies semiring{});
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Matrix Multiply

using grb;

Accepts matrices, mask, semiring, , ,
matrix<float> a = get matrix(...);

accumulator, and flag to control matrix<float> b = get matrix(...);

merge behavior
matrix<float> c({a.shape()[0], b.shape()[1]});

mxm(c, plus<>{}, a, b,
no_mask{}, plus multiplies semiring{});
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Matrix Multiply

Accepts matrices, mask, semiring,
accumulator, and flag to control
merge behavior
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using grb;

matrix<float> a = get matrix(...);
matrix<float> b = get matrix(...);

matrix<float> c({a.shape()[0], b.shape()[1]});

mxm(c, plus<>{}, a, b
no mask{}, plus multiplies semiring{});




Matrix Multiply

using grb;

Accepts matrices, mask, semiring, , ,
matrix<float> a = get matrix(...);

accumulator, and flag to control matrix<float> b = get_matrix(...);

merge behavior
matrix<float> c({a.shape()[0], b.shape()[1]});

Input matrices could be nxm(c, plus<>{}, transpose(a), b
gr'b; ‘matrix or views no_mask{}, plus_multiplies_semiring{});
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Matrix Multiply

using grb;
Accepts matrices, mask, semiring, , ,

matrix<float> a = get matrix(...);
accumulator, and flag to control matrix<float> b = get matrix(...);

merge behavior
matrix<float> c({a.shape()[0], b.shape()[1]});

Input matrices could be nxm(c, plus<>{}, transpose(a), b
gpb; ‘matrix or views no_mask{}, plus_multiplies_semiring{});

Similar to C API
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Matrix Multiply Definition

template <typename
typename
typename
typename
typename
typename

CMatrixType
Accumulator,
AMatrixType,
BMatrixType,
MaskType,
Semiring>

void mxm(CMatrixType&& c, Accumulator&& acc,
AMatrixType&& a, BMatrixType&& b,
MaskType&& mask, Semiring&& s);
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Matrix Multiply Definition

MatrixRange - an output range of
matrix elements, plus element access
and shape

Carnegie Mellon University
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

template <typename
typename
typename
typename
typename
typename

CMatrixType
Accumulator,
AMatrixType,
BMatrixType,
MaskType,
Semiring>

void mxm(CMatrixType&& c, Accumulator&& acc,
AMatrixType&& a, BMatrixType&& b,
MaskType&& mask, Semiring&& s);




Matrix Multiply Definition

MatrixRange - an output range of ,
. template <MatrixRange C
matrix elements, plus element access typename Accumulator,

and shape typename AMatrixType,
typename BMatrixType,
typename MaskType,
typename Semiring>
void mxm(C&& c, Accumulator&& acc,
AMatrixType&& a, BMatrixType&& b,
MaskType&& mask, Semiring&& s);
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Matrix Multiply Definition

MatrixRange - an output range of ,
. template <MatrixRange C,
matrix elements, plus element access typename Accumulator,

and shape typename AMatrixType
typename BMatrixType
typename MaskType,
typename Semiring>
void mxm(C&& c, Accumulator&& acc,
AMatrixType&& a, BMatrixType&& b,
MaskType&& mask, Semiring&& s);
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Matrix Multiply Definition

MatrixRange - an output range of ,
template <MatrixRange C,

matrix elements, plus element access typename Accumulator,
and shape ConstMatrixRange A
ConstMatrixRange B
ConstMatrixRange - an input range typename MaskType,
of matrix elements, plus const typename Semiring>
P void mxm(C&& c, Accumulator&& acc,
element access and shape A& a, AR& b,
MaskType&& mask, Semiring&& s);
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Matrix Multiply Definition

MatrixRange - an output range of ,
template <MatrixRange C,

matrix elements, plus element access typename Accumulator,
and shape ConstMatrixRange A,
ConstMatrixRange B,
ConstMatrixRange - an input range typename MaskType
of matrix elements, plus const typename Semiring>
P void mxm(C&& c, Accumulator&& acc,
element access and shape A& a, AR& b,
MaskType&& mask, Semiring&& s);
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Matrix Multiply Definition

MatrixRange - an output range of ,
template <MatrixRange C,

matrix elements, plus element access typename Accumulator,
and shape ConstMatrixRange A,
ConstMatrixRange B,

ConstMatrixRange - an input range MaskMatrixRange M

: typename Semiring>
of matrix elements, plus const :

P void mxm(C&& c, Accumulator&& acc,

element access and shape AR& a, B&& b,

M&& mask, Semiring&& s);
MaskMatrixRange - ConstMatrixRange

with values convertible to bool
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Matrix Times Matrix

Matrix Times Matrix (mxm)
grb: :matrix<float> c = ...;
grb: :matrix<float> a = ...;
Very similar to C API
auto a_ t = grb::transpose(a);
auto mask = grb::structure(c); Accepts matrices, mask, accumulator,
semiring, and flag to control merge
grb::mxm(c, mask, .
grb::plus{}, behavior
grb::plus_times semiring{},
a, a_t); Input matrices could be grb: :matrix
or views
Carnegie Mellon University 166
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Interoperability with C++ Algorithms

- C++ GraphBLAS matrices are ranges, which allows us to use
C++ standard algorithms
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Interoperability with C++ Algorithms

- C++ GraphBLAS matrices are ranges, which allows us to use
C++ standard algorithms

- Area for exploration: implementing GraphBLAS operations with
standard C++ algorithms
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Interoperability with C++ Algorithms

- C++ GraphBLAS matrices are ranges, which allows us to use
C++ standard algorithms

- Area for exploration: implementing GraphBLAS operations with
standard C++ algorithms

- One dimensional iteration somewhat limited, but 2D iteration
concepts are coming (next slide)
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Interoperability with C++ Graph Library

- C++ graph library proposal®™?22 provides standard concepts for
iterating over graphs, graph algorithms

- We aren’t currently using multidimensional iteration

- We should closely examine opportunities for interoperability

- Implement mxm using graph library concepts
- Build adapters for graph library concepts to fulfill GrB concepts, vice-versa
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https://github.com/pratzl/graph

Wrap-Up

We can use matrix algebra to implement graph algorithms
Can support a variety of different sparse matrix formats

Provide high-level interfaces for algorithms
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GraphBLAS Links

Brief Advertisement

araphblas.org

If you enjoy parallel programming: github.com/cmu-sei/gbtl
github.com/BenBrock/rgri

“PGAS in C++: A Portable Abstraction
for Distributed Data Structures”

Tuesday, 4:45 PM MDT

Location: D) Va||ey 1 Ben Brock, PhD Candidate | | Scott McMillan, Principal
at UC Berkeley Research Engineer at
Data structures and algo- | | CMU SEI
. rithms for large-scale
Vlrtual: Wed neSday, 12:30 PM MDT parallel systegms. Graph/ML/AIl algorithms
Please hire me' for large- and small-
° scale parallel systems.
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