
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Ben, PhD Candidate at UC Berkeley

Data structures and algorithms for parallel
programs. Working on C++ library of distributed
data structures. Please hire me!

About Us

2

Scott, Principal Engineer at CMU SEI

Graph/ML/AI algorithms for large- and small-
scale parallel systems. Working on GBTL, a linear
algebra-based C++ library for graph analytics.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Copyright 2021 Carnegie Mellon University and Benjamin Brock.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government
position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS"
BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for
non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting
formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

DM21-0916

3

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

This Talk

Background: How and why to use matrix algebra for graphs?

What are the important data structures and concepts?

Prior work in the GraphBLAS community, C API

Overview of our draft C++ API

How might this interoperate with standard C++, graph library proposal?

4

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

This Talk

Background: How and why to use matrix algebra for graphs?

What are the important data structures and concepts?

Prior work in the GraphBLAS community, C API

Overview of our draft C++ API

How might this interoperate with standard C++, graph library proposal?

5

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

This Talk

Background: How and why to use matrix algebra for graphs?

What are the important data structures and concepts?

Prior work in the GraphBLAS community, C API

Overview of our draft C++ API

How might this interoperate with standard C++, graph library proposal?

6

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

This Talk

Background: How and why to use matrix algebra for graphs?

What are the important data structures and concepts?

Prior work in the GraphBLAS community, C API

Overview of our draft C++ API

How might this interoperate with standard C++, graph library proposal?

7

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

This Talk

Background: How and why to use matrix algebra for graphs?

What are the important data structures and concepts?

Prior work in the GraphBLAS community, C API

Overview of our draft C++ API

How might this interoperate with standard C++, graph library proposal?

8

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

What This Talk Is Not

- A C++ standards proposal

- A complete evaluation of graph programming models

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

What This Talk Is Not

- A C++ standards proposal

- A complete evaluation of graph programming models

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Background: How and why to use
matrix algebra for graphs

11

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

12

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

13

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

14

Book — Papers — GraphBLAS standards — SuiteSparse:GraphBLAS releases

0.9 1.0 1.2 1.3

1.0 3.
0

2.2

Mathematical
foundations,

HPEC

Seven good
reasons,

ICCS

Standards for
graph algorithm

primitives,
HPEC

Graph Algorithms
in the Language
of Linear Algebra

LAGraph,
GrAPL@
IPDPS

2013 2014 2015 2016 2017 2018 20192011 2012

C API,
GABB@
IPDPS

GraphBLAS Timeline

2020 2021

2.0

5.14.0

C++ API
Roadmap,
GrAPL@
IPDPS

. . .

https://dspace.mit.edu/handle/1721.1/115964
https://dspace.mit.edu/handle/1721.1/115964
https://arxiv.org/ftp/arxiv/papers/1504/1504.01039.pdf
https://arxiv.org/ftp/arxiv/papers/1504/1504.01039.pdf
https://arxiv.org/pdf/1606.05790.pdf
https://arxiv.org/pdf/1606.05790.pdf
https://people.eecs.berkeley.edu/~aydin/LAGraph19.pdf
https://people.eecs.berkeley.edu/~aydin/LAGraph19.pdf
https://arxiv.org/ftp/arxiv/papers/1408/1408.0393.pdf
https://arxiv.org/ftp/arxiv/papers/1408/1408.0393.pdf

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

16

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

17

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

18

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

19

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

20

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

21

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

22

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

23

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

24

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

25

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

26

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

27

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

28

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

29

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

30

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

31

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

32

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

33

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

34

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

35

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

36

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

37

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

38

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

39

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

40

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

41

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Prior work: GraphBLAS C API and Onwards

42

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

43

- Provides uniform API for graph algorithms
in the language of linear algebra

- Revolve around sparse matrix and vector
operations which can use arbitrary semirings instead of classical (+, *)

- Current version of C API spec. is 1.3 (2.0 arriving imminently!)

- C offers great portability (Python, bindings, etc.), but has some disadvantages...

GraphBLAS C API

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

44

- Provides uniform API for graph algorithms
in the language of linear algebra

- Revolve around sparse matrix and vector
operations which can use arbitrary semirings instead of classical (+, *)

- Current version of C API spec. is 1.3 (2.0 arriving imminently!)

- C offers great portability (Python, bindings, etc.), but has some disadvantages...

GraphBLAS C API

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

45

- Provides uniform API for graph algorithms
in the language of linear algebra

- Revolve around sparse matrix and vector
operations which can use arbitrary semirings instead of classical (+, *)

- Current version of C API spec. is 1.3 (2.0 arriving imminently!)

- C offers great portability (Python, bindings, etc.), but has some disadvantages...

GraphBLAS C API

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

46

- Provides uniform API for graph algorithms
in the language of linear algebra

- Revolve around sparse matrix and vector
operations which can use arbitrary semirings instead of classical (+, *)

- Current version of C API spec. is 1.3 (2.0 arriving imminently!)

- C offers great portability (Python, bindings, etc.), but has some disadvantages...

GraphBLAS C API

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

The Problem with Types...

- If you’re familiar with the
(C)BLAS, there is a function for
each scalar type

- GraphBLAS supports a wide
variety of scalar types and
binary operators

- Combinatorial explosion

47

float* a_ptr = get_matrix(...);
cblas_sgemm(..., m, n, k, 1.0f, a_ptr, ...);

...

double* a_ptr = get_matrix(...);
cblas_dgemm(..., m, n, k, 1.0, a_ptr, ...);

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

The Problem with Types...

48

float* a_ptr = get_matrix(...);
cblas_sgemm(..., m, n, k, 1.0f, a_ptr, ...);

...

double* a_ptr = get_matrix(...);
cblas_dgemm(..., m, n, k, 1.0, a_ptr, ...);

- If you’re familiar with the
(C)BLAS, there is a function for
each scalar type

- GraphBLAS supports a wide
variety of scalar types and
binary operators

- Combinatorial explosion

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

The Problem with Types...

49

float* a_ptr = get_matrix(...);
cblas_sgemm(..., m, n, k, 1.0f, a_ptr, ...);

...

double* a_ptr = get_matrix(...);
cblas_dgemm(..., m, n, k, 1.0, a_ptr, ...);

- If you’re familiar with the
(C)BLAS, there is a function for
each scalar type

- GraphBLAS supports a wide
variety of scalar types and
binary operators

- Combinatorial explosion

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

C API: Quality of Life Issues

- For each predefined GraphBLAS operator, the C API requires a
separate C function for each of 11 predefined types:

GrB_PLUS_BOOL, GrB_PLUS_INT8, GrB_PLUS_UINT8, GrB_PLUS_INT16, GrB_PLUS_UINT16, GrB_PLUS_INT32,
GrB_PLUS_UINT32, GrB_PLUS_INT64, GrB_PLUS_UINT64, GrB_PLUS_FP32, GrB_PLUS_FP64.

- There are over 1000 combinations of predefined operators and types.

- Creates a large burden on implementers, who mostly resort to
automatic code generation

50

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

C API: Quality of Life Issues

- For each predefined GraphBLAS operator, the C API requires a
separate C function for each of 11 predefined types:

GrB_PLUS_BOOL, GrB_PLUS_INT8, GrB_PLUS_UINT8, GrB_PLUS_INT16, GrB_PLUS_UINT16, GrB_PLUS_INT32,
GrB_PLUS_UINT32, GrB_PLUS_INT64, GrB_PLUS_UINT64, GrB_PLUS_FP32, GrB_PLUS_FP64.

- There are over 1000 combinations of predefined operators and types.

- Creates a large burden on implementers, who mostly resort to
automatic code generation

51

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

C API: Quality of Life Issues

- For each predefined GraphBLAS operator, the C API requires a
separate C function for each of 11 predefined types:

GrB_PLUS_BOOL, GrB_PLUS_INT8, GrB_PLUS_UINT8, GrB_PLUS_INT16, GrB_PLUS_UINT16, GrB_PLUS_INT32,
GrB_PLUS_UINT32, GrB_PLUS_INT64, GrB_PLUS_UINT64, GrB_PLUS_FP32, GrB_PLUS_FP64.

- There are over 1000 combinations of predefined operators and types.

- Creates a large burden on implementers, who mostly resort to
automatic code generation

52

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

C API: Quality of Life Issues

- For each predefined GraphBLAS operator, the C API requires a
separate C function for each of 11 predefined types:

GrB_PLUS_BOOL, GrB_PLUS_INT8, GrB_PLUS_UINT8, GrB_PLUS_INT16, GrB_PLUS_UINT16, GrB_PLUS_INT32,
GrB_PLUS_UINT32, GrB_PLUS_INT64, GrB_PLUS_UINT64, GrB_PLUS_FP32, GrB_PLUS_FP64.

- There are over 1000 combinations of predefined operators and types.

- Creates a large burden on implementers, who mostly resort to
automatic code generation

53

Descriptors
Flags for transformations

Transpose, complement, structure-only, etc.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

C API: Quality of Life Issues

● User-defined types must be trivially copyable types (i.e. memcpy-able).
struct MyComplex {
 int ireal; int iimag;
};

● This simplifies API and improves performance, but limits expressiveness.
GrB_Type complex_type;
GrB_Type_new(&complex_type,
 sizeof(MyComplex));
GrB_Matrix A;
GrB_Matrix_new(&A, complex_type, 100, 100);

● Users have already run into cases where they wish to use more complex
types.

54

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

● User-defined types must be trivially copyable types (i.e. memcpy-able).
struct MyComplex {
 int ireal; int iimag;
};

● This simplifies API and improves performance, but limits expressiveness.
GrB_Type complex_type;
GrB_Type_new(&complex_type,
 sizeof(MyComplex));
GrB_Matrix A;
GrB_Matrix_new(&A, complex_type, 100, 100);

● Users have already run into cases where they wish to use more complex
types.

55

C API: Quality of Life Issues

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

● User-defined types must be trivially copyable types (i.e. memcpy-able).
struct MyComplex {
 int ireal; int iimag;
};

● This simplifies API and improves performance, but limits expressiveness.
GrB_Type complex_type;
GrB_Type_new(&complex_type,
 sizeof(MyComplex));
GrB_Matrix A;
GrB_Matrix_new(&A, complex_type, 100, 100);

● Users have already run into cases where they wish to use more complex
types.

56

C API: Quality of Life Issues

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

C API: Issues with Types

C API users pass function pointers to custom operators

void scale_2(void *out, const void *in) {

 (int)out = 2 * (*(int*)in);
}

GrB_UnaryOp my_scale_2;
GrB_UnaryOp_new(&my_scale_2, scale_2,
 GrB_INT32, GrB_INT32);

Required for any operator on user-defined types, but also allows for operators on
built-in types left out of the spec
Function pointers (e.g. scale_2) then used in performance-critical inner loops:

GrB_apply(C, ..., my_scale_2, A, desc);

57

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

C API: Issues with Types

C API users pass function pointers to custom operators

void scale_2(void *out, const void *in) {

 (int)out = 2 * (*(int*)in);
}

GrB_UnaryOp my_scale_2;
GrB_UnaryOp_new(&my_scale_2, scale_2,
 GrB_INT32, GrB_INT32);

Required for any operator on user-defined types, but also allows for operators on
built-in types left out of the spec
Function pointers (e.g. scale_2) then used in performance-critical inner loops:

GrB_apply(C, ..., my_scale_2, A, desc);

58

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Drafting a GraphBLAS C++ API

59

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

C++ Has a Rich Type System

- User-defined types are first-class types

- They simply need be copy constructible, etc.

- Things like views can simplify APIs

60

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

C++ Has a Rich Type System

- User-defined types are first-class types

- They simply need be copy constructible, etc.

- Things like views can simplify APIs

61

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

C++ Has a Rich Type System

- User-defined types are first-class types

- They simply need be copy constructible, etc.

- Things like views can simplify APIs

62

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Disclaimer: API in Progress

- The GraphBLAS C++ API is still in draft process

- Specific names and APIs may change

- There are currently two draft implementations, GBTL and RGRI

- Some slide contents may be in RGRI, but not necessarily in C++
spec (yet)

63

https://github.com/cmu-sei/gbtl
https://github.com/BenBrock/rgri

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

64

Matrix

Vector

Mask

GraphBLAS Concepts

* +

Semiring

+

Monoid

i: 0

i: 0

/

Binary Op

Algorithms
Transpose View

* +

Generalized Matrix Multiply

*

Elementwise Ops

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

65

Matrix

Vector

Mask

GraphBLAS Concepts

* +

Semiring

+

Monoid

i: 0

i: 0

/

Binary Op

Algorithms
Transpose View

* +

Generalized Matrix Multiply

*

Elementwise Ops

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

66

Matrix

Vector

Mask

GraphBLAS Concepts

* +

Semiring

+

Monoid

i: 0

i: 0

/

Binary Op

Algorithms
Transpose View

* +

Generalized Matrix Multiply

*

Elementwise Ops

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

67

Matrix

Vector

Mask

GraphBLAS Concepts

* +

Semiring

+

Monoid

i: 0

i: 0

/

Binary Op

Algorithms
Transpose View

* +

Generalized Matrix Multiply

*

Elementwise Ops

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

68

Matrix

Vector

Mask

GraphBLAS Concepts

* +

Semiring

+

Monoid

i: 0

i: 0

/

Binary Op

Algorithms
Transpose View

* +

Generalized Matrix Multiply

*

Elementwise Ops

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Matrix

- A matrix is a collection of stored values

- It has a shape (number of rows, cols)

- It has a size (number of stored values)

- Can access individual locations

- Can iterate over values

69

Matrix

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Matrix

- A matrix is a collection of stored values

- It has a shape (number of rows, cols)

- It has a size (number of stored values)

- Can access individual locations

- Can iterate over values

70

Matrix

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Matrix

- A matrix is a collection of stored values

- It has a shape (number of rows, cols)

- It has a size (number of stored values)

- Can access individual locations

- Can iterate over values

71

Matrix

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Matrix

- A matrix is a collection of stored values

- It has a shape (number of rows, cols)

- It has a size (number of stored values)

- Can access individual locations

- Can iterate over values

72

Matrix

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Matrix

- A matrix is a collection of stored values

- It has a shape (number of rows, cols)

- It has a size (number of stored values)

- Can access individual locations

- Can iterate over values

73

Matrix

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Matrix

- A matrix is a collection of stored values

- It has a shape (number of rows, cols)

- It has a size (number of stored values)

- Can access individual locations

- Can iterate over values

74

Matrix

Not included: implicit zero value!

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

- Distinct set of keys

- Each key associated with a value

- Individual lookup/insertion by key

- Iteration over unordered range of
values

Sparse Matrix - Similarities to std::unordered_map

75

[“x”] 120

[“y”] 121

[“z”] 122

[“b”] 98

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

- Distinct set of keys

- Each key associated with a value

- Individual lookup/insertion by key

- Iteration over unordered range of
values

Sparse Matrix - Similarities to std::unordered_map

76

[“x”] 120

[“y”] 121

[“z”] 122

[“b”] 98

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

- Distinct set of keys

- Each key associated with a value

- Individual lookup/insertion by key

- Iteration over unordered range of
values

Sparse Matrix - Similarities to std::unordered_map

77

[“x”] 120

[“y”] 121

[“z”] 122

[“b”] 98

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

- Distinct set of keys

- Each key associated with a value

- Individual lookup/insertion by key

- Iteration over unordered range of
values

Sparse Matrix - Similarities to std::unordered_map

78

[“x”] 120

[“y”] 121

[“z”] 122

[“b”] 98

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

- key_type is pair-like type filled with
integral values

- Matrix shape restricts valid key values

- Implementation will use highly
specialized sparse matrix formats

- Indices and value may not be
materialized in memory

Sparse Matrix - *Differences* from std::unordered_map

79

[{0, 1}] 120

[{4, 3}] 121

[{2, 3}] 122

[{7, 0}] 98

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

- key_type is pair-like type filled with
integral values

- Matrix shape restricts valid key values

- Implementation will use highly
specialized sparse matrix formats

- Indices and value may not be
materialized in memory

Sparse Matrix - *Differences* from std::unordered_map

80

[{0, 1}] 120

[{4, 3}] 121

[{2, 3}] 122

[{7, 0}] 98

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

- key_type is pair-like type filled with
integral values

- Matrix shape restricts valid key values

- Implementation will use highly
specialized sparse matrix formats

- Indices and value may not be
materialized in memory

Sparse Matrix - *Differences* from std::unordered_map

81

[{0, 1}] 120

[{4, 3}] 121

[{2, 3}] 122

[{7, 0}] 98

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

- key_type is pair-like type filled with
integral values

- Matrix shape restricts valid key values

- Implementation will use highly
specialized sparse matrix formats

- Indices and value may not be
materialized in memory

Sparse Matrix - *Differences* from std::unordered_map

82

[{0, 1}] 120

[{4, 3}] 121

[{2, 3}] 122

[{7, 0}] 98

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Sparse Matrix - *Differences* from std::unordered_map

83

using key_type = std::pair<int, int>;
using map_type = int;

unordered_map<key_type, map_type> x = ...;

auto iter = x.begin();

[blank] value = *iter;

[{0, 1}] 120

[{4, 3}] 121

[{2, 3}] 122

[{7, 0}] 98

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Sparse Matrix - *Differences* from std::unordered_map

84

using key_type = std::pair<int, int>;
using map_type = int;

unordered_map<key_type, map_type> x = ...;

auto iter = x.begin();

[blank] value = *iter;

What is the

type of *iter
?

[{0, 1}] 120

[{4, 3}] 121

[{2, 3}] 122

[{7, 0}] 98

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Sparse Matrix - *Differences* from std::unordered_map

85

using key_type = std::pair<int, int>;
using map_type = int;

unordered_map<key_type, map_type> x = ...;

auto iter = x.begin();

[blank] value = *iter;

[{0, 1}] 120

[{4, 3}] 121

[{2, 3}] 122

[{7, 0}] 98

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

using key_type = std::pair<int, int>;
using map_type = int;

unordered_map<key_type, map_type> x = ...;

auto iter = x.begin();

using value_type = std::pair<const key_type,
 map_type>;
value_type& value = *iter;

Sparse Matrix - *Differences* from std::unordered_map

86

[{0, 1}] 120

[{4, 3}] 121

[{2, 3}] 122

[{7, 0}] 98

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

using key_type = std::pair<int, int>;
using map_type = int;

unordered_map<key_type, map_type> x = ...;

auto iter = x.begin();

using value_type = std::pair<const key_type,
 map_type>;
value_type& value = *iter;

Sparse Matrix - *Differences* from std::unordered_map

87

[{0, 1}] 120

[{4, 3}] 121

[{2, 3}] 122

[{7, 0}] 98

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

using key_type = std::pair<int, int>;
using map_type = int;

unordered_map<key_type, map_type> x = ...;

auto iter = x.begin();

using value_type = std::pair<const key_type,
 map_type>;
value_type& value = *iter;

Sparse Matrix - *Differences* from std::unordered_map

88

1. Each element exists

materialized somewhere

2. Can obtain int& reference

to value, const pair<...>&

reference to key.

[{0, 1}] 120

[{4, 3}] 121

[{2, 3}] 122

[{7, 0}] 98

{{0, 1}, 120} {{4, 3}, 121} {{7, 0}, 98} {{2, 3}, 122}

(Possible) Physical Memory Layout

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

using key_type = std::pair<int, int>;
using map_type = int;

unordered_map<key_type, map_type> x = ...;

auto iter = x.begin();

using value_type = std::pair<const key_type,
 map_type>;
value_type& value = *iter;

Sparse Matrix - *Differences* from std::unordered_map

89

1. Each element exists

materialized somewhere

2. Can obtain int& reference

to value, const pair<...>&

reference to key.

[{0, 1}] 120

[{4, 3}] 121

[{2, 3}] 122

[{7, 0}] 98

{{0, 1}, 120} {{4, 3}, 121} {{7, 0}, 98} {{2, 3}, 122}

(Possible) Physical Memory Layout

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

using key_type = std::pair<int, int>;
using map_type = int;

unordered_map<key_type, map_type> x = ...;

auto iter = x.begin();

using value_type = std::pair<const key_type,
 map_type>;
value_type& value = *iter;

Sparse Matrix - *Differences* from std::unordered_map

90

1. Each element exists

materialized somewhere

2. Can obtain int& reference

to value, const pair<...>&

reference to key.

[{0, 1}] 120

[{4, 3}] 121

[{2, 3}] 122

[{7, 0}] 98

{{0, 1}, 120} {{4, 3}, 121} {{7, 0}, 98} {{2, 3}, 122}

(Possible) Physical Memory Layout

value_type&

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

using key_type = std::pair<int, int>;
using map_type = int;

unordered_map<key_type, map_type> x = ...;

auto iter = x.begin();

using value_type = std::pair<const key_type,
 map_type>;
value_type& value = *iter;

Sparse Matrix - *Differences* from std::unordered_map

91

1. Each element exists

materialized somewhere

2. Can obtain int& reference

to value, const pair<...>&

reference to key.

[{0, 1}] 120

[{4, 3}] 121

[{2, 3}] 122

[{7, 0}] 98

{{0, 1}, 120} {{4, 3}, 121} {{7, 0}, 98} {{2, 3}, 122}

(Possible) Physical Memory Layout

const pair<int, int>&

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

using key_type = std::pair<int, int>;
using map_type = int;

unordered_map<key_type, map_type> x = ...;

auto iter = x.begin();

using value_type = std::pair<const key_type,
 map_type>;
value_type& value = *iter;

Sparse Matrix - *Differences* from std::unordered_map

92

1. Each element exists

materialized somewhere

2. Can obtain int& reference

to value, const pair<...>&

reference to key.

[{0, 1}] 120

[{4, 3}] 121

[{2, 3}] 122

[{7, 0}] 98

{{0, 1}, 120} {{4, 3}, 121} {{7, 0}, 98} {{2, 3}, 122}

(Possible) Physical Memory Layout

int&

const pair<int, int>&

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

93

0 2 3 3 3 6 6

0 2 2 2 3 4 3

7

8 2 5 7 1 2 9

Row Pointers

Column Indices Values

Compressed Sparse Row (CSR)
Storage Format

8 2

5

7 1 2

1

Sparse Matrix Formats

- Need to enable a variety of different
sparse matrix formats

- Most formats separate values and
indices, may not store some indices

- This means we need to use a custom
reference type for indices Sparse Matrix

Representation

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

94

0 2 3 3 3 6 6

0 2 2 2 3 4 3

7

8 2 5 7 1 2 9

Row Pointers

Values

Compressed Sparse Row (CSR)
Storage Format

8 2

5

7 1 2

1

Sparse Matrix Formats

- Need to enable a variety of different
sparse matrix formats

- Most formats separate values and
indices, may not store some indices

- This means we need to use a custom
reference type for indices Sparse Matrix

Representation

Column Indices

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

95

0 2 3 3 3 6 6

0 2 2 2 3 4 3

7

8 2 5 7 1 2 9

Row Pointers

Values

Compressed Sparse Row (CSR)
Storage Format

8 2

5

7 1 2

1

Sparse Matrix Formats

- Need to enable a variety of different
sparse matrix formats

- Most formats separate values and
indices, may not store some indices

- This means we need to use a custom
reference type for indices Sparse Matrix

Representation

Column Indices

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

96

0 2 3 3 3 6 6

0 2 2 2 3 4 3

7

8 2 5 7 1 2 9

Row Pointers

Values

Compressed Sparse Row (CSR)
Storage Format

8 2

5

7 1 2

1

Sparse Matrix Formats

- Need to enable a variety of different
sparse matrix formats

- Most formats separate values and
indices, may not store some indices

- This means we need to use a custom
reference type for indices Sparse Matrix

Representation

Column Indices

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

97

0 2 3 3 3 6 6

0 2 2 2 3 4 3

7

8 2 5 7 1 2 9

Row Pointers

Values

Compressed Sparse Row (CSR)
Storage Format

8 2

5

7 1 2

1

Sparse Matrix Formats

- Need to enable a variety of different
sparse matrix formats

- Most formats separate values and
indices, may not store some indices

- This means we need to use a custom
reference type for indices Sparse Matrix

Representation

Column Indices

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

98

0 2 3 3 3 6 6

0 2 2 2 3 4 3

7

8 2 5 7 1 2 9

Row Pointers

Values

Compressed Sparse Row (CSR)
Storage Format

8 2

5

7 1 2

1

Sparse Matrix Formats

- Need to enable a variety of different
sparse matrix formats

- Most formats separate values and
indices, may not store some indices

- This means we need to use a custom
reference type for indices Sparse Matrix

Representation

Custom reference type, like

vector<
bool>::

referen
ce

Column Indices

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Data Structure

grb::matrix<float>

Type of stored values

99

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Data Structure

grb::matrix<float, int>

Type of stored values (Integer) type
used to store
indices

100

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Data Structure: Attributes

Attributes
Shape
 Dimensions of matrix
 (Graph: number of vertices)
Size
 Number of stored values
 (Graph: number of edges)

grb::matrix<float> x({1024, 1024});

size_t m = x.shape()[0];
size_t n = x.shape()[1];

size_t nnz = x.size();

101

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Data Structure: Element Access

Element Access
Direct access to stored values

operator[]
 Find or insert value by index

find
 Find value by index

grb::matrix<float, int> m({1024, 1024});

m[{0, 0}] = 12;

m[{1, 1}] = 12;

m[{2, 2}] = 12;

m[{3, 3}] = 12;

if (m.find({3, 3}) != m.end()) {

 // Should run, just set elem 3, 3 to 12.

}

if (m.find({4, 4}) != m.end()) {

 // Will not run, have not yet set elem 4, 4

}

102

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Data Structure: Iteration

Iteration
Iteration over stored values

Can read: row, column, value

Can write: value only

Iteration allows support for
standard C++ algorithms.

grb::matrix<float, int> m = …;

for (auto iter = m.begin(); iter != m.end();

 ++iter) {

 float x = *iter;

}

for (auto&& [i, j, v] : m) {

 v = 12;

 printf(“Elem. %d, %d set to %f\n”, i, j, v);

}

std::reduce(m.begin(), m.end(), float(0));

103

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Sparse Matrix Formats

104

- Many potential sparse
matrix formats

- Each format has different
iteration patterns

- Inefficient to enforce a
particular iteration order

* Diagrams by Matt Eding at https://matteding.github.io/2019/04/25/sparse-matrices/

https://matteding.github.io/2019/04/25/sparse-matrices/

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Sparse Matrix Formats

105

- Many potential sparse
matrix formats

- Each format has different
iteration patterns

- Inefficient to enforce a
particular iteration order

* Diagrams by Matt Eding at https://matteding.github.io/2019/04/25/sparse-matrices/

https://matteding.github.io/2019/04/25/sparse-matrices/

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Sparse Matrix Formats

106

- Many potential sparse
matrix formats

- Each format has different
iteration patterns

- Inefficient to enforce a
particular iteration order

* Diagrams by Matt Eding at https://matteding.github.io/2019/04/25/sparse-matrices/

https://matteding.github.io/2019/04/25/sparse-matrices/

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Data Structure

grb::matrix<float, int, grb::column>

Type of stored values (Integer) type
used to store
indices

Compile-time
hint about
storage format

107

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Data Structure: Iteration

108

- Unordered iteration over stored
values

- Range of size()
matrix_entry<T, I> elements

- Tuple-like type with access to
indices and T& reference to
value

grb::matrix<float, int> m = …;

for (auto iter = m.begin(); iter != m.end();

 ++iter) {

 float x = *iter;

}

for (auto&& [i, j, v] : m) {

 v = 12;

 printf(“Elem. %d, %d set to %f\n”,

 i, j, v);

}

std::reduce(m.begin(), m.end(), float(0));

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Data Structure: Iteration

109

- Unordered iteration over stored
values

- Range of size()
matrix_entry<T, I> elements

- Tuple-like type with access to
indices and T& reference to
value

grb::matrix<float, int> m = …;

for (auto iter = m.begin(); iter != m.end();

 ++iter) {

 float x = *iter;

}

for (auto&& [i, j, v] : m) {

 v = 12;

 printf(“Elem. %d, %d set to %f\n”,

 i, j, v);

}

std::reduce(m.begin(), m.end(), float(0));

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Data Structure: Iteration

110

- Unordered iteration over stored
values

- Range of size()
matrix_entry<T, I> elements

- Tuple-like type with access to
indices and T& reference to
value

grb::matrix<float, int> m = …;

for (auto iter = m.begin(); iter != m.end();

 ++iter) {

 float x = *iter;

}

for (auto&& [i, j, v] : m) {

 v = 12;

 printf(“Elem. %d, %d set to %f\n”,

 i, j, v);

}

std::reduce(m.begin(), m.end(), float(0));

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

111

Matrix

Vector

Mask

GraphBLAS Concepts

* +

Semiring

+

Monoid

i: 0

i: 0

/

Binary Op

Algorithms
Transpose View

* +

Generalized Matrix Multiply

*

Elementwise Ops

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Binary Operators

Functors that operate on two
inputs, producing a single output

 T x U -> V

Rule: types T, U, and V are
determined by matrices. Op. must
accept T, U, V.

grb::ewise_add(c, ..., a, b,

 std::plus<int>());

auto my_op = [](auto a, auto b) {

 return a*b + 2;

 };

grb::ewise_mult(c, ..., a, b, my_op);

112

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Monoids: Binary Operators with an Identity

- Monoids are mathematical objects, consisting of:

- A commutative binary operator

- A type T

- A mathematical identity

113

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Monoids: Binary Operators with an Identity

- Monoids are mathematical objects, consisting of:

- A commutative binary operator

- A type T

- A mathematical identity

114

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Monoids: Binary Operators with an Identity

115

- Monoids are mathematical objects, consisting of:

- A commutative binary operator

- A type T

- A mathematical identity

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Monoids: Binary Operators with an Identity

- Monoids are mathematical objects, consisting of:

- A commutative binary operator

- A type T

- A mathematical identity

116

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Monoids

- Given a binary operator fn and
a type T, we can ask:

Does binary op. fn form a
monoid on type T?

- Depends on whether
monoid_traits specialization
exists

117

using grb;

bool test = is_monoid_v<std::plus<>, int>;

// Prints “1” for true

std::cout << test << std::endl;

int identity = monoid_traits<std::plus<>,

 int>::identity();

// Prints “0”, since identity for std::plus<>

// on type `int` is `0`

std::cout << identity << std::endl;

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Monoids

- Given a binary operator fn and
a type T, we can ask:

Does binary op. fn form a
monoid on type T?

- Depends on whether
monoid_traits specialization
exists

118

using grb;

bool test = is_monoid_v<std::plus<>, int>;

// Prints “1” for true

std::cout << test << std::endl;

int identity = monoid_traits<std::plus<>,

 int>::identity();

// Prints “0”, since identity for std::plus<>

// on type `int` is `0`

std::cout << identity << std::endl;

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Monoids

- Given a binary operator fn and
a type T, we can ask:

Does binary op. fn form a
monoid on type T?

- Depends on whether
monoid_traits specialization
exists

119

using grb;

bool test = is_monoid_v<std::plus<>, int>;

// Prints “1” for true

std::cout << test << std::endl;

int identity = monoid_traits<std::plus<>,

 int>::identity();

// Prints “0”, since identity for std::plus<>

// on type `int` is `0`

std::cout << identity << std::endl;

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Monoids

- Given a binary operator fn and
a type T, we can ask:

Does binary op. fn form a
monoid on type T?

- Depends on whether
monoid_traits specialization
exists

120

using grb;

bool test = is_monoid_v<std::plus<>, int>;

// Prints “1” for true

std::cout << test << std::endl;

int identity = monoid_traits<std::plus<>,

 int>::identity();

// Prints “0”, since identity for std::plus<>

// on type `int` is `0`

std::cout << identity << std::endl;

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Obtaining a Monoid

- Use pre-defined binary ops such
as grb::plus, grb::multiplies

- Define a specialization of
grb::monoid_traits

- Add identity() method to op

- Use make_monoid helper function

using grb;

// Using a pre-defined binary op

grb::plus<> fn;

std::plus<> fn_stl;

bool g = is_monoid<grb::plus<>, int>::value;

bool s = is_monoid<std::plus<>, int>::value;

std::cout << g << “ ” << s << std::endl;

121

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Obtaining a Monoid

- Use pre-defined binary ops such
as grb::plus, grb::multiplies

- Define a specialization of
grb::monoid_traits

- Add identity() method to op

- Use make_monoid helper function

122

using grb;

// Using a pre-defined binary op

grb::plus<> fn;

std::plus<> fn_stl;

bool g = is_monoid<grb::plus<>, int>::value;

bool s = is_monoid<std::plus<>, int>::value;

std::cout << g << “ ” << s << std::endl;

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Obtaining a Monoid

- Use pre-defined binary ops such
as grb::plus, grb::multiplies

- Define a specialization of
grb::monoid_traits

- Add identity() method to op

- Use make_monoid helper function

123

struct my_plus {

 float operator()(float a, float b) {

 return a + b;

 }

 float identity() {

 return 0.0f;

 }

};

...

int i =

 grb::monoid_traits<my_plus, int>::identity();

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Obtaining a Monoid

- Use pre-defined binary ops such
as grb::plus, grb::multiplies

- Define a specialization of
grb::monoid_traits

- Add identity() method to op

- Use make_monoid helper function

124

struct my_plus {

 float operator()(float a, float b) {

 return a + b;

 }

 float identity() {

 return 0.0f;

 }

};

...

int i =

 grb::monoid_traits<my_plus, int>::identity();

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Obtaining a Monoid

- Use pre-defined binary ops such
as grb::plus, grb::multiplies

- Define a specialization of
grb::monoid_traits

- Add identity() method to op

- Use make_monoid helper function

auto my_op = [](auto a, auto b) {

 return a * b;

 };

auto my_monoid = make_monoid(my_op, 1);

125

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Semirings

Semirings combine a binary op b
and a monoid m, where b
distributes over m

1) Pre-define a number of semirings

2) Users can build semirings with
make_semiring

auto semiring =

 grb::plus_multiplies_semiring();

auto my_times = [](auto a, auto b) {

 return a*b;

 };

auto my_plus = [](auto a, auto b) {

 return a+b;

 };

auto m_plus = grb::make_monoid(my_plus, 0);

auto my_semiring =

 grb::make_semiring(m_plus, my_times);

126

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Semirings

Semirings combine a binary op b
and a monoid m, where b
distributes over m

1) Pre-define a number of semirings

2) Users can build semirings with
make_semiring

auto semiring =

 grb::plus_multiplies_semiring();

auto my_times = [](auto a, auto b) {

 return a*b;

 };

auto my_plus = [](auto a, auto b) {

 return a+b;

 };

auto m_plus = grb::make_monoid(my_plus, 0);

auto my_semiring =

 grb::make_semiring(m_plus, my_times);

127

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Semirings

Semirings combine a binary op b
and a monoid m, where b
distributes over m

1) Pre-define a number of semirings

2) Users can build semirings with
make_semiring

auto semiring =

 grb::plus_multiplies_semiring();

auto my_times = [](auto a, auto b) {

 return a*b;

 };

auto my_plus = [](auto a, auto b) {

 return a+b;

 };

auto m_plus = grb::make_monoid(my_plus, 0);

auto my_semiring =

 grb::make_semiring(m_plus, my_times);

128

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Semirings

Semirings combine a binary op b
and a monoid m, where b
distributes over m

1) Pre-define a number of semirings

2) Users can build semirings with
make_semiring

auto semiring =

 grb::plus_multiplies_semiring();

auto my_times = [](auto a, auto b) {

 return a*b;

 };

auto my_plus = [](auto a, auto b) {

 return a+b;

 };

auto m_plus = grb::make_monoid(my_plus, 0);

auto my_semiring =

 grb::make_semiring(m_plus, my_times);

129

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Semirings

Semirings combine a binary op b
and a monoid m, where b
distributes over m

1) Pre-define a number of semirings

2) Users can build semirings with
make_semiring

auto semiring =

 grb::plus_multiplies_semiring();

auto my_times = [](auto a, auto b) {

 return a*b;

 };

auto my_plus = [](auto a, auto b) {

 return a+b;

 };

auto m_plus = grb::make_monoid(my_plus, 0);

auto my_semiring =

 grb::make_semiring(m_plus, my_times);

130

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Semirings

Semirings combine a binary op b
and a monoid m, where b
distributes over m

1) Pre-define a number of semirings

2) Users can build semirings with
make_semiring

auto semiring =

 grb::plus_multiplies_semiring();

auto my_times = [](auto a, auto b) {

 return a*b;

 };

auto my_plus = [](auto a, auto b) {

 return a+b;

 };

auto m_plus = grb::make_monoid(my_plus, 0);

auto my_semiring =

 grb::make_semiring(m_plus, my_times);

131

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Semirings

Semirings combine a binary op b
and a monoid m, where b
distributes over m

1) Pre-define a number of semirings

2) Users can build semirings with
make_semiring

auto semiring =

 grb::plus_multiplies_semiring();

auto my_times = [](auto a, auto b) {

 return a*b;

 };

auto my_plus = [](auto a, auto b) {

 return a+b;

 };

auto m_plus = grb::make_monoid(my_plus, 0);

auto my_semiring =

 grb::make_semiring(m_plus, my_times);

132

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

133

Matrix

Vector

Mask

GraphBLAS Concepts

* +

Semiring

+

Monoid

i: 0

i: 0

/

Binary Op

Algorithms
Transpose View

* +

Generalized Matrix Multiply

*

Elementwise Ops

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Views

Views provide a (typically transformed)
view of a matrix

We can create views representing
transpose, structure, complement, etc.

This simplifies API, removes some of
need for descriptors.

grb::matrix<float> a = ...;

auto a_t = grb::transpose(a);

auto b = grb::multiply(a, a_t);

134

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Views

Views provide a (typically transformed)
view of a matrix

We can create views representing
transpose, structure, complement, etc.

This simplifies API, removes some of
need for descriptors.

grb::matrix<float> a = ...;

auto a_t = grb::transpose(a);

auto b = grb::multiply(a, a_t);

135

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Transform Views

Provide a const view of a matrix
with each stored value
transformed

- Can be used to create
structure-only view

136

grb::matrix<float> a = ...;

auto t =

 [](grb::matrix_entry<float> e) {

 return true;

 };

auto a_t = grb::transform_view(a, t);

for (auto&& [i, j, v] : a_t) {

 printf(“Elem (%d, %d): %f\n”,

 i, j, v);

}

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Transform Views

Provide a const view of a matrix
with each stored value
transformed

- Can be used to create
structure-only view

137

grb::matrix<float> a = ...;

auto t =

 [](grb::matrix_entry<float> e) {

 return true;

 };

auto a_t = grb::transform_view(a, t);

for (auto&& [i, j, v] : a_t) {

 printf(“Elem (%d, %d): %f\n”,

 i, j, v);

}

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Transform Views

Provide a const view of a matrix
with each stored value
transformed

- Can be used to create
structure-only view

138

grb::matrix<float> a = ...;

auto t =

 [](grb::matrix_entry<float> e) {

 return true;

 };

auto a_t = grb::transform_view(a, t);

for (auto&& [i, j, v] : a_t) {

 printf(“Elem (%d, %d): %f\n”,

 i, j, v);

}

8 2

5

7 1 2

1

Matrix A

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Transform Views

Provide a const view of a matrix
with each stored value
transformed

- Can be used to create
structure-only view

139

grb::matrix<float> a = ...;

auto t =

 [](grb::matrix_entry<float> e) {

 return true;

 };

auto a_t = grb::transform_view(a, t);

for (auto&& [i, j, v] : a_t) {

 printf(“Elem (%d, %d): %f\n”,

 i, j, v);

}

8 2

5

7 1 2

1

Matrix A

true true

true

true true true

true

view

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Masks

- Range of matrix elements

- Element-wise access methods

- Shape

- Stored values convertible to bool

140

8 2

5

7 1 2

1

1

1
x =

10

5

3

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Masks

141

8 2

5

7 1 2

1

1

1
x =

10

5

3

- Range of matrix elements

- Element-wise access methods

- Shape

- Stored values convertible to bool

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Masks

142

8 2

5

7 1 2

1

1

1
x =

10

5

3

- Range of matrix elements

- Element-wise access methods

- Shape

- Stored values convertible to bool

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Masks

143

8 2

5

7 1 2

1

1

1
x =

10

5

3

1

1

0

1
m

Apply output mask

- Range of matrix elements

- Element-wise access methods

- Shape

- Stored values convertible to bool

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Masks

144

8 2

5

7 1 2

1

1

1
x =

10

5

3

1

1

0

1
m

Apply output mask

- Range of matrix elements

- Element-wise access methods

- Shape

- Stored values convertible to bool

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Masks

145

8 2

5

7 1 2

1

1

1
x =

5

3

1

0

1
m

Apply output mask

- Range of matrix elements

- Element-wise access methods

- Shape

- Stored values convertible to bool

1 10

H

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Masks

- Range of matrix elements

- Element-wise access methods

- Shape

- Stored values convertible to bool

146

8 2

5

7 1 2

1

1

1
x =

5

3

1

0

1
m

Apply output mask

1 10

H

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Masks

- Range of matrix elements

- Element-wise access methods

- Shape

- Stored values convertible to bool

147

8 2

5

7 1 2

1

1

1
x =

10

5

3

1

0

1
m

Apply output mask

1

H

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Masks

- Range of matrix elements

- Element-wise access methods

- Shape

- Stored values convertible to bool

148

8 2

5

7 1 2

1

1

1
x =

10

5

3

1

0

1
m

Apply output mask

1

H

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Masks

- Range of matrix elements

- Element-wise access methods

- Shape

- Stored values convertible to bool

149

8 2

5

7 1 2

1

1

1
x =

10

5

3

1

0

1
m

Apply output mask

1

H

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

150

Matrix

Vector

Mask

GraphBLAS Concepts

* +

Semiring

+

Monoid

i: 0

i: 0

/

Binary Op

Algorithms
Transpose View

* +

Generalized Matrix Multiply

*

Elementwise Ops

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Algorithms

The primary algorithms of interest are:

1) Generalized matrix multiplication -- using mask and arbitrary
semiring

2) Elementwise operations

151

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Multiply

Accepts matrices, mask, semiring,
accumulator, and flag to control
merge behavior

Input matrices could be
grb::matrix or views

Similar to C API

using grb;

matrix<float> a = get_matrix(...);

matrix<float> b = get_matrix(...);

matrix<float> c({a.shape()[0], b.shape()[1]});

mxm(c, plus<>{}, a, b,

 no_mask{}, plus_multiplies_semiring{});

152

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Multiply
using grb;

matrix<float> a = get_matrix(...);

matrix<float> b = get_matrix(...);

matrix<float> c({a.shape()[0], b.shape()[1]});

mxm(c, plus<>{}, a, b,

 no_mask{}, plus_multiplies_semiring{});

153

Accepts matrices, mask, semiring,
accumulator, and flag to control
merge behavior

Input matrices could be
grb::matrix or views

Similar to C API

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Multiply
using grb;

matrix<float> a = get_matrix(...);

matrix<float> b = get_matrix(...);

matrix<float> c({a.shape()[0], b.shape()[1]});

mxm(c, plus<>{}, a, b,

 no_mask{}, plus_multiplies_semiring{});

154

Accepts matrices, mask, semiring,
accumulator, and flag to control
merge behavior

Input matrices could be
grb::matrix or views

Similar to C API

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Multiply
using grb;

matrix<float> a = get_matrix(...);

matrix<float> b = get_matrix(...);

matrix<float> c({a.shape()[0], b.shape()[1]});

mxm(c, plus<>{}, a, b,

 no_mask{}, plus_multiplies_semiring{});

155

Accepts matrices, mask, semiring,
accumulator, and flag to control
merge behavior

Input matrices could be
grb::matrix or views

Similar to C API

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Multiply
using grb;

matrix<float> a = get_matrix(...);

matrix<float> b = get_matrix(...);

matrix<float> c({a.shape()[0], b.shape()[1]});

mxm(c, plus<>{}, a, b,

 no_mask{}, plus_multiplies_semiring{});

156

Accepts matrices, mask, semiring,
accumulator, and flag to control
merge behavior

Input matrices could be
grb::matrix or views

Similar to C API

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Multiply
using grb;

matrix<float> a = get_matrix(...);

matrix<float> b = get_matrix(...);

matrix<float> c({a.shape()[0], b.shape()[1]});

mxm(c, plus<>{}, transpose(a), b,

 no_mask{}, plus_multiplies_semiring{});

157

Accepts matrices, mask, semiring,
accumulator, and flag to control
merge behavior

Input matrices could be
grb::matrix or views

Similar to C API

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Multiply
using grb;

matrix<float> a = get_matrix(...);

matrix<float> b = get_matrix(...);

matrix<float> c({a.shape()[0], b.shape()[1]});

mxm(c, plus<>{}, transpose(a), b,

 no_mask{}, plus_multiplies_semiring{});

158

Accepts matrices, mask, semiring,
accumulator, and flag to control
merge behavior

Input matrices could be
grb::matrix or views

Similar to C API

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Multiply Definition

159

template <typename CMatrixType,

 typename Accumulator,

 typename AMatrixType,

 typename BMatrixType,

 typename MaskType,

 typename Semiring>

void mxm(CMatrixType&& c, Accumulator&& acc,

 AMatrixType&& a, BMatrixType&& b,

 MaskType&& mask, Semiring&& s);

MatrixRange - an output range of
matrix elements, plus element access
and shape

ConstMatrixRange - an input range
of matrix elements, plus const
element access and shape

MaskMatrixRange - ConstMatrixRange
with values convertible to bool

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Multiply Definition

160

template <typename CMatrixType,

 typename Accumulator,

 typename AMatrixType,

 typename BMatrixType,

 typename MaskType,

 typename Semiring>

void mxm(CMatrixType&& c, Accumulator&& acc,

 AMatrixType&& a, BMatrixType&& b,

 MaskType&& mask, Semiring&& s);

MatrixRange - an output range of
matrix elements, plus element access
and shape

ConstMatrixRange - an input range
of matrix elements, plus const
element access and shape

MaskMatrixRange - ConstMatrixRange
with values convertible to bool

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

161

template <MatrixRange C,

 typename Accumulator,

 typename AMatrixType,

 typename BMatrixType,

 typename MaskType,

 typename Semiring>

void mxm(C&& c, Accumulator&& acc,

 AMatrixType&& a, BMatrixType&& b,

 MaskType&& mask, Semiring&& s);

Matrix Multiply Definition

MatrixRange - an output range of
matrix elements, plus element access
and shape

ConstMatrixRange - an input range
of matrix elements, plus const
element access and shape

MaskMatrixRange - ConstMatrixRange
with values convertible to bool

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

162

template <MatrixRange C,

 typename Accumulator,

 typename AMatrixType,

 typename BMatrixType,

 typename MaskType,

 typename Semiring>

void mxm(C&& c, Accumulator&& acc,

 AMatrixType&& a, BMatrixType&& b,

 MaskType&& mask, Semiring&& s);

Matrix Multiply Definition

MatrixRange - an output range of
matrix elements, plus element access
and shape

ConstMatrixRange - an input range
of matrix elements, plus const
element access and shape

MaskMatrixRange - ConstMatrixRange
with values convertible to bool

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

163

template <MatrixRange C,

 typename Accumulator,

 ConstMatrixRange A,

 ConstMatrixRange B,

 typename MaskType,

 typename Semiring>

void mxm(C&& c, Accumulator&& acc,

 A&& a, A&& b,

 MaskType&& mask, Semiring&& s);

Matrix Multiply Definition

MatrixRange - an output range of
matrix elements, plus element access
and shape

ConstMatrixRange - an input range
of matrix elements, plus const
element access and shape

MaskMatrixRange - ConstMatrixRange
with values convertible to bool

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

164

template <MatrixRange C,

 typename Accumulator,

 ConstMatrixRange A,

 ConstMatrixRange B,

 typename MaskType,

 typename Semiring>

void mxm(C&& c, Accumulator&& acc,

 A&& a, A&& b,

 MaskType&& mask, Semiring&& s);

Matrix Multiply Definition

MatrixRange - an output range of
matrix elements, plus element access
and shape

ConstMatrixRange - an input range
of matrix elements, plus const
element access and shape

MaskMatrixRange - ConstMatrixRange
with values convertible to bool

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

165

template <MatrixRange C,

 typename Accumulator,

 ConstMatrixRange A,

 ConstMatrixRange B,

 MaskMatrixRange M,

 typename Semiring>

void mxm(C&& c, Accumulator&& acc,

 A&& a, B&& b,

 M&& mask, Semiring&& s);

Matrix Multiply Definition

MatrixRange - an output range of
matrix elements, plus element access
and shape

ConstMatrixRange - an input range
of matrix elements, plus const
element access and shape

MaskMatrixRange - ConstMatrixRange
with values convertible to bool

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Times Matrix

grb::matrix<float> c = …;

grb::matrix<float> a = …;

auto a_t = grb::transpose(a);

auto mask = grb::structure(c);

grb::mxm(c, mask,

 grb::plus{},

 grb::plus_times_semiring{},

 a, a_t);

Matrix Times Matrix (mxm)

Very similar to C API

Accepts matrices, mask, accumulator,
semiring, and flag to control merge
behavior

Input matrices could be grb::matrix
or views

166

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Interoperability with C++ Algorithms

- C++ GraphBLAS matrices are ranges, which allows us to use
C++ standard algorithms

- Area for exploration: implementing GraphBLAS operations with
standard C++ algorithms

- One dimensional iteration somewhat limited, but 2D iteration
concepts are coming (next slide)

167

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Interoperability with C++ Algorithms

- C++ GraphBLAS matrices are ranges, which allows us to use
C++ standard algorithms

- Area for exploration: implementing GraphBLAS operations with
standard C++ algorithms

- One dimensional iteration somewhat limited, but 2D iteration
concepts are coming (next slide)

168

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Interoperability with C++ Algorithms

- C++ GraphBLAS matrices are ranges, which allows us to use
C++ standard algorithms

- Area for exploration: implementing GraphBLAS operations with
standard C++ algorithms

- One dimensional iteration somewhat limited, but 2D iteration
concepts are coming (next slide)

169

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Interoperability with C++ Graph Library

- C++ graph library proposal[P1709] provides standard concepts for
iterating over graphs, graph algorithms

- We aren’t currently using multidimensional iteration

- We should closely examine opportunities for interoperability
- Implement mxm using graph library concepts
- Build adapters for graph library concepts to fulfill GrB concepts, vice-versa

170

https://github.com/pratzl/graph

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Wrap-Up

We can use matrix algebra to implement graph algorithms

Can support a variety of different sparse matrix formats

Provide high-level interfaces for algorithms

171

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Brief Advertisement

172

Ben Brock, PhD Candidate
at UC Berkeley
Data structures and algo-
rithms for large-scale
parallel systems.

Please hire me!

Scott McMillan, Principal
Research Engineer at
CMU SEI

Graph/ML/AI algorithms
for large- and small-
scale parallel systems.

If you enjoy parallel programming:

“PGAS in C++: A Portable Abstraction
for Distributed Data Structures”

Tuesday, 4:45 PM MDT
Location: D) Valley 1

Virtual: Wednesday, 12:30 PM MDT

graphblas.org

github.com/cmu-sei/gbtl

github.com/BenBrock/rgri

GraphBLAS Links

https://graphblas.github.io/
https://github.com/cmu-sei/gbtl
https://github.com/BenBrock/rgri

