p2

BENJAMIN BROCK, SCOTT MCMILLAN

@Epﬂggmn 4 NA

October 24-29

GraphBLAS:

Building a C++ Matrix API
for Graph Algorithms

About Us

Ben, PhD Candidate at UC Berkeley Scott, Principal Engineer at CMU SEI

Data structures and algorithms for parallel Graph/ML/AI algorithms for large- and small-

programs. Working on C++ library of distributed scale parallel systems. Working on GBTL, a linear

data structures. Please hire me! algebra-based C++ library for graph analytics.
Carnegie Mellon University 2

Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Copyright 2021 Carnegie Mellon University and Benjamin Brock.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government
position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS"
BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for
non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting
formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

DM21-0916

Carnegie Mellon University 3
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

if o
g
2 —. g CAL

UNIVERSITY OF CALIFORNIA

This Talk

Background: How and why to use matrix algebra for graphs?

Carnegie Mellon University 4
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

This Talk

Background: How and why to use matrix algebra for graphs?

What are the important data structures and concepts?

Carnegie Mellon University 5
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

UNIVERSITY OF CALIFORNIA

() Berkeley

This Talk

Background: How and why to use matrix algebra for graphs?

What are the important data structures and concepts?

Prior work in the GraphBLAS community, C AP|

Carnegie Mellon University 6
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

UNIVERSITY OF CALIFORNIA

() Berkeley

This Talk

Background: How and why to use matrix algebra for graphs?

What are the important data structures and concepts?
Prior work in the GraphBLAS community, C AP|

Overview of our draft C++ API

Carnegie Mellon University 7
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

This Talk

Background: How and why to use matrix algebra for graphs?

What are the important data structures and concepts?
Prior work in the GraphBLAS community, C AP|

Overview of our draft C++ API

How might this interoperate with standard C++, graph library proposal?

Carnegie Mellon University 8
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

What This Talk Is Not

- A C++ standards proposal

- A complete evaluation of graph programming models

Carnegie Mellon University
Software Engineering Institute
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution

What This Talk Is Not

- A C++ standards proposal

- A complete evaluation of graph programming models

Carnegie Mellon University
Software Engineering Institute
[DISTRIBUTION STATEMENT A] This mater ial has been approved for publ ic release and unl imited distribution.

Background: How and why to use
matrix algebra for graphs

Carnegie Mellon University 1
Software Engineering Institute
[DISTRIBUTION STATEMENT A] This mater ial has been approved for publ ic release and unl imited distribution.

Graphs: Understanding relationships between items
Graph: A visual representation of a set of vertices and the connections between them (edges).
Graph is a pair (V, E):

-V is a set of vertices
— E is a set of paired vertices (edges)

V=1{0,1,23,4,5,6}

E ={(0,1),(0,3),(1,4),(1,6),(2,5),(3,0),
(3)2)1 (4,5), (512): (6:2)1 (61 3)1 (6'4)}

Ordered pairs results in directed graphs (shown)

Carnegie Mellon University 12
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approve d for pu blic release an d unlimited distribution.

Graph Analysis is Important and Pervasive

Social
O......a:.
4 ﬂ- """"""""""
\ N : i3 ‘
Rk |) FEL=
T - -
@ - \\\ E : : a y
. A LT =
;r‘.' w"‘-
ol o

* Graphs represent
relationships between
individuals or documents

* 100,000s — 100,000,000s
individuals and interactions

Carnegie Mellon University
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Cyber

* Graphs represent
communication patterns of
computers on a network

* 1,000,000s — 1,000,000,000s
network events

13

« Graphs represent organization
of neural interactions within
the brain

« 10" - 10" neurons and
connections

() Berkeley

UNIVERSITY OF CALIFORNIA

Graphs as Adjacency Matrices -
<

Graphs are represented as adjacency =
matrices that usually have sparse and AOODO@6Oe ® 06 ®
irregular structure. ©

@ @ ®

@ ®

Ble ®

@ ®

® @

source @ o o0
Aij —_
CanegeMeuonumrstym ___

Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Timeline

Book — Papers — — SuiteSparse:GraphBLAS releases

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

40 51

1.0 2.2

3 [] ‘
dited by T — Design of the APIfor C LAGraph: A Community Effort to Collect Graph A + APL
Jeremy Kepner and John Gilbert BLAS

Graph Algorithms Standards for Seven good Mathematical C API, LAGraph, C++ API
in the Language graph algorithm reasons, foundations, @ GABB@ GrAPL@ Roadmap,
of Linear Algebra primitives, ICCS HPEC IPDPS IPDPS GrAPL@

HPEC IPDPS

https://dspace.mit.edu/handle/1721.1/115964
https://dspace.mit.edu/handle/1721.1/115964
https://arxiv.org/ftp/arxiv/papers/1504/1504.01039.pdf
https://arxiv.org/ftp/arxiv/papers/1504/1504.01039.pdf
https://arxiv.org/pdf/1606.05790.pdf
https://arxiv.org/pdf/1606.05790.pdf
https://people.eecs.berkeley.edu/~aydin/LAGraph19.pdf
https://people.eecs.berkeley.edu/~aydin/LAGraph19.pdf
https://arxiv.org/ftp/arxiv/papers/1408/1408.0393.pdf
https://arxiv.org/ftp/arxiv/papers/1408/1408.0393.pdf

The GraphBLAS “standard”

Goal: separate the concerns of the hardware/library/application designers.

1979: BLAS Basic Linear Algebra Subprograms (BLAS 2 '88, BLAS 3 '90)

Numerical applications
LINPACK/LAPACK
API: Separation of concerns

BLAS

Hardware architecture

Carnegie Mellon University 16
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

&3 O,
54 PR ')’E
£ 7.
%
&< 7 ¥ "

UNIVERSITY OF CALIFORNIA

The GraphBLAS “standard”

Goal: separate the concerns of the hardware/library/application designers.

1979: BLAS Basic Linear Algebra Subprograms (BLAS 2 '88, BLAS 3 '90)

2001: Sparse BLAS an extension to BLAS (little uptake)

Numerical applications
LINPACK/LAPACK
API: Separation of concerns

BLAS

Hardware architecture

Carnegie Mellon University 17
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

The GraphBLAS “standard”

Goal: separate the concerns of the hardware/library/application designers.

1979: BLAS Basic Linear Algebra Subprograms (BLAS 2 '88, BLAS 3 '90)
2001: Sparse BLAS an extension to BLAS (little uptake)

2013: GraphBLAS an effort to define standard building blocks
for graph algorithms in the language of linear algebra
Graph analytical apps

Numerical applications
LINPACK/LAPACK LAGraph
API: Separation of concerns

BLAS GraphBLAS

Hardware architecture Hardware architecture

Carnegie Mellon University 18

Software Engineering Institute
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Graphs as Adjacency Matrices

dest.

AODOQ@6 ® 06 ®
@ ®

QO®»LWE 6
®
®

SULITCE

Carnegie Mellon University 19
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

AL
0% O,
& A 'P'L,
£ 7.
H i
| 2
2 7 Rk .

UNIVERSITY OF CALIFORNIA

Graphs as Adjacency Matrices

dest.

AODO®B ® O O®
source @ @ @

©

@

dle| |e@

@ ®
®

6

source ® © O
A @ (Ui : U]) e E
T8 (vpv) &E
Carnegie Mellon University 20

Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Graphs as Adjacency Matrices

® dest.
® dest.
1 I®)

®|O

ONONG

©@06®000 6 »
o

source @ @
®
®
o 0 o
A @ (Ul’, U]) e E
T8 (vpv) &E
Carnegie Mellon University 21

Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Graph Operations as Matrix Operations

ATODQO ® 06 ® ATO.Qf
dest. (D T
Ol
dest. @ @ . BN)
L @ =

CECECKS,

» Matrix-vector multiply - find neighbors
- In-neighbors: use A
- Out-neighbors: use AT

Carnegie Mellon University 22
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Graph Operations as Matrix Operations

Finding out-neighborsisused 1t10 v o 0 @ © ® ATH.Q f
many graph algorithms. dest. O o |

Ole

dest. @ @ . BN)

d|e ® =

@

®

®

» Matrix-vector multiply - find neighbors
- In-neighbors: use A
- Out-neighbors: use AT

Carnegie Mellon University 23
Software Engineering Institute
[DISTRIBUTION STATEMENT A] This mater ial has been approved for publ ic release and unl imited distribution.

AL
PR
&Ry
£ 7.
B
| 2
% /) g -~

UUUUUUU SITY OF CALIFORNIA

Graph Operations as Matrix Operations g f
Another way to look at matrix-vector multiply... 2
©
@
®
© T
ATOO@®®d66 — AORf
0, o[- -] @
01
2/ @ 99 @
OIK & =
@ | ®
® L ®
®| |
Carnegie Mellon University 24

AL
0% O,
& A 'P'L,
& 7.
g i
| 2
5) P\ .

UNIVERSITY OF CALIFORNIA

Software Engineering Institute
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Whatis 6.&Q 7?7

Carnegie Mellon University 25
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

() Berkeley

UNIVERSITY OF CALIFORNIA

Matrix multiplication

Conventional matrix multiplication uses arithmetic plus (+) and times (x):

y =AX
vy =) AGK) - x(0)
k

Carnegie Mellon University 26
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix multiplication on semirings

Conventional matrix multiplication uses arithmetic plus (+) and times (x):

y=AX
vy =) AGK) - x(0)
k

The generalized form uses “arbitrary” operators “plus” () and “times” (®)):

y=AD.Qx
y(@) =D AG D@x(k)
k

Carnegie Mellon University 27
Software Engineering Institute
[DISTRIBUTION STATEMENT A] This mater ial has been approved for publ ic release and unl imited distribution.

iV UNIVERSITY OF CALIFORNTA

Matrix multiplication on semirings

Conventional matrix multiplication uses arithmetic plus (+) and times (x):

y=AX
vy =) AGK) - x(0)
k

The generalized form uses “arbitrary” operators “plus” () and “times” (®)):

y=AD.Qx
y(@) =D AG D@x(k)
k

A cornerstone of GraphBLAS: Supports arbitrary semirings
that override the addition and multiplication operators (6.®).

Carnegie Mellon University 28
Software Engineering Institute
[DISTRIBUTION STATEMENT A] This mater ial has been approved for publ ic release and unl imited distribution.

AL
0% O,
& A 'P'L,
& 7.
%
| 2
5) P\ .

UNIVERSITY OF CALIFORNIA

GraphBLAS semirings ©.Q

* @ is commutative binary operator with an identity, 0 (called a monoid)
* @ Is a binary operator.
 The identity of @, is the annihilator of ®*

ca=a®P0=0P a

*0=a®@0=0Ra

Semiring Valid values P Graph semantics

integer arithmetic a €N ot 0 number of paths

real arithmetic a €R + 0 strength of all paths

boolean a € {false, true} Vv A false connectivity

min-plus (tropical) a € RU {4} min 4+ 4o shortest path

max-plus a € RU {—oo} max + —oo |ongest path
o In GraphBLAS this is not enforced nor required

Carnegie Mellon University 29

Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Primitives

 Basic objects (opaque types)
— Matrices (sparse or dense), vectors (sparse or dense), algebraic operators (semirings)
* Fundamental operations over these objects

Sparse matrix times Sparse matrix times
sparse matrix ®@ sparse vector ®@

Element-wise Sparse matrix
multiplication X extraction EEE «>
(and addition) (and assignment)

...plus reduction, transpose, Kronecker product, filtering, transform, etc.

Carnegie Mellon University 30
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

One more thing... write masks: (m) g f
Often not interested in some nodes... 2 =
@
®
®
ATODQ@O®@O0® m f
®
01
& @ — @
Rle & —
@ |® ®
® o |o
®| |

Carnegie Mellon University

Software Engineering Institute
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

W
et

. . © f
One more thing... write masks: (m) D
Often not interested in some nodes... 2 =
ANOTHER feature of GraphBLAS: @
All operations support a write mask. ®
@_
(m) f’
o

Carnegie Mellon University 32

Software Engineering Institute
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

O
—
<

Example: Breadth-First Search (levels)
f(src) = ®

©@O0®00O e

ATOD Q@O ®06®

© @
OJL
@ ® ® O
Qle ®
@ ® ®
® & ®
® ®

Carnegie Mellon University 33

Software Engineering Institute
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Example: Breadth-First Search (levels) g | f Ol v
level =0 @ level =0
v += level * { 5 —

@

®

@ e

ATOD Q@O ®06®

© ®
OJL
@ o AN
Qle &
@ ® ®
® ® ®
® ®

Carnegie Mellon University 34

Software Engineering Institute
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Example: Breadth-First Search (levels) g of f Ol v
level = () ®
v+=Jlevel x f //Usevasamask,(V). 5
@
®
@ P
ATOD Q0 ®06 ® =
o o | (V)
Dle
@ & C K)
©IK &
@ & ®
® & ®
® ®
Carnegie Mellon University 35

Software Engineering Institute
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Example: Breadth-First Search (levels)

level = 0

v += level x {
f(v) = AT®.®f // Boolean semiring

©0®0 000
[TT T LTI T Jef
| [[of o]]|]

Carnegie Mellon University 36
Software Engineering Institute
[DISTRIBUTION STATEMENT A] This mater ial has been approved for publ ic release and unl imited distribution.

AL
0% O,
& A 'P'L,
& 7.
%
| 2
2 7 Rk "

UNIVERSITY OF CALIFORNIA

Example: Breadth-First Search (levels) ©| |f Of v
level = 0 g °
v += Jevel x { ole
f'(v) = ATP. f @
f=f ©
®

ATO O

©

ofe

@

Gle

@

®

®

Carnegie Mellon University 37

Software Engineering Institute
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Example: Breadth-First Search (levels)

level =1

v += level x {
f'(V) = ATO. Qf
f =1

CNONCNEON-—NC)
[T T IXEIXD] L] o] [of |
o —

ﬂi

|
_ — _sol
<

Carnegie Mellon University 38

Software Engineering Institute
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Example: Breadth-First Search (levels) g f ‘13 v
[e_II/_d:] . Jx f O|®| /evel=2 |2
V = /evel * © 1
f'(V) = AT®. Qf " = -
f=f ©

Ole

2]
EF

Carnegie Mellon University 39
Software Engineering Institute
[DISTRIBUTION STATEMENT A] This mater ial has been approved for publ ic release and unl imited distribution.

<

Example: Breadth-First Search (levels)

level = 3

v += level * {

f' (V) = ATP. Qf

f =1

if f.empty() returnv

level =3

©@O®O®O0O06
ﬂ =

3

ATO D@0 ®0 ®

©@O0®WwE e

Carnegie Mellon University 40
Software Engineering Institute
[DISTRIBUTION STATEMENT A] This mater ial has been approved for publ ic release and unl imited distribution.

[0]
1
2
1
2
3
12]
E(

Example: Breadth-First Search (levels)

* Input: adjacency matrix A (Boolean), source vertex src (integer)
« Output: visited vertices vector, v (integer)

« Workspace: frontier vector f (Boolean)

1. f(src) = true

2. level= 0

3. while !f.empty()
4 v += level x {
5

f(_/> — AT@ ®f // using the Boolean semiring (OR.AND)
0 ++ Jevel
Carnegie Mellon University a1

2
'y(& o

[i568° UNIVERSITY OF CALIFORNIA

Software Engineering Institute
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Prior work: GraphBLAS C APl and Onwards

Carnegie Mellon University 42
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS C API

in-vertex

A1 2 34567
1 o o
- Provides uniform API for graph algorithms i 2 °.°
in the language of linear algebra 2 o
3)
° 6 ®
7 o 00

Carnegie Mellon University 43
Software Engineering Institute Bﬁﬂ(ﬁlﬁy

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS C API

in-vertex
A1 2 34567
1 o ®
- Provides uniform API for graph algorithms 3 2 ° o
-: .
in the language of linear algebra $ oo
> °®
° 6 ®
7 o o e

- Revolve around sparse matrix and vector
operations which can use arbitrary semirings instead of classical (+,)

Carnegie Mellon University 44
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS C API

in-vertex
A1 2 34567
1 o)
- Provides uniform API for graph algorithms i 2 ° o
2 3 °
in the language of linear algebra 2 oo
> °
° 6 ®
. 7 ® 00
- Revolve around sparse matrix and vector
operations which can use arbitrary semirings instead of classical (+, *)

- Current version of C API spec. is 1.3 (2.0 arriving imminently!)

Carnegie Mellon University 45
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS C API

in-vertex
A1 2 34567
1 o ®
- Provides uniform API for graph algorithms 3 2 ° o
-: .
in the language of linear algebra $ e e
> °®
° 6 °
7 o o e

- Revolve around sparse matrix and vector
operations which can use arbitrary semirings instead of classical (+, *)

- Current version of C API spec. is 1.3 (2.0 arriving imminently!)

- C offers great portability (Python, bindings, etc.), but has some disadvantages...

Carnegie Mellon University 46
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

The Problem with Types...

- If you’re familiar with the
. . float* a_ptr = get matrix(...);
(C)BLAS, there IS a funCthn fOr cblas sgemm(..., m, n, k, 1.0f, a ptr, ...);
each scalar type

Carnegie Mellon University a7
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

The Problem with Types...

- If you’re familiar with the

. . float* a_ptr = get matrix(...);
(C)BLAS, there IS a funCthn fOr cblas sgemm(..., m, n, k, 1.0f, a ptr, ...);
each scalar type

double* a_ptr = get_matrix(...);
cblas dgemm(..., m, n, k, 1.9, a _ptr, ...);

Carnegie Mellon University 48
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

The Problem with Types...

- If you’re familiar with the
. . float* a_ptr = get matrix(...);
(C)BLAS, there IS a funCUOn fOI' cblas sgemm(..., m, n, k, 1.0f, a ptr, ...);
each scalar type

. double* a_ptr = get matrix(...);
- Gl’aphBLAS supports a wide cblas _dgemm(..., m, n, k, 1.0, a_ptr, ...);

variety of scalar types and
binary operators

- Combinatorial explosion

Carnegie Mellon University 49
Software Engineering Institute

[DISTRIBUTI ON STATEMENT A] This material has been approved for public release and unlimited distribution.

C API: Quality of Life Issues

- For each predefined GraphBLAS operator, the C APl requires a
separate C function for each of 11 predefined types:

GrB_PLUS_BOOL, GrB_PLUS_INT8, GrB_PLUS UINT8, GrB_PLUS_INT16, GrB_PLUS UINT16, GrB_PLUS_INT32,
GrB_PLUS_UINT32, GrB_PLUS_INT64, GrB_PLUS UINT64, GrB_PLUS FP32, GrB_PLUS_FP64.

Carnegie Mellon University 50
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

C API: Quality of Life Issues

- For each predefined GraphBLAS operator, the C API requires a
separate C function for each of 11 predefined types:

GrB_PLUS_BOOL, GrB_PLUS_INT8, GrB_PLUS UINT8, GrB_PLUS_INT16, GrB_PLUS UINT16, GrB_PLUS_INT32,
GrB_PLUS_UINT32, GrB_PLUS_INT64, GrB_PLUS UINT64, GrB_PLUS FP32, GrB_PLUS_FP64.

- There are over 1000 combinations of predefined operators and types.

Carnegie Mellon University 51
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

C API: Quality of Life Issues

- For each predefined GraphBLAS operator, the C API requires a
separate C function for each of 11 predefined types:

GrB_PLUS_BOOL, GrB_PLUS_INT8, GrB_PLUS UINT8, GrB_PLUS_INT16, GrB_PLUS UINT16, GrB_PLUS_INT32,
GrB_PLUS_UINT32, GrB_PLUS_INT64, GrB_PLUS UINT64, GrB_PLUS FP32, GrB_PLUS_FP64.

- There are over 1000 combinations of predefined operators and types.

- Creates a large burden on implementers, who mostly resort to
automatic code generation

Carnegie Mellon University 52
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

C API: Quality of Life Issues

- For each predefined GraphBLAS operator, the C API requires a
separate C function for each of 11 predefined types:

GrB_PLUS_BOOL, . 5, GrB_PLUS_UINT16, GrB_PLUS_INT32,
GrB_PLUS_UINT eSCﬂptOrS HONS 32, GrB_PLUS_FP64.
n
for transformatio
- There are | 71395 structure-only, ef¢. ned operators and types.

Transpose, complement,

- Creates a large burden on implementers, who mostly resort to
automatic code generation

Carnegie Mellon University 53
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

C API: Quality of Life Issues

e User-defined types must be trivially copyable types (i.e. memcpy-able).

struct MyComplex {
int ireal; int iimag;

}s

Carnegie Mellon University 54
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

C API: Quality of Life Issues

e User-defined types must be trivially copyable types (i.e. memcpy-able).

struct MyComplex {
int ireal; int iimag;

}s
e This simplifies APl and improves performance, but limits expressiveness.

GrB_Type complex type;
GrB_Type_new(&complex_type,
sizeof (MyComplex));
GrB_Matrix A;
GrB_Matrix_new(&A, complex type, 100, 100);

Carnegie Mellon University 55
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

C API: Quality of Life Issues

e User-defined types must be trivially copyable types (i.e. memcpy-able).

struct MyComplex {
int ireal; int iimag;

}s
e This simplifies APl and improves performance, but limits expressiveness.

GrB_Type complex type;
GrB_Type_new(&complex_type,
sizeof (MyComplex));
GrB_Matrix A;
GrB_Matrix_new(&A, complex type, 100, 100);

e Users have already run into cases where they wish to use more complex
types.

Carnegie Mellon University 56
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

C API: Issues with Types

C APl users pass function pointers to custom operators

void scale 2(void *out, const void *in) {
(int)out = 2 * (*(int*)in);
}

GrB_UnaryOp my scale 2;
GrB_UnaryOp_new(&my_scale_2, scale 2,
GrB_INT32, GrB_INT32);

Carnegie Mellon University 57
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

C API: Issues with Types

C APl users pass function pointers to custom operators

void scale 2(void *out, const void *in) {
(int)out = 2 * (*(int*)in);
}

GrB_UnaryOp my scale 2;
GrB_UnaryOp_new(&my_scale_2, scale 2,
GrB_INT32, GrB_INT32);

Required for any operator on user-defined types, but also allows for operators on
built-in types left out of the spec
Function pointers (e.g. scale_2) then used in performance-critical inner loops:

GrB_apply(C, ..., my scale 2, A, desc);

Carnegie Mellon University 58
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Drafting a GraphBLAS C++ API

Carnegie Mellon University 59
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

() Berkeley

UNIVERSITY OF CALIFORNIA

C++ Has a Rich Type System

- User-defined types are first-class types

Carnegie Mellon University 60
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

UNIVERSITY OF CALIFORNIA

B CALI

& S,

5,

4 7.

H i

| 2

2 ¥ ~
1ac5: :

C++ Has a Rich Type System

- User-defined types are first-class types

- They simply need be copy constructible, etc.

Carnegie Mellon University 61
Software Engineering Institute

[DISTRIBUTI ON STATEMENT A] This material has been approved for public release and unlimited distribution.

C++ Has a Rich Type System

- User-defined types are first-class types
- They simply need be copy constructible, etc.

- Things like views can simplify APIs

Carnegie Mellon University 62
Software Engineering Institute

[DISTRIBUTI ON STATEMENT A] This material has been approved for public release and unlimited distribution.

Disclaimer: APl in Progress

- The GraphBLAS C++ APl is still in draft process

- Specific names and APIs may change

- There are currently two draft implementations, GBTL and RGRI

- Some slide contents may be in RGRI, but not necessarily in C++
spec (yet)

Carnegie Mellon University 63
Software Engineering Institute

[DISTRIBUTI ON STATEMENT A] This material has been approved for public release and unlimited distribution.

https://github.com/cmu-sei/gbtl
https://github.com/BenBrock/rgri

GraphBLAS Concepts

Algorithms Matrix
Generalized Matrix Multiply Elementwise Ops Tra nspose View MaSk

=H EH@kEH
Monoid Binary Op

Semiring

Carnegie Mellon University 64
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Concepts

Algorithms
Generalized Matrix Multiply Elementwise Ops Tra nspose View MaSk

=H EH@kEH
Monoid Binary Op

Semiring Vector

Carnegie Mellon University 65
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Concepts

Algorithms Matrix
Generalized Matrix Multiply Elementwise Ops Tra nspose View MaSk

=H EH@kEH
Monoid Binary Op

Semiring

Carnegie Mellon University 66
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Concepts

Algorithms Matrix
Generalized Matrix Multiply Elementwise Ops Tra nspose View MaSk

=H EH@kEH
Monoid Binary Op

SilRG

Semiring

Carnegie Mellon University 67
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Concepts

Algorithms Matrix
Generalized Matrix Multiply Elementwise Ops Tra nspose Vi ew MaSk

=H EH@kEH
Monoid Binary Op

Semiring

Carnegie Mellon University 68
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Matrix

- A matrix is a collection of stored values Matrix
- It has a shape (humber of rows, cols)

- It has a size (hnumber of stored values)

- Can access individual locations

Can iterate over values

Carnegie Mellon University 69
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Matrix

- A matrix is a collection of stored values Matrix
- It has a shape (humber of rows, cols)

- It has a size (hnumber of stored values)

- Can access individual locations

Can iterate over values

Carnegie Mellon University 70
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Matrix

- A matrix is a collection of stored values Matrix
- It has a shape (humber of rows, cols)

- It has a size (hnumber of stored values)

- Can access individual locations

Can iterate over values

Carnegie Mellon University 71
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Matrix

- A matrix is a collection of stored values

- It has a shape (hnumber of rows, cols)

- It has a size (number of stored values)

- Can access individual locations

Can iterate over values

Carnegie Mellon University 72
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Matrix

- A matrix is a collection of stored values

- It has a shape (hnumber of rows, cols)

- It has a size (number of stored values)

- Can access individual locations

- Can iterate over values

Carnegie Mellon University 73
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Matrix

- A matrix is a collection of stored values

- It has a shape (humber of rows, cols)

- Can iterate over values

Carnegie Mellon University 74
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Sparse Matrix - Similarities to std: :unordered_map

- Distinct set of keys

[((X))] . E 12@

[€€77] — 122
- Individual lookup/insertion by key [€y?] mm—> 121
[“b”] ”98

- Each key associated with a value

- Iteration over unordered range of
values

Carnegie Mellon University 75
Software Engineering Institute
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution

Sparse Matrix - Similarities to std: :unordered_map

- Distinct set of keys

[((X))] . E 12@

[€€77] — 122
- Individual lookup/insertion by key [€y?] mm—> 121
[“b”] ”98

- Each key associated with a value

- Iteration over unordered range of
values

Carnegie Mellon University 76
Software Engineering Institute
[DISTRIBUTION STATEMENT A] This mater ial has been approved for publ ic release and unl imited distribution.

Sparse Matrix - Similarities to std: :unordered_map

- Distinct set of keys

[((X))] ﬂ 12@

[€77] e 122
- Individual lookup/insertion by key [€y?] mm———— 121
[ccb»] _’)98

- Each key associated with a value

- Iteration over unordered range of
values

Carnegie Mellon University 77
Software Engineering Institute
[DISTRIBUTION STATEMENT A] This mater ial has been approved for publ ic release and unl imited distribution.

Sparse Matrix - Similarities to std: :unordered _map

- Distinct set of keys

[“X”] S 12@

[€77] e 122
- Individual lookup/insertion by key [€y?] mm———— 121
[crb»] _—)98

- Each key associated with a value

- Iteration over unordered range of
values

Carnegie Mellon University 78
Software Engineering Institute
[DISTRIBUTION STATEMENT A] This mater ial has been approved for publ ic release and unl imited distribution.

Sparse Matrix - *Differences™ from std: :unordered _map

- key_ type is pair-like type filled with
integral values [{6, 1}] =~ 179

- Matrix shape restricts valid key values [{2, 3}] =——— 122

- Implementation will use highly [{4, 3}] =————>>121
specialized sparse matrix formats {7, 0} 3 98

- Indices and value may not be
materialized in memory

Carnegie Mellon University 79
Software Engineering Institute
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution

Sparse Matrix - *Differences™ from std: :unordered _map

- key type is pair-like type filled with
integral values [{6, 1}] =~ 179

- Matrix shape restricts valid key values [{2, 3} =——122

- Implementation will use highly [{4, 3}] =————>>121
specialized sparse matrix formats {7, 0} 3 98

- Indices and value may not be
materialized in memory

Carnegie Mellon University 80
Software Engineering Institute
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution

Sparse Matrix - *Differences™ from std: :unordered _map

- key type is pair-like type filled with
integral values [{6, 1}] =~ 179

- Matrix shape restricts valid key values [{2, 3} =——122

- Implementation will use highly [{4, 3}] =————>>121
specialized sparse matrix formats {7, 0}] 3 98

- Indices and value may not be
materialized in memory

Carnegie Mellon University 81
Software Engineering Institute
[DISTRIBUTION STATEMENT A] This mater ial has been approved for publ ic release and unl imited distribution.

Sparse Matrix - *Differences* from std: :unordered_map

- key type is pair-like type filled with
integral values [{6, 1}] = 170

- Matrix shape restricts valid key values [{2, 3} =——122

- Implementation will use highly [{4, 3}] =————>>121
specialized sparse matrix formats {7, 0}] 3 98

- Indices and value may not be
materialized in memory

Carnegie Mellon University 82
Software Engineering Institute
[DISTRIBUTION STATEMENT A] This mater ial has been approved for publ ic release and unl imited distribution.

Sparse Matrix - *Differences* from std: :unordered_map

using key type

std: :pair<int, int>; 0
using map_type [{ ?

int;

1] =——=»120
[{2, 3} =122
[{4, 3}]=——>121
[{7, 0}] =228

unordered map<key type, map_type> x = ...;

auto iter = x.begin();

[blank] value = *iter;

Carnegie Mellon University 83
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Sparse Matrix - *Differences* from std: :unordered_map

std::pair<int, int>;
int;

using key type
using map_type

unordered map<key type, m

auto iter = x.begin();

[blank] value = *iter;

[{7, ©}] == 98

Carnegie Mellon University 84
Software Engineering Institute
[DISTRIBUTION STATEMENT A] This mater ial has been approved for publ ic release and unl imited distribution.

Sparse Matrix - *Differences* from std: :unordered_map

using key type

std: :pair<int, int>; 0
using map_type [{ ?

int;

1] =——=»120
[{2, 3} =122
[{4, 3}]=——>121
[{7, 0}] =228

unordered map<key type, map_type> x = ...;

auto iter = x.begin();

[blank] value = *iter;

Carnegie Mellon University 85
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Sparse Matrix - *Differences* from std: :unordered_map

using key type

std: :pair<int, int>; 0
using map_type [{ ?

int;

unordered map<key type, map_type> x = ...;

[{2, 3}] =—————122

[{4, 3}] —>121
using value _type = std::pair<const key type,
map_type>; [{7, @}] ”98

auto iter = x.begin();

value_type& value = *iter;

Carnegie Mellon University 86
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Sparse Matrix - *Differences* from std: :unordered_map

using key type

std: :pair<int, int>; 0
using map_type [{ ?

int;

unordered map<key type, map_type> x = ...;

[{2, 3}] =—————122

[{4, 3}] —>121
using value type = std::pair<const key type,
map_type>; [{7, @}] ”98

auto iter = x.begin();

value_type& value = *iter;

Carnegie Mellon University 87
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Sparse Matrix - *Differences* from std: :unordered_map

: 0, 1

h element exists 10, 1 === 120
using key_ type = s 1. Bac ialized SOmeWhere
using map_type = ir materia [{2, 3}] q 122

. ence

unordered map<key t in int& refer

n obtal :

2 fava\ue const pa|r<,,.>& [{4, 3}] ”121
O
auto iter = x.begin(refefence to key. (7. o} . o8
using value type = sle—pair<const key type,
map_type>;
value type& value = *iter; (Possible) Physical Memory Layout
{{0, 1}, 120} | {{4, 3}, 121} | {{7, O}, 98} |{{2, 3}, 122}

Carnegie Mellon University 88
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Sparse Matrix - *Differences* from std: :unordered_map

: [{0, 1}] = —
Each element exists 120
using key type = s 1. ea Alized somewhefe
using map_type = ir mate“a“z [{2, 3}] % 122
. ence
unordered map<key_ t in int& refer
n obtal :
O ’
auto iter = x.begin(refereﬂce to key. 7, o} . 08
using value type = sle—pair<const key type,
map_type>;
value type& value = *iter; (Possible) Physical Memory Layout
{{0, 1}, 120} | {{4, 3}, 121} | {7 O}, 98} ({{2, 3}, 122}
Carnegie Mellon University 89

AL
0% O,
& A 'P'L,
& 7.
g i
| 2
5) P\ .

UNIVERSITY OF CALIFORNIA

Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Sparse Matrix - *Differences™ from std: :unordered _map

nt exists
- wnert [{0, 1}] =—— 150
materiahzed some
e
obtain int& rejferenc; B N

[{4, 3}] == 121
[{7, 0}] > 98

value_ type&

(Possible) Physical Memory Layout

({0, 1}, 120} | {{4, 3}, 121} | {{7 O}, 98} ({{2, 3}, 122}

Carnegie Mellon University 90
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Sparse Matrix - *Differences™ from std: :unordered _map
ment exists ({6, 1}] > 196

&refefe“‘;e [{2, 3} —— 122

[{4, 3}] == 121
[{7, 0}] > 98

const pair<int, int>&

(Possible) Physical Memory Layout

({0, 1}, 120} | {{4, 3}, 121} | {{7 O}, 98} ({{2, 3}, 122}

Carnegie Mellon University 91
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Sparse Matrix - *Differences™ from std: :unordered _map
ment exists ({6, 1}] > 196

[{2, 3}] w122

[{4, 3}] == 121
[{7, 0}] > 98

const pair<int, int>&

(Possible) Physical Memory Layout

({0, 1}, 120} | {{4, 3}, 121} | {{7 O}, 98} ({{2, 3}, 122}

Carnegie Mellon University 92
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Spa rse Matrix Formats Compressed Sparse Row (CSR)

Storage Format

- Need to enable a variety of different Row Pointers
sparse matrix formats 0|2(3]3]3[6]6|7
Column Indices Values

9012|12(2|3]|4(3 812|5|7|1|2|9

8 2
7 1 2
Sparse Matrix
Representation 1

Carnegie Mellon University
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Spa rse Matrix Formats Compressed Sparse Row (CSR)

Storage Format

- Need to enable a variety of different Row Pointers
sparse matrix formats 0|2(3]3]3[6]6|7
Column Indices Values

9012|12(2|3]|4(3 812|5|7|1|2|9

8 2
7 1 2
Sparse Matrix
Representation 1

Carnegie Mellon University
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Spa rse Matrix Formats Compressed Sparse Row (CSR)

Storage Format

- Need to enable a variety of different Row Pointers
sparse matrix formats 0|2(3]3]3[6]6|7
Column Indices Values

9012|12(2|3]|4(3 812|5|7|1|2|9

8 2
7 1 2
Sparse Matrix
Representation 1

Carnegie Mellon University
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Spa rse Matrix Formats Compressed Sparse Row (CSR)

Storage Format

- Need to enable a variety of different Row Pointers
sparse matrix formats 0|2(3]3]3[6]6|7
Column Indices Values

9012|12(2|3]|4(3 812|5|7|1|2|9

- Most formats separate values and
indices, may not store some indices 8 2

Sparse Matrix
Representation 1

Carnegie Mellon University
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Spa rse Matrix Formats Compressed Sparse Row (CSR)

Storage Format

- Need to enable a variety of different Row Pointers
. 0|2|3|3|3|6|6]|7
sparse matrix formats Colurm Thdices — Values

9012|12(2|3]|4(3 812|5|7(1|2|9

- Most formats separate values and
indices, may not store some indices 8 2

- This means we need to use a custom

reference type for indices Sparse Matrix
Representation 1

AL
PR
&Ry
£ 7.
y %
| 2
% 7 & -~

UNIVERSITY OF CALIFORNIA

Carnegie Mellon University
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approve d for pu blic release an d unlimited distribution.

Spa rse Matrix Formats Compressed Sparse Row (CSR)

Storage Format

- Need to enable a variety of different Row Pointers

012|3|3|13|6|6]|7
Column Indices Values

aly121213(4(3 812|5|7|1|2|9

sparse matrix formats

- Most formats separate

indices, may ~ ,stom refer . g 2
Vector<b001>"
- This means eed to use a custom . A
reference type for indices Sparse Matrix
Representation 1
i e

Software Engineering Institute
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Data Structure

grb::matrix<float>

/

Type of stored values

Carnegie Mellon University 99
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

UNIVERSITY OF CALIFORNIA

ALY

& R

S

& 7.

%

| 2

<2 g 5
1560

Matrix Data Structure

grb::matrix<float, int>

/ b\

Type of stored values (Integer) type
used to store
indices

Carnegie Mellon University 100
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Data Structure: Attributes

Attributes
Shape
Dimensions of matrix

grb: :matrix<float> x({1024, 1024});

(Graph: number of vertices) size_t m = x.shape()[0];

. size t n = x.shape()[1];
Size

Number of stored values size_t nnz = x.size();

(Graph: number of edges)

Carnegie Mellon University 101
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Data Structure: Element Access

Element Access grb: :matrix<float, int> m({1024, 1024});
Direct access to stored values m[{0, 0}] = 12;

m:{lJ 1}: = 12;

m:{zJ 2}: = 12;
operator/] ({3, 3}] = 12;

Find or insert value by index
if (m.find({3, 3}) != m.end()) {

// Should run, just set elem 3, 3 to 12.

find }
Find value by index if (m.find({4, 4}) != m.end()) {
// Will not run, have not yet set elem 4, 4
}
Carnegie Mellon University 102

Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Data Structure: Iteration

Iteration grb::matrix<float, int> m = ...;
lteration over stored values for (auto iter = m.begin(); iter != m.end();
++iter) {

Can read: row, column, value float x = *iter;

}
Can write: value only for (autosd [i, 4, v] : m) {

v = 12;

lteration allows support for printf(“Elem. %d, %d set to %f\n”, i, j, Vv);
standard C++ algorithms.)

std: :reduce(m.begin(), m.end(), float(9));

Carnegie Mellon University 103
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Sparse Matrix Formats

- Many potential sparse

matrix formats

Index

Pointer

2

3

10
-o
T 1
1
| [
waetaw
P T
| [
| |
1 1
———tm—q——— -y
1 1
1 1
/I [SS [—— I— |

4
_'I'___r__'l___'l'__'l___
1
| S
1
1
1

5

1 1 1

1 1 1

1 1 1

B AN -

© 1 1 1

bemillicmc e M
© Matt Eding

CSC

Index Pointers

Indices

Data

Index
C S R Offset — +

of 8 2 i i Index Pointers -— -———r--q
—--- -=1--- 1 13 P
SN .. | e e)1 Offses
- ~ 1 1 1 1 1 - r"l
BT g 01 4 |3 |BB] opaa
. wn
RS TR T T R Indices £ T 1
o s o 6 1 4 1 1(2|3]|]4]|5
<! ! | E 2 @ 22 || 2| =2 s | . I
i H ; | - - | s 7 : 5 6|7 |8]9]10
Mo d_ b 4 4 1 Data T B —
FEEnEEETEsSy === 7 = 1 1 8 1 1 1112|1314 |15
CE 8 i glzlsz]2|2]®° I S Lo
B -
Eding | IR DD S -

Carnegie Mellon University 104
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

() Berkeley

IIIIIIIIIIII CALIFORNI

* Diagrams by Matt Eding at https://matteding.github.io/2019/04/25/sparse-matrices/

https://matteding.github.io/2019/04/25/sparse-matrices/

Sparse Matrix Formats

- Many potential sparse
matrix formats

Pointer
arse DENSE .l CSC
o I 1| Index Pointers

1

——————————————————

Index
3

Indices

- Each format has different -
iteration patterns “ SR o

of 8 2 i i Index Pointers —— ——rma
—--- -1 1 13
~ s vt Telafs]s]slele] SIS
e i o . T i 2 14 o3| 2
oI 1 -
PR T N S SO o T T
2 1 1 [1 1 1 o 1 Data
c o Indices =
L F--d--- : : o 6 4 1123|1415
< 1 fzl1]2 o 2 T | -
i - | 7 5 67|89 |10
wro Data '-
e SEE i : : 8 11|12 |13[14]15
o} : . 9 8257|129 pe—q--- A
LoodoooLl_) : 9
° LoodooL__ 4

Carnegie Mellon University 105
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

* Diagrams by Matt Eding at https://matteding.github.io/2019/04/25/sparse-matrices/

https://matteding.github.io/2019/04/25/sparse-matrices/

Sparse Matrix Formats

- Many potential sparse

matrix formats i SDENSE g o

e e o. H | Index Pointers
1 1 1 —— . - -
1 1 1] 1 1 1
SR —l 1 1 1
1 1 1 1 1
I) B B S 0 Y niiely bl e il st !
- -
1 1 1 1
1 1 1 1
1 1 1 1

"""""
||||||
|||||||

- Each format has different =i T o
iteration patterns “ CSR

TR ==t DIA
o| 8 2 Index Pointers
—— - +—--4--- 1 13
o 5 o|z2lzlz]z[6]s Off=Ets
O et R R - 2 14 o=
. . SR T T S S s T B
e [T T T R | 1 1 Data
- Inefficien nfor P * |
5 Lodo—- : : S : 4 1|2]3]als
< 72z A T | —
- e | [g 7 ! 5 678910
wni 1 1 1 Dat | A A—
° ° ° [S TS (S - — : P 8 P 1112131415
articular iteration oraer 1 1 B EEEEEED
---------- T e[
CiMalkEding: e L |

Carnegie Mellon University 106
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

* Diagrams by Matt Eding at https://matteding.github.io/2019/04/25/sparse-matrices/

https://matteding.github.io/2019/04/25/sparse-matrices/

Matrix Data Structure

grb::matrix<float, int, grb::column>

/ N X

Type of stored values (Integer) type Compile-time
used to store hint about
indices storage format

Carnegie Mellon University 107

AL
0% O,
& A 'P'L,
£ 7.
H i
| 2
2 7 Rk .

UNIVERSITY OF CALIFORNIA

Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Data Structure: Iteration

- Unordered iteration over stored | 8P :matrix<float, int> m = ..

values for (auto iter = m.begin(); iter != m.end();
++iter) {
float x = *iter;

¥

for (auto&& [i, j, v] : m) {
v = 12;
printf(“Elem. %d, %d set to %f\n”,

i, J, V);

std: :reduce(m.begin(), m.end(), float(9));

Carnegie Mellon University 108
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Data Structure: Iteration

- Unordered iteration over stored | 80 :matrix<float, int> m = ...;

values for (auto iter = m.begin(); iter != m.end();
++iter) {
float x = *iter;

- Range of size() \
matrix_entry<T, I> elements
for (auto&& [i, j, v] : m) {

v = 12;

printf(“Elem. %d, 7%d set to %f\n”,

i, J, V);

std: :reduce(m.begin(), m.end(), float(9));

Carnegie Mellon University 109
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Data Structure: Iteration

- Unordered iteration over stored | 8rb::matrix<float, int> m = ...;
values for (auto iter = m.begin(); iter != m.end();
++iter)

. float x = *iter;
- Range of size() \

matrix_entry<T, I> elements
for (auto&& [i, j, v] : m) {

v = 12;
- Tuple-like type with access to printf(“Elem. %d, %d set to %f\n”,
indices and T& reference to L3, V)
value }
std: :reduce(m.begin(), m.end(), float(9));
CamegwMeﬂonunwerSlty110 ___

Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Concepts

Algorithms Matrix
Generalized Matrix Multiply Elementwise Ops Tra nspose View MaSk

Monoid Binary Op

Semiring

Carnegie Mellon University 1M1
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Binary Operators

grb::ewise add(c, ..., a, b,

Functors that operate on two
std: :plus<int>());

inputs, producing a single output

auto my op = [|(auto a, auto b) {

T x U ->V return a*b + 2;
¥

Rule: types T, U, and V are grb::ewise mult(c, ..., a, b, my op);
determined by matrices. Op. must
acceptT, U, V.

Carnegie Mellon University 12
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

AL

& R

S

& 7.

%

| 2

<2 g 5
1560 ,

UNIVERSITY OF CALIFORNIA

Monoids: Binary Operators with an ldentity

- Monoids are mathematical objects, consisting of:

Carnegie Mellon University 113
Software Engineering Institute
[DISTRIBUTION STATEMENT A] This mater ial has been approved for publ ic release and unl imited distribution.

Monoids: Binary Operators with an ldentity

- Monoids are mathematical objects, consisting of:

- A commutative binary operator

Carnegie Mellon University 114
Software Engineering Institute

[DISTRIBUTI ON STATEMENT A] This material has been approved for public release and unlimited distribution.

Monoids: Binary Operators with an ldentity

- Monoids are mathematical objects, consisting of:

- A commutative binary operator

- Atype T

Carnegie Mellon University 115
Software Engineering Institute

[DISTRIBUTI ON STATEMENT A] This material has been approved for public release and unlimited distribution.

Monoids: Binary Operators with an ldentity

- Monoids are mathematical objects, consisting of:

- A commutative binary operator
- Atype T

- A mathematical identity

Carnegie Mellon University 116
Software Engineering Institute

[DISTRIBUTI ON STATEMENT A] This material has been approved for public release and unlimited distribution.

Monoids

using grb;

- Given a binary operator fn and
a type T, we Can ask: bool test = is monoid v<std::plus<>, int>;

Carnegie Mellon University 117
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Monoids

using grb;

- Given a binary operator fn and
a type T, we Can aSk: bool test = is monoid v<std::plus<>, int>;

Does binary op. fn form a // Prints “1” for true

std::cout << test << std::endl;
monoid on type T?

Carnegie Mellon University 118
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Monoids

using grb;

- Given a binary operator fn and
a type T, we Can aSk: bool test = is monoid v<std::plus<>, int>;

Does binary op. fn form a // Prints “1” for true

std::cout << test << std::endl;
monoid on type T?

int identity = monoid traits<std::plus<>,
int>::identity();
- Depends on whether

monoid_traits specialization

exists
Carnegie Mellon University 119

Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Monoids

using grb;

- Given a binary operator fn and
a type T, we Can ask: bool test = is monoid v<std::plus<>, int>;

Does binary op. fn form a // Prints “1” for true
std::cout << test << std::endl;

monoid on type T?

int identity = monoid traits<std::plus<>,
int>::identity();

- Depends on whether

' ' Alig At Prints “@”, since identity for std::pl
monoid_traits SpeCIallzatlon // Prints since identity for s plus<>

// on type int 1is ©°

exists std::cout << identity << std::endl;
Carnegie Mellon University 120

Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Obtaining a Monoid

- Use pre-defined binary ops such
as grb::plus, grb::multiplies

using grb;

// Using a pre-defined binary op
grb: :plus<> fn;
std::plus<> fn_stl;

bool g
bool s

is _monoid<grb::plus<>, int>::value;
is _monoid<std: :plus<>, int>::value;

std::cout << g << “ »” << s << std::endl;

Carnegie Mellon University 121
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Obtaining a Monoid

- Use pre-defined binary ops such
as grb::plus, grb::multiplies

Define a specialization of
grb::monoid traits

using grb;

// Using a pre-defined binary op
grb: :plus<> fn;
std::plus<> fn_stl;

bool g
bool s

is _monoid<grb::plus<>, int>::value;
is _monoid<std::plus<>, int>::value;

std::cout << g << “ »” << s << std::endl;

Carnegie Mellon University 122
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Obtaining a Monoid

. . struct my plus {
- Use pre'deflned blnary Oops such float operator()(float a, float b) {

as grb::plus, grb::multiplies return a + b;
}

Define a specialization of float identity() {

'] turn 0.0f;
grb: :monoid_traits }Peum

}s5
Add identity() method to op

int i =
grb::monoid traits<my plus, int>::identity();

Carnegie Mellon University 123
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Obtaining a Monoid

. . struct my plus {
- Use pre'deflned blnary Oops such float operator()(float a, float b) {

as grb::plus, grb::multiplies return a + b;
}

Define a specialization of float identity() {

. . t 0.0f;
grb: :monoid_traits L

}s5
Add identity() method to op

int i =
grb::monoid traits<my plus, int>::identity();

Carnegie Mellon University 124
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Obtaining a Monoid

- Use pre-defined binary ops such
as grb::plus, grb::multiplies
auto my op = [](auto a, auto b) {
return a * b;

- Define a specialization of };
grb::monoid traits

auto my monoid = make_monoid(my op, 1);

Add identity() method to op

- Use make_monoid helper function

Carnegie Mellon University 125
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

() Berkeley

UNIVERSITY OF CALIFORNIA

Semirings

auto semiring =

Semlrlngs combine a blnary op b grb::plus multiplies semiring();

and a monoid m, where b
distributes over m

Carnegie Mellon University 126
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Semirings

o o . o auto semiring =
Se;nrlngs C.Odmbmeha blnbary °P o grb::plus_multiplies_semiring();
dnd a monoia m, wnere

distributes over m

1) Pre-define a number of semirings

Carnegie Mellon University 127
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Semirings

Semirings combine a binary op b auto semiring - L .
grb::plus multiplies semiring();

and a monoid m, where b

auto my times = [](auto a, auto b) {

distributes over m
return a*b;

}s
1) Pre-define a number of semirings | auto my plus - [](auto a, auto b) {

return a+b;

2) Users can build semirings with }s
.. auto m_plus = grb::make_monoid(my_plus, 0);
make semiring
auto my_semiring =
grb: :make_semiring(m_plus, my_times);
Carnegie Mellon University 128

Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Semirings

o o . o auto semiring =
Se;nrlngs C.Odmbmeha blnbary °P o grb::plus_multiplies_semiring();
dnd a monoia m, wnere

auto my_times auto a, auto b) {
return a*b;

¥
1) Pre-define a number of semirings | auto my plus = [](auto a, auto b) {

return a+b;

distributes over m

2) Users can build semirings with }s
.. auto m_plus = grb::make_monoid(my_plus, 0);
make semiring
auto my_semiring =
grb: :make_semiring(m_plus, my_times);
Carnegie Mellon University 129

Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Semirings

Semirings combine a binary op b auto semiring - L .
grb::plus multiplies semiring();

and a monoid m, where b

auto my times = [](auto a, auto b) {

distributes over m
return a*b;

. }s
1) Pre-define a number of semirings | auto my plus auto a, auto b) {
return a+b;
2) Users can build semirings with s
.. auto m_plus = grb::make_monoid(my_plus, 0);
make semiring
auto my_semiring =
grb: :make_semiring(m_plus, my_times);
Carnegie Mellon University 130

Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Semirings

Semirings combine a binary op b auto semiring - L .
grb::plus multiplies semiring();
and a monoid m, where b
auto my times = [](auto a, auto b) {
return a*b;
}s
1) Pre-define a number of semirings | auto my plus - [](auto a, auto b) {

return a+b;

distributes over m

2) Users can build semirings with s
L. auto m plus = grb::make monoid(my plus, ©0);
make semiring
auto my semiring =
grb: :make_semiring(m_plus, my_ times);
Carnegie Mellon University 131

Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Semirings

Semirings combine a binary op b auto semiring - L .
grb::plus multiplies semiring();
and a monoid m, where b
auto my times = [](auto a, auto b) {
return a*b;
}s
1) Pre-define a number of semirings | auto my plus - [](auto a, auto b) {

return a+b;

distributes over m

2) Users can build semirings with }s
.. auto m_plus = grb::make_monoid(my plus, ©0);
make semiring
auto my semiring
grb::make semiring(m plus, my times);
Carnegie Mellon University 132

Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Concepts

Algorithms Matrix
Generalized Matrix Multiply Elementwise Ops Tra nspose View MaSk

=H EH@kEH
Monoid Binary Op

Semiring Vector

Carnegie Mellon University 133
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Views

Views provide a (typically transformed)
view of a matrix grb::matrix<float> a = ...;

, , auto a_t = grb::transpose(a);
We can create views representing
transpose, structure, complement, etC. | jyto0 b = grb::multiply(a, a t);
This simplifies API, removes some of
need for descriptors.

Carnegie Mellon University 134
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Views

Views provide a (typically transformed)
view of a matrix grb::matrix<float> a = ...;

, , auto a_t = grb::transpose(a);
We can create views representing
transpose, structure, complement, etC. | jyto0 b = grb::multiply(a, a t);
This simplifies API, removes some of
need for descriptors.

Carnegie Mellon University 135
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Transform Views

Provide a const view of a matrix
with each stored value
transformed

Carnegie Mellon University
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

grb::matrix<float> a = ...;

auto t =
[1(grb::matrix_entry<float> e) {
return true;

}s
auto a_t = grb::transform view(a, t);

for (auto&& [i, j, v] : a_ t) {
printf(“Elem (%d, %d): %f\n”,

i, j, v);

Matrix Transform Views

Provide a const view of a matrix grb::matrix<tloat> a = ...;

with each stored value auto t -
[1(grb::matrix_entry<float> e) {

return true;

s

transformed

- Can be used to create
structure-only view

auto a_t = grb::transform view(a, t);

for (auto&& [i, j, v] : a_ t) {
printf(“Elem (%d, %d): %f\n”,

i, j, v);

Carnegie Mellon University 137
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Transform Views

Matrix A

Provide a const view of a matrix
with each stored value
transformed

- Can be used to create
structure-only view

Carnegie Mellon University 138
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Transform Views

Matrix A

Provide a const view of a matrix
with each stored value
transformed

- Can be used to create
structure-only view

Carnegie Mellon University 139
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Masks

Carnegie Mellon University 140
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

() Berkeley

UNIVERSITY OF CALIFORNIA

GraphBLAS Masks

Carnegie Mellon University 141
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

() Berkeley

UNIVERSITY OF CALIFORNIA

GraphBLAS Masks

X
Il

Carnegie Mellon University 142
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

AL
0% O,
& A 'P'L,
£ 7.
H i
| 2
2 7 Rk .

UNIVERSITY OF CALIFORNIA

GraphBLAS Masks

Apply output maskK

Carnegie Mellon University 143
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Masks

Apply output maskK

10

Carnegie Mellon University 144
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Masks

Apply output maskK

10

Carnegie Mellon University 145
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Masks

Apply output maskK

- Range of matrix elements -

Carnegie Mellon University 146
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

AL
0% O,
& A 'P'L,
£ 7.
H i
| 2
2 7 Rk .

UNIVERSITY OF CALIFORNIA

GraphBLAS Masks

Apply output maskK

- Range of matrix elements

10

- Element-wise access methods X1 @

Ol=a|la|l

Carnegie Mellon University 147
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

AL
0% O,
& A 'P'L,
£ 7.
H i
| 2
2 7 Rk .

UNIVERSITY OF CALIFORNIA

GraphBLAS Masks

Apply output maskK

- Range of matrix elements

10

- Element-wise access methods X1 @

Ol=a|la|l

- Shape

Carnegie Mellon University 148
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

UNIVERSITY OF CALIFORNIA

B CALI

& S,

5,

4 7.

H i

| 2

2 ¥ ~
1ac5: :

GraphBLAS Masks -
Apply output mas
- Range of matrix elements
8 1 1 10
1| |5
- Element-wise access methods X1 @ 11
7 1 2 1 0

- Shape

- Stored values convertible to bool

Carnegie Mellon University 149
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Concepts

Algorithms Matrix
Generalized Matrix Multiply Elementwise Ops Tra nspose View MaSk

=H EH@kEH
Monoid Binary Op

Semiring Vector

Carnegie Mellon University 150
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Algorithms

he primary algorithms of interest are:

1) Generalized matrix multiplication -- using mask and arbitrary
semiring

2) Elementwise operations

Carnegie Mellon University 151
Software Engineering Institute
[DISTRIBUTION STATEMENT A] This mater ial has been approved for publ ic release and unl imited distribution.

Matrix Multiply

using grb;

Accepts matrices, mask, semiring, , ,
matrix<float> a = get matrix(...);

accumulator, and flag to control matrix<float> b = get matrix(...);

merge behavior
matrix<float> c({a.shape()[0], b.shape()[1]});

mxm(c, plus<>{}, a, b,
no_mask{}, plus multiplies semiring{});

Carnegie Mellon University 152
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Multiply

using grb;

Accepts matrices, mask, semiring, , ,
matrix<float> a = get matrix ;

accumulator, and flag to control matrix<float> b = get matrix .

merge behavior
matrix<float> c({a.shape()[0], b.shape()[1]});

mxm(c, plus<>{}, a, b,
no_mask{}, plus multiplies semiring{});

Carnegie Mellon University 153
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Multiply

using grb;

Accepts matrices, mask, semiring, , ,
matrix<float> a = get matrix(...);

accumulator, and flag to control matrix<float> b = get matrix(...);

merge behavior
matrix<float> c({a.shape()[0], b.shape()[1]});

mxm(c, plus<>{}, a, b,
no_mask{}, plus multiplies semiring{});

Carnegie Mellon University 154
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Multiply

using grb;

Accepts matrices, mask, semiring, , ,
matrix<float> a = get matrix(...);

accumulator, and flag to control matrix<float> b = get matrix(...);

merge behavior
matrix<float> c({a.shape()[0], b.shape()[1]});

mxm(c, plus<>{}, a, b,
no_mask{}, plus multiplies semiring{});

Carnegie Mellon University 155
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Multiply

Accepts matrices, mask, semiring,
accumulator, and flag to control
merge behavior

Carnegie Mellon University
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

using grb;

matrix<float> a = get matrix(...);
matrix<float> b = get matrix(...);

matrix<float> c({a.shape()[0], b.shape()[1]});

mxm(c, plus<>{}, a, b
no mask{}, plus multiplies semiring{});

Matrix Multiply

using grb;

Accepts matrices, mask, semiring, , ,
matrix<float> a = get matrix(...);

accumulator, and flag to control matrix<float> b = get_matrix(...);

merge behavior
matrix<float> c({a.shape()[0], b.shape()[1]});

Input matrices could be nxm(c, plus<>{}, transpose(a), b
gr'b; ‘matrix or views no_mask{}, plus_multiplies_semiring{});

Carnegie Mellon University 157
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Multiply

using grb;
Accepts matrices, mask, semiring, , ,

matrix<float> a = get matrix(...);
accumulator, and flag to control matrix<float> b = get matrix(...);

merge behavior
matrix<float> c({a.shape()[0], b.shape()[1]});

Input matrices could be nxm(c, plus<>{}, transpose(a), b
gpb; ‘matrix or views no_mask{}, plus_multiplies_semiring{});

Similar to C API

Carnegie Mellon University 158
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Multiply Definition

template <typename
typename
typename
typename
typename
typename

CMatrixType
Accumulator,
AMatrixType,
BMatrixType,
MaskType,
Semiring>

void mxm(CMatrixType&& c, Accumulator&& acc,
AMatrixType&& a, BMatrixType&& b,
MaskType&& mask, Semiring&& s);

Carnegie Mellon University 159
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

AL
0% O,
& A 'P'L,
£ 7.
H i
| 2
2 7 Rk .

UNIVERSITY OF CALIFORNIA

Matrix Multiply Definition

MatrixRange - an output range of
matrix elements, plus element access
and shape

Carnegie Mellon University
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

template <typename
typename
typename
typename
typename
typename

CMatrixType
Accumulator,
AMatrixType,
BMatrixType,
MaskType,
Semiring>

void mxm(CMatrixType&& c, Accumulator&& acc,
AMatrixType&& a, BMatrixType&& b,
MaskType&& mask, Semiring&& s);

Matrix Multiply Definition

MatrixRange - an output range of ,
. template <MatrixRange C
matrix elements, plus element access typename Accumulator,

and shape typename AMatrixType,
typename BMatrixType,
typename MaskType,
typename Semiring>
void mxm(C&& c, Accumulator&& acc,
AMatrixType&& a, BMatrixType&& b,
MaskType&& mask, Semiring&& s);

Carnegie Mellon University 161
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Multiply Definition

MatrixRange - an output range of ,
. template <MatrixRange C,
matrix elements, plus element access typename Accumulator,

and shape typename AMatrixType
typename BMatrixType
typename MaskType,
typename Semiring>
void mxm(C&& c, Accumulator&& acc,
AMatrixType&& a, BMatrixType&& b,
MaskType&& mask, Semiring&& s);

Carnegie Mellon University 162
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Multiply Definition

MatrixRange - an output range of ,
template <MatrixRange C,

matrix elements, plus element access typename Accumulator,
and shape ConstMatrixRange A
ConstMatrixRange B
ConstMatrixRange - an input range typename MaskType,
of matrix elements, plus const typename Semiring>
P void mxm(C&& c, Accumulator&& acc,
element access and shape A& a, AR& b,
MaskType&& mask, Semiring&& s);
Carnegie Mellon University 163

Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Multiply Definition

MatrixRange - an output range of ,
template <MatrixRange C,

matrix elements, plus element access typename Accumulator,
and shape ConstMatrixRange A,
ConstMatrixRange B,
ConstMatrixRange - an input range typename MaskType
of matrix elements, plus const typename Semiring>
P void mxm(C&& c, Accumulator&& acc,
element access and shape A& a, AR& b,
MaskType&& mask, Semiring&& s);
Carnegie Mellon University 164

Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Multiply Definition

MatrixRange - an output range of ,
template <MatrixRange C,

matrix elements, plus element access typename Accumulator,
and shape ConstMatrixRange A,
ConstMatrixRange B,

ConstMatrixRange - an input range MaskMatrixRange M

: typename Semiring>
of matrix elements, plus const :

P void mxm(C&& c, Accumulator&& acc,

element access and shape AR& a, B&& b,

M&& mask, Semiring&& s);
MaskMatrixRange - ConstMatrixRange

with values convertible to bool

Carnegie Mellon University 165
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Matrix Times Matrix

Matrix Times Matrix (mxm)
grb: :matrix<float> c = ...;
grb: :matrix<float> a = ...;
Very similar to C API
auto a_ t = grb::transpose(a);
auto mask = grb::structure(c); Accepts matrices, mask, accumulator,
semiring, and flag to control merge
grb::mxm(c, mask, .
grb::plus{}, behavior
grb::plus_times semiring{},
a, a_t); Input matrices could be grb: :matrix
or views
Carnegie Mellon University 166

AL

& R

& A 'P'L,

£ 7.

%

| 2

) Rk ~
1560 5

UNIVERSITY OF CALIFORNIA

Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Interoperability with C++ Algorithms

- C++ GraphBLAS matrices are ranges, which allows us to use
C++ standard algorithms

Carnegie Mellon University 167
Software Engineering Institute
[DISTRIBUTION STATEMENT A] This mater ial has been approved for publ ic release and unl imited distribution.

Interoperability with C++ Algorithms

- C++ GraphBLAS matrices are ranges, which allows us to use
C++ standard algorithms

- Area for exploration: implementing GraphBLAS operations with
standard C++ algorithms

Carnegie Mellon University 168
Software Engineering Institute

[DISTRIBUTI ON STATEMENT A] This material has been approved for public release and unlimited distribution.

Interoperability with C++ Algorithms

- C++ GraphBLAS matrices are ranges, which allows us to use
C++ standard algorithms

- Area for exploration: implementing GraphBLAS operations with
standard C++ algorithms

- One dimensional iteration somewhat limited, but 2D iteration
concepts are coming (next slide)

Carnegie Mellon University 169
Software Engineering Institute

[DISTRIBUTI ON STATEMENT A] This material has been approved for public release and unlimited distribution.

Interoperability with C++ Graph Library

- C++ graph library proposal®™?22 provides standard concepts for
iterating over graphs, graph algorithms

- We aren’t currently using multidimensional iteration

- We should closely examine opportunities for interoperability

- Implement mxm using graph library concepts
- Build adapters for graph library concepts to fulfill GrB concepts, vice-versa

Carnegie Mellon University 170
Software Engineering Institute
[DISTRIBUTION STATEMENT A] This mater ial has been approved for publ ic release and unl imited distribution.

https://github.com/pratzl/graph

Wrap-Up

We can use matrix algebra to implement graph algorithms
Can support a variety of different sparse matrix formats

Provide high-level interfaces for algorithms

Carnegie Mellon University 171
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

GraphBLAS Links

Brief Advertisement

araphblas.org

If you enjoy parallel programming: github.com/cmu-sei/gbtl
github.com/BenBrock/rgri

“PGAS in C++: A Portable Abstraction
for Distributed Data Structures”

Tuesday, 4:45 PM MDT

Location: D) Va||ey 1 Ben Brock, PhD Candidate | | Scott McMillan, Principal
at UC Berkeley Research Engineer at
Data structures and algo- | | CMU SEI
. rithms for large-scale
Vlrtual: Wed neSday, 12:30 PM MDT parallel systegms. Graph/ML/AIl algorithms
Please hire me' for large- and small-
° scale parallel systems.

Carnegie Mellon University 172
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

https://graphblas.github.io/
https://github.com/cmu-sei/gbtl
https://github.com/BenBrock/rgri

