
Add cover slide here

1

Please do not redistribute slides without
prior permission.

2

Back to Basics:
Pointers
Mike Shah, Ph.D.

@MichaelShah | mshah.io | www.youtube.com/c/MikeShah
3:15 pm MDT, Mon. October 25

60 minutes | Introductory Audience
3

https://twitter.com/MichaelShah
http://mshah.io
http://www.youtube.com/c/MikeShah

Abstract
Pointers are scary. Unfortunately that previous statement is what many beginners take away when
first learning about pointers and the C++ language. In this talk, we will discuss the low level
foundations of what a raw pointer is--a variable that stores an address. We will then see some
examples of raw pointers for creating data structures, passing data into functions, dynamically
allocated arrays, and function pointers. This portion will cover capabilities of raw pointers and
syntax: * (asterisk), .(dot) , -> (arrow). By the end of the first portion of the talk, we will find pointers
are not scary, but just another tool we can use in our programmers’ toolbox.

After learning the foundations, we are then going to discuss some of the pitfalls of pointers (e.g.
nullptr’s, double frees, memory leaks). However, with modern C++, we can abstract away some of
these problems using various “smart pointers” built into the standard library in <memory>.
Attendees will leave understanding how we can use pointers in a safe manner through the
standard library smart pointer abstractions.

4

The abstract that you read and enticed
you to join me is here!

Code for the talk
● Located here: https://github.com/MikeShah/cppcon2021

5

https://github.com/MikeShah/cppcon2021

Who Am I?
by Mike Shah

● Assistant Teaching Professor at Northeastern University in
Boston, Massachusetts.
○ I teach courses in computer systems, computer graphics,

and game engine development.
○ My research in program analysis is related to performance

building static/dynamic analysis and software visualization
tools.

● I do consulting and technical training on modern C++,
Concurrency, OpenGL, and Vulkan projects
○ (Usually graphics or games related)

● I like teaching, guitar, running, weight training, and anything in
computer science under the domain of computer graphics,
visualization, concurrency, and parallelism.

● Contact information and more on: www.mshah.io
6

http://www.mshah.io

One of my fondest programming
memories was...

7

... when I used a pointer correctly on the first try

8

● And maybe as a C or C++
programmer you have a similar
memory or ‘eureka’ moment.

○ My sophomore year in college where I
remember doing lots of small pointer
examples similar to the right

○ This is what it took for me to
understand pointers

■ It was supremely satisfying to see
my code compile successfully

● (Knowing that I did not
‘guess’ where the * and
the & go.)

But truth be told, it was probably in
graduate school....

9

... that I really understood the power of pointers
● It was at this point that I had more computer systems knowledge.

○ I had a mental model of a computer's memory
○ I was building data structures which were using pointers
○ And I could explain how to use pointers to other students.

● And post graduate school, I think about ‘ownership’, ‘lifetime’, ‘levels of
indirection’ for performance and readability (Demeter's Law), and memory-safety.

So for this talk--I want to make:

1.) Pointers not be scary -- by showing their usage
a.) (i.e., you don’t have to guess where an asterisk goes)

2.) Show how to use pointers and avoid potential pitfalls
a.) Using lots of small examples, ranging from simple to more advanced usages (e.g., function pointers)

3.) And to appreciate that we have pointers in C++
a.) Closing with modern C++ features (std::function and smart pointers)

10

https://en.wikipedia.org/wiki/Law_of_Demeter

... that I really understood the power of pointers
● It was at this point that I had more computer systems knowledge.

○ I had a mental model of a computer's memory
○ I was building data structures which were using pointers
○ And I could explain how to use pointers to other students.

● And post graduate school, I think about ‘ownership’, ‘lifetime’, ‘levels of
indirection’ for performance and readability (Demeter's Law), and memory-safety.

So for this talk--I want to make:

1.) Pointers not be scary -- by showing their usage
a.) (i.e., you don’t have to guess where an asterisk goes)

2.) Show how to use pointers and avoid potential pitfalls
a.) Using lots of small examples, ranging from simple to more advanced usages (e.g., function pointers)

3.) And to appreciate that we have pointers in C++
a.) Closing with modern C++ features (std::function and smart pointers)

11

My disclaimer to C++ experts in attendance (or
online) -- this is an introductory level talk focusing on

fundamentals. I don’t want to lose future C++
programmers because they get scared of pointers.

However, it may be useful to see how I teach the
topic, or otherwise how I introduce pointers in relation

to modern C++ features towards the end.

https://en.wikipedia.org/wiki/Law_of_Demeter

Let’s start from the beginning*
What is a pointer?

12*Although, not the exact beginning. My internet research shows the invention of pointers get credited to Harold Lawson in 1964 for the invention, though pointers
may have been invented by Kateryna Yushchenko in the Address Programming Language around 1955.

What is a Pointer? (1/8)
● A pointer is a variable that stores

the memory address of a specific
object type

○ (Let’s look at an example)

13

What is a Pointer? (2/8)
● A pointer is a variable that stores

the memory address of a specific
object type

●

14

● px is a pointer
● px’s type is int*

○ px can stores addresses of
integers.

What is a Pointer? (3/8)
● A pointer is a variable that stores

the memory address of a specific
object type

●

15

● px is a pointer
● px’s type is int*

○ px can stores addresses of
integers.

● I retrieve the address of a variable using the
ampersand operator (&)

○ You could also use &(x) if you like
■ e.g., int* px = &(x);

What is a Pointer? (4/8)
● A pointer is a variable that stores

the memory address of a specific
object type

16

● px is a pointer
● px’s type is int*

○ px can stores addresses of
integers.

● I retrieve the address of a variable using the
ampersand operator (&)

○ You could also use &(x) if you like
■ e.g., int* px = &(x);

● The ‘=’ (assignment operator) stores the
address of x (remember, &x) inside of px.

○ We say ‘px points to x’

What is a Pointer? (5/8)
● A pointer is a variable that stores

the memory address of a specific
object type

● So if ‘px’ stores the address of x
this allows us to:

○ access the value stored in ‘x’ through
px indirectly.

17

What is a Pointer? (6/8)
● A pointer is a variable that stores

the memory address of a specific
object type

● So if ‘px’ stores the address of x
this allows us to:

○ access the value stored in ‘x’ through
px indirectly.

18

● It’s clear x is storing an int with value 7

What is a Pointer? (7/8)
● A pointer is a variable that stores

the memory address of a specific
object type

● So if ‘px’ stores the address of x
this allows us to:

○ access the value stored in ‘x’ through
px indirectly.

●

19

● It’s clear x is storing an int with value 7

● Here we see ‘px’ again
● And we see an ‘asterisk’ before px

○ When an asterisk is before the variable name
(and the type is a pointer), it means to retrieve
the value at the address we point to.

■ This is called dereferencing

What is a Pointer? (8/8)
● A pointer is a variable that stores

the memory address of a specific
object type

● So if ‘px’ stores the address of x
this allows us to:

○ access the value stored in ‘x’ through
px indirectly.

●

20

● It’s clear x is storing an int with value 7

● Here we see ‘px’ again
● And we see an ‘asterisk’ before px

○ When an asterisk is before the variable name
(and the type is a pointer), it means to retrieve
the value at the address we point to.

■ This is called dereferencing

Visualizing Pointers and Memory
Let’s work on building our mental model when thinking about pointers

21

Visualizing our first program (1/5)

22

● When learning pointers, it’s often
useful to draw (on pen and paper)
our memory

○ Let’s represent our variables as boxes
for now.

Visualizing our first program (2/5)

23

● When learning pointers, it’s often
useful to draw (on pen and paper)
our memory

○ Let’s represent our variables as boxes
for now.

So every variable has some address (e.g., 0x1001)
and then at that address we can store some value
(e.g., 7)

Visualizing our first program (3/5)

24

● When learning pointers, it’s often
useful to draw (on pen and paper)
our memory

○ Let’s represent our variables as boxes
for now.

So every variable has some address (e.g., 0x1001)
and then at that address we can store some value
(e.g., 7)

int* (i.e., pointer to int) is no different than a
variable and has an address (e.g., 0x5021).

However, recall that pointers store an address as
their value (so in this case, the address of x, which
is at 0x1001)

Visualizing our first program (4/5)

25

● When learning pointers, it’s often
useful to draw (on pen and paper)
our memory

○ Let’s represent our variables as boxes
for now.

So every variable has some address (e.g., 0x1001)
and then at that address we can store some value
(e.g., 7)

int* (i.e., pointer to int) is no different than a
variable and has an address (e.g., 0x5021).

However, recall that pointers store an address as
their value (so in this case, the address of x, which
is at 0x1001) So the major ‘pro tip’ is to try to draw your pointers

Visualizing our first program (5/5)

26

● When learning pointers, it’s often
useful to draw (on pen and paper)
our memory

○ Let’s represent our variables as boxes
for now.

○ Here’s an animation of what is going
on in memory when we assign a
pointer to the address of a variable.

So the major ‘pro tip’ is to try to draw your pointers

Let’s visualize memory
So we can more concretely understand what a pointer is

27

Working with Pointers Means Thinking about Memory

● We have different layers and different types of
memory locally available on our machines

○ Registers
○ Cache
○ DRAM (i.e., working memory)
○ Hard Drive(s)
○ (And even non-local memory like a Networked drive (or

cloud storage))

● For this talk, let’s assume all of our memory is in
working memory (DRAM)

○ This means we have an array of randomly addressable
memory where we can store data

28

https://en.wikipedia.org/wiki/Dynamic_random-access_memory

Visualizing Memory - Linear array of addresses (1/11)

29

● Memory in our machines is
represented as a linear array of
addresses (And let’s assume we
have random access)

○ At each of these addresses we can
store a value (i.e, some amount of
bytes)

■ Depending on the data type, we
use different amounts of
memory.

Visualizing Memory - Linear array of addresses (2/11)

30

● Memory in our machines is
represented as a linear array of
addresses (And let’s assume we
have random access)

○ At each of these addresses we can
store a value (i.e, some amount of
bytes)

■ Depending on the data type, we
use different amounts of
memory.

Visualizing Memory - Linear array of addresses (3/11)

31

● Memory in our machines is
represented as a linear array of
addresses (And let’s assume we
have random access)

○ At each of these addresses we can
store a value (i.e, some amount of
bytes)

■ Depending on the data type, we
use different amounts of
memory.

Visualizing Memory - Linear array of addresses (4/11)

32

● Depending on the data type, we use
different amounts of memory.

Visualizing Memory - Linear array of addresses (5/11)

33

● Depending on the data type, we use
different amounts of memory.

○ int x= 7; 7

Visualizing Memory - Linear array of addresses (6/11)

34

● Depending on the data type, we use
different amounts of memory.

○ int x= 7;
○ Now, why did ‘x’ take 4 boxes?

■ On my architecture an integer takes up 4
bytes of memory

7

We can check using the sizeof
operator to find the number of
bytes to represent an object

https://en.cppreference.com/w/cpp/language/sizeof

Visualizing Memory - Linear array of addresses (7/11)

35

● Depending on the data type, we use
different amounts of memory.

○ int x= 7;
○ Now, why did ‘x’ take 4 boxes?

■ On my architecture an integer takes up 4
bytes of memory

7

Visualizing Memory - Linear array of addresses (8/11)

36

● Okay, so what happens with our pointer?
○ int x= 7;
○ int* px= &x; 7

Visualizing Memory - Linear array of addresses (9/11)

37

● Okay, so what happens with our pointer?
○ int x= 7;
○ int* px= &x; 7

0x10000000

Visualizing Memory - Linear array of addresses (10/11)

38

● Okay, so what happens with our pointer?
○ int x= 7;
○ int* px= &x;

● Remember, px (which is an integer
pointer), stores the address of the
variable it points to

○ So we are indirectly accessing ‘7’ at address
0x10000000 by doing *px.

7

0x10000000

(Also note, a pointer takes 8 bytes on my 64-bit cpu -- try sizeof(int*))

Visualizing Memory - Linear array of addresses (11/11)

39

● Okay, so what happens with our pointer?
○ int x= 7;
○ int* px= &x;

● Remember, px (which is an integer
pointer), stores the address of the
variable it points to

○ So we are indirectly accessing ‘7’ at address
0x10000000 by doing *px.

7

0x10000000Let’s take a moment to see how we
access the value 7 from pointer px by
dereferencing the pointer.

(Also note, a pointer takes 8 bytes on my 64-bit cpu -- try sizeof(int*))

Dereferencing a pointer
“Access the address stored in our pointer, and access the value pointed to by our

pointer”

40

Dereferencing a pointer (Retrieving a value referred to by a pointer)

● We have previously observed
dereferencing

○ We dereference by putting an
asterisk(*) before our pointer variable
(*px).

● In a plain sentence, dereferencing
means:

○ ”If the type of my variable is a pointer,
then if I dereference that variable, I will
retrieve the value at the address at
which I point to (i.e., retrieve the
address stored in the pointer).”

41

Note on the asterisk (1/2)
● The asterisk (*) is used in two

different contexts
○ The first is part of the type when we

create the pointer
■ Stylistically I prefer to put the

asterisk next to the type name
■ Stylistically I prefer to prefix my

pointers with ‘p’ or ‘p_’ to help
me remember it is a pointer type

42

1

1

Note on the asterisk (2/2)
● The asterisk (*) is used in two

different contexts
○ The first is part of the type when we

create the pointer
■ Stylistically I prefer to put the

asterisk next to the type name
■ Stylistically I prefer to prefix my

pointers with ‘p’ or ‘p_’ to help
me remember it is a pointer type

○ The second use of asterisk, is when
dereferencing a pointer

■ This is what we just learned,
when we want to retrieve a value.

■ The pointer already exists when
we dereference. 43

1

2

1

2

Pointers, &, and * (1/3)
● Here’s an example (to the right) to

review what we’ve learned so far,
specifically the C++ syntax

44

Pointers, &, and * (2/3)
● Here’s an example (to the right) to

review what we’ve learned so far,
specifically the C++ syntax

45

px points to x

Pointers, &, and * (3/3)
● Here’s an example (to the right) to

review what we’ve learned so far,
specifically the C++ syntax

46

px points to x

dereferencing px
retrieves us x’s
value

Dereferencing - Test Your Knowledge (1/3)
● What happens if I

dereference px, and
then change the
value?

○ Make your
predictions! (ans:
next slide)

47

Dereferencing - Test Your Knowledge (2/3)
● What happens if I

dereference px, and
then change the
value?

○ ans: The value
changes!

○ The integer value in x
changes because we
store x’s address in
px, and when we
dereference, we
follow the pointer to
that value, and modify
the value to 42 48

Here’s the result above

Dereferencing - Test Your Knowledge (3/3)
● Notice--dereferencing is

happens first, before
assignment

○ (I’ve wrapped the
dereferencing
portion in
parenthesis, but this
is not necessary as
dereferencing has
higher operator
precedence than
assignment)

○ https://en.cppreference.com/

w/cpp/language/operator_pre
cedence

49

Here’s the result above

https://en.cppreference.com/w/cpp/language/operator_precedence
https://en.cppreference.com/w/cpp/language/operator_precedence
https://en.cppreference.com/w/cpp/language/operator_precedence

(Now why does this work?) (1/2)
● So if you were comfortable with

the last exercise--try to draw
this one out

○ This time we have **p_px
○ This is a ‘pointer to an integer

pointer’
■ Two levels of indirection, thus

two *’s
● Thus two *’s when we

want to retrieve
(dereference) a value
that is two levels of
indirection away.

50

(Now why does this work?) (2/2)
● So if you were comfortable with

the last exercise--try to draw
this one out

○ This time we have **p_px
○ This is a ‘pointer to an integer

pointer’
■ Two levels of indirection, thus

two *’s
● Thus two *’s when we

want to retrieve
(dereference) a value
that is two levels of
indirection away.

51

And here’s the result

Why is dereferencing a big deal?
In this example I show how pointers allow us to share data, and from multiple

locations (i.e., variables) we can retrieve the same value.

52

53

I’m going to push the boundaries of what fits on a
slide in a moment

● I’m allowed to do this in a technical
presentation...if I explain the code :)

● (reminder full code examples are here:
https://github.com/MikeShah/cppcon2021)

Pointers and
sharing data (1/6)

https://github.com/MikeShah/cppcon2021

Pointers and
sharing data (2/6)

54

● Three new data types,
each holding 1 field

● Note:
○ Company and

Friends have a
‘pointer’ in their field

1

2

3

55

● First we create a few objects
○ The most important object is:

■ Person michael;
■ michael is a Person with

a nickname member
variable

Pointers and
sharing data (3/6)

56

● Now, let’s initialize our pointers
so that they point to the address
of michael (i.e., &michael)

● If each pointer, points to the
same thing, we are effectively
sharing!

Pointers and
sharing data (4/6)

57

● So now if I update
michael.nickname

● Anything that also points to
michael will be updated!
○ Nice-- 1 write/update (in a

sense) results in 3 updated
values!

Pointers and
sharing data (5/6)

58

●

Pointers and
sharing data (6/6)

Pointers and sharing data
(All the code on one slide)

59

Subtle Syntax | The arrow operator (->)
● Some folks may have noticed that there is a new ‘->’ syntax that was

introduced on the previous slide
○ Recall when accessing the field of a struct we use the ‘.’ operator.
○ If that field is a pointer, and we’d like to dereference that field and get the value, we can do

that with ->
■ This is a shorthand for using the * (to dereference) and the . (dot operator to retrieve a

field).
■ Note how the two are exactly the same, but I find the ‘->’ much easier to use.

60

So we have the basic tools of pointers
And now that we understand one use case of pointers is about ‘sharing’ data.

Let’s see how pointers work when passed to functions

61

Passing Pointers into Functions (Pass by Pointer) (1/6)

62

● Let’s compare two functions
○ One that takes an integer parameter
○ One that takes an integer pointer

parameter

1

2

1
2

Passing Pointers into Functions (Pass by Pointer) (2/6)

63

● Let’s compare two functions
○ One that takes an integer parameter
○ One that takes an integer pointer

parameter

● Now you’ll notice these functions
are named in particular way

○ pass-by-value and pass-by-pointer

1

2

1
2

Passing Pointers into Functions (Pass by Pointer) (3/6)

64

● pass-by-value
○ pass-by-value: means whenever we

pass in a value, a copy of that value is
made.

■ This means, the address of ‘x’ at
line 14 is going to be different
than at line 6

1

1

Passing Pointers into Functions (Pass by Pointer) (4/6)

65

● pass-by-value and pass-by-pointer
○ pass-by-value: means whenever we

pass in a value, a copy of that value is
made.

■ This means, the address of ‘x’ at
line 14 is going to be different
than at line 6

○ pass-by-pointer: Well...it’s actually still
pass-by-value.

■ However! The value that a pointer
holds is an actual address of ‘y’
(located at line 15).

■ So sometimes we call this
pass-by-pointer

● (Note: If we re-assign our pointer in the function, that
however will not be maintained)

1

2

1

2

Passing Pointers into Functions (Pass by Pointer)

66

● pass-by-value and pass-by-pointer
○ pass-by-value: means whenever we

pass in a value, a copy of that value is
made.

■ This means, the address of ‘x’ at
line 14 is going to be different
than at line 6 (

○ pass-by-pointer: Well...it’s actually still
pass-by-value.

■ However! The value that a pointer
holds is an actual address of ‘y’
(located at line 15).

■ So sometimes we call this
pass-by-pointer

● (Note: If we re-assign our pointer in the function, that
however will not be maintained)

1

2

1

2

● Question to audience: What do you predict the output of x and y are
at lines 17 and 10?

1

2

Passing Pointers into Functions (Pass by Pointer) (6/6)

67

● pass-by-value and pass-by-pointer
○ pass-by-value: means whenever we

pass in a value, a copy of that value is
made.

■ This means, the address of ‘x’ at
line 14 is going to be different
than at line 6 (

○ pass-by-pointer: Well...it’s actually still
pass-by-value.

■ However! The value that a pointer
holds is an actual address of ‘y’
(located at line 15).

■ So sometimes we call this
pass-by-pointer

● (Note: If we re-assign our pointer in the function, that
however will not be maintained)

● Question to audience: What do you predict the output of x and y are
at lines 17 and 10?

1

2

1

2

Notes: pass-by-pointer (1/3)
● Again, pass-by-pointer is

equivalent to pass-by-value,
except you are able to mutate
values through the address a
pointer stores

○ (Teacher note: I like giving this a
different name so it’s clearer for
students to communicate what
they are doing)

68

Notes: pass-by-pointer (2/3)
● You’ll see pass-by-pointer

this in C-style APIs (e.g.,
OpenGL)

○ Careful though, excessive
use, or specifying ‘out’
parameters is an identified
code smell from Jason
Turners talk! [6 min mark]

○ Also be careful, if I reassign a
pointer within a function,
remember I’m only
re-assigning the copy of the
pointer (because, we are
passing by value the pointer)
variable.

69

https://youtu.be/f_tLQl0wLUM?t=378

Notes: pass-by-pointer (3/3)
● You’ll see pass-by-pointer

this in C-style APIs (e.g.,
OpenGL)

○ Careful though, excessive
use, or specifying ‘out’
parameters is an identified
code smell from Jason
Turners talk! [6 min mark]

○ Also be careful, if I reassign a
pointer within a function,
remember I’m only
re-assigning the copy of the
pointer (because, we are
passing by value the pointer)
variable.

70

Note: My C++ folks, do not
worry, I’ll mention
pass-by-reference

https://youtu.be/f_tLQl0wLUM?t=378

Pointer Variables...check
Dereferencing...check

Pointers as parameters...check

Let’s now talk about pointers versus arrays (and dynamically
allocated arrays)

71

Pointers and Arrays

72

Visualizing Memory - Linear array of addresses (1/4)

73

● Let’s again visualize memory
● This time I’m going to show a grid

○ Still a linear array of addresses as indicated by
the arrows.

○ I am using a grid so I can fit more memory on
the screen.

*Assume 1 byte per box and assume still a linear array of memory

Visualizing Memory - Linear array of addresses (2/4)

74

● Different data types (whether primitive
types or user-defined types) will take
different amounts of memory

*Assume 1 byte per box and assume still a linear array of memory

Visualizing Memory - Linear array of addresses (3/4)

75

● Different data types (whether primitive
types or user-defined types) will take
different amounts of memory

*Assume 1 byte per box

Type sizes on my 64-bit machine

(Note: The UserDefinedType is a good
example of why we want to use sizeof.
Just ‘looking’ at the fields may not tell us
how the compiler is padding or (as a risky
optimization) rearranging fields)

Visualizing Memory - Linear array of addresses (4/4)

76

● Here are a few examples of how our
memory may fill up

○ (All local variables for now, that are stack allocated)

*Assume 1 byte per box

7 ‘a’ 3.1415

Visualizing Arrays (1/8)

77

● Okay, so what happens when we
create an array of data?

Visualizing Arrays (2/8)

78

● Okay, so what happens when we
create an array of data?

We allocate 6 shorts in a contiguous block.
6 shorts, each 2 bytes, gives us 12 bytes total
allocated.

Visualizing Arrays (3/8)

79

● Okay, so what happens when we
create an array of data?

Then of course, we want to initialize our memory
with some values--for now, ‘i’ is fine.

0 1 2 3 4 5

Visualizing Arrays (4/8)

80

● So if I create a short* p_s, based off
what we learned, I should be able to point
to each individual element.

0 1 2 3 4 5

Visualizing Arrays (5/8)

81

● So if I create a short* p_s, based off
what we learned, I should be able to point
to each individual element.

0 1 2 3 4 5

We create our pointer, and some
memory is allocated. 8-bytes used
to store an address on my system.

Visualizing Arrays (6/8)

82

● So if I create a short* p_s, based off
what we learned, I should be able to point
to each individual element.

0 1 2 3 4 5
(p_s pointer)

We create our pointer, and some
memory is allocated. 8-bytes used
to store an address on my system.

Visualizing Arrays (7/8)

83

● So if I create a short* p_s, based off
what we learned, I should be able to point
to each individual element.

0 1 2 3 4 5
(p_s pointer)

point our pointer to an address
(i.e., index 2 of the array)

Visualizing Arrays (8/8)

84

● So if I create a short* p_s, based off
what we learned, I should be able to point
to each individual element.

0 1 2 3 4 5
(p_s pointer)

point our pointer elsewhere
(i.e., index 3 of the array)

Pointer arithmetic (1/7)

85

● What happens if I try to ‘increment’ a
pointer?

○ Well--we can do p_s++ or ++p_s

0 1 2 3 4 5
(p_s pointer)

Pointer arithmetic (2/7)

86

● What happens if I try to ‘increment’ a
pointer?

○ Well--we can do p_s++ or ++p_s

0 1 2 3 4 5
(p_s pointer)

Pointer arithmetic (3/7)

87

● What happens if I try to ‘increment’ a
pointer?

○ Well--we can do p_s++ or ++p_s

0 1 2 3 4 5
(p_s pointer)

Pointer arithmetic (4/7)

88

● What happens if I try to ‘increment’ a
pointer?

○ Well--we can do p_s++ or ++p_s

0 1 2 3 4 5
(p_s pointer)

Pointer arithmetic (5/7)

89

● What happens if I try to ‘increment’ a
pointer?

○ Well--we can do p_s++ or ++p_s

0 1 2 3 4 5
(p_s pointer)

Pointer arithmetic (6/7)

90

● What happens if I try to ‘increment’ a
pointer?

○ Well--we can do p_s++ or ++p_s

0 1 2 3 4 5
(p_s pointer)

Pointer arithmetic (7/7)

91

● Because our pointer type(p_s) is ‘2
bytes’, ++ (post-increment) shifts our
pointer 2 bytes when we add.

0 1 2 3 4 5
(p_s pointer)

Array offset and dereference (1/3)

92

● So if we think about our previous
example:

○ The number of times we increment
p_s, was the offset into the array

○ We can access a value by offsetting
to a position, and then dereferencing
that address!

■ (See example on the right)

0 1 2 3 4 5

Array offset and dereference (2/3)

93

● So if we think about our previous
example:

○ The number of times we increment
p_s, was the offset into the array

○ We can access a value by offsetting
to a position, and then dereferencing
that address!

■ (See example on the right)

0 1 2 3 4 5

Array offset and dereference (3/3)

94

● So if we think about our previous
example:

○ The number of times we increment
p_s, was the offset into the array

○ We can access a value by offsetting
to a position, and then dereferencing
that address!

■ (See example on the right)

0 1 2 3 4 5

● So remember--an array is just a contiguous chunk of memory.
● Arrays are a homogenous data structure, meaning all the data

stored is the same type:
○ We can thus use a pointer arithmetic to navigate pointers

through an array (Using ++, +1, +2, --, -2, etc.)

Array Decay to Pointer (1/2)

● Now, while traversing our
array using pointer arithmetic
was neat--there was
something subtle

○ When we are doing the
‘traversal’ (p_s++) we are losing
information about the array--and
instead incrementing along a
pointer

○ We actually have a pointer type,
not an array.

■ Notice the difference on
the right

● array vs &array[0] 95

Array Decay to Pointer (2/2)

● Now, while traversing our
array using pointer arithmetic
was neat--there was
something subtle

○ When we are doing the
‘traversal’ (p_s++) we are losing
information about the array--and
instead incrementing along a
pointer

○ We actually have a pointer type,
not an array.

■ Notice the difference on
the right

● array vs &array[0] 96

If this is confusing, you can try:

array = p_s; // not allowed
p_s = &array[3]; // allowed, we

// retrieve the
// address of
// element 3

Pointers as parameters
arrays decay to pointers in function parameters
(Think for a moment what information we lose)

97

Arrays decay to pointers as function parameter (1/2)
● In the example of the right, I

again show this, when
attempting to pass an ‘array’
as a function parameter, it’s
thus treated as a pointer.

○ The dimensions of our array
would need to be sent in as a
parameter

○ Personally, I would prefer using
as a parameter:

■ std::vector<short>

98

Arrays decay to pointers as function parameter (2/2)

● Here’s the fix
○ Just pass in the size of

your collection as a
second parameter

○ Then utilize your array
as needed.

99

(Just for fun--passing std::array with template parameter) (1/2)

● This is just for fun
○ We could use a template parameter

to store the size
○ (For those who love templates)

100

(Just for fun--passing std::array with template parameter) (2/2)

● Very quickly we’ll start generating
lots of code for each uniquely
sized array!

○ See with output with:
■ clang++-10 -std=c++20

-Xclang -ast-print
-fsyntax-only
decay3.cpp

101

Dynamically allocated arrays
We need pointers to point to a chunk of memory that our allocator gives us

(Thus pointers are necessary for dynamic memory allocation)

102

Dynamically Allocated Arrays (i.e., using new) (1/5)

103

● Recall: indexing into arrays works by
dereferencing at a specific offset

○ The element we access is the data type size
multiplied by the index (i.e., how far we want to
shift our pointer to access a specific piece of
memory)

● Let’s now see how dynamically allocated
arrays work

○ i.e., We want to see what happens when an
allocator (e.g., new) returns a pointer

Dynamically Allocated Arrays (i.e., using new) (2/5)

104

● Let’s look at an example

Dynamically Allocated Arrays (i.e., using new) (3/5)

105

● Let’s look at an example (intArray pointer created)

8 bytes (on my machine) used
to create the integer pointer

Dynamically Allocated Arrays (i.e., using new) (4/5)

106

● Let’s look at an example

uninitialized int uninitialized int uninitialized int

(intArray pointer created)

An allocator provides us 12
bytes, and our integer pointer
points to the first integer (zero
offset, or 0-index into array)

(Note: Those our 12 bytes are allocated
somewhere in our memory-- specifically in our
‘heap’ memory)

Dynamically Allocated Arrays (i.e., using new) (5/5)

107

● Let’s look at an example (intArray pointer created)

Whole chunk of original allocation
is freed.

Note: pointer still pointing to
something (maybe garbage, maybe
not?)...careful if you dereference!

Dynamically Allocated Arrays - Round 2 (1/2)

108

(intArray)

(intArray2 stores same address as
intArray)

Now, in this example we have two
pointers pointing to the same data

Then we delete[]

Then, we try to use memory after it
has been freed! (next slide for
results)

Dynamically Allocated Arrays - Round 2 (2/2)

109

(intArray pointer created)

(intArray2 pointer created)

It’s a bit tricky, but we have to think about which pointer
owns the memory, and when it is safe to clear the memory

nullptr
Does a pointer have to point to anything? (Think about our last example)

110

i.e., What happens if we dereference nothing?

(Some allocators when memory is freed will set memory to
nullptr--that would be a problem as seen in our previous example!)

What if a pointer, points to...nothing? (1/2)

111

● We should always initialize
our variables

○ In C++ 11 and beyond we
can initialize a pointer to
‘nullptr’ (This is a prvalue)

○ But if we try to retrieve a
value by dereferencing a
nullptr, we get a
segmentation fault.

■ There’s nothing
in-effect at that address
where we can retrieve a
value from--program
terminates

https://en.cppreference.com/w/cpp/language/nullptr
https://en.cppreference.com/w/cpp/language/value_category

What if a pointer, points to...nothing? (2/2)

112

● So the tip is:
○ Check for nullptr if you are

going to attempt to
dereference a pointer that
may be null.

● Note:
○ Modern C++ programmers

prefer nullptr as opposed
to the macro NULL in C
(which is essentially just 0).

■ nullptr provides
additional type safety

Pitfalls of
pointers

We have seen one so far, and
“with great power comes great

responsibility”

113Dereferencing a nullptr will cause a segmentation fault

Common Pitfalls of pointers

114

● Because pointers allow sharing, we need to think about ownership
○ When I talk about ownership, that means ‘who or which object’ is responsible for deleting

dynamically allocated memory
■ (Note: We have some rules for this: Back to Basics: RAII and the Rule of Zero - Arthur

O'Dwyer - CppCon 2019)

● So--in one slide each I want to show you the common pitfalls of pointers
○ (Note: We’ve already seen dereferencing a nullptr)

https://www.youtube.com/watch?v=7Qgd9B1KuMQ
https://www.youtube.com/watch?v=7Qgd9B1KuMQ

Memory Leaks (1/2)

115

● A memory leaks is when we forget
to reclaim our memory

○ To the right is an example of never
reclaiming (with delete or delete[]) our
memory.

Memory Leaks (2/2)

116

● You can use tools like:
○ address sanitizer or valgrind (pronounced val-grinn,

not val-grind) to help you detect bugs

● For my advanced members in the audience,
consider memory tagging strategies (i.e.,
override new for your objects)

○ (This applies to all pointer/memory
bugs)

https://clang.llvm.org/docs/LeakSanitizer.html
https://valgrind.org/

Dangling pointers (1/2)

117

● Dangling pointers arise when
we point to the address of a
value that may not exist

○ Most of our compilers are good
at giving warnings these days
(see to the right)

● So we try to avoid pointing to
data that does not have the
same lifetime as our pointer

○ Otherwise, we need to update
our pointer to valid data or
nullptr

Dangling pointers (2/2)

118

● Again, use address sanitizers, memory tools, and your interactive debuggers
(e.g., GDB) to help detect these errors.

○ (See some magic debug values like 0xDEADBEEF to help catch dangling pointers
https://en.wikipedia.org/wiki/Magic_number_(programming)#Magic_debug_values)

https://en.wikipedia.org/wiki/0xDEADBEEF
https://en.wikipedia.org/wiki/Magic_number_(programming)#Magic_debug_values

Double Frees

119

● A double free occurs when we are
sharing data between 2 or more
pointers

● We *are trying* to be good and free
our memory

○ The problem is we end up freeing the same
memory twice.

● Note:
○ My runtime protects me, so I don’t see a

crash--at least on a toy example.
○ That does not mean it is not there though!

■ (What happens if I change allocators,
platforms, hardware, etc.?)

And more....
● For memory and pointer related

best practices on common
pitfalls see the ISOCPP guide
here:

○ https://isocpp.org/wiki/faq/freestor
e-mgmt

● And since we’re on
pointers...some tips on when to
return a pointer from a function

○ https://isocpp.github.io/CppCoreG
uidelines/CppCoreGuidelines#Rf-re
turn-ptr

○ (Careful!) 120

https://isocpp.org/wiki/faq/freestore-mgmt
https://isocpp.org/wiki/faq/freestore-mgmt
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-return-ptr
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-return-ptr
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-return-ptr

Bug Mitigate with a Wrapper Class

● We can build our own pointer class
○ (Example sketch to the right)
○ The idea is to build abstraction around a

‘raw/naked/plain pointer’

● Luckily, the standard library (C++11
and beyond) provides ‘smart
pointers’ for us

○ Very briefly (one slide each) I will cover the
three types of smart pointers

○ There will be at least one talk on smart
pointers after this talk by Inbal Levi

■ (and there are a few other cppcon
talks on smart pointers I will link at
the end) 121

Getting Smart (with smart pointers)
Using Modern C++ to write safer code

122

What is a smart pointer?

123

● A container in C++, that wraps a
‘pointer’

○ It’s a ‘proxy’ in the sense that we
can use it in place of other pointers.

● We construct the pointer using
one of the following types

○ std::unique_ptr
○ std::shared_ptr
○ std::weak_ptr

https://en.cppreference.com/w/cpp/memory

https://en.cppreference.com/w/cpp/memory

What problem does a smart pointer solve?
● We don’t have to call ‘delete’ explicitly anymore!
● We can even avoid calling ‘new’

○ (e.g. if we use make_shared or make_unique)

● We ultimately are enforcing constraints with each of the three types of smart
pointers!

124

What smart pointers are doing?
● Behind the scenes, smart pointers have different ‘constraints’ and are

otherwise doing bookkeeping for you.
○ May be reference counting
○ May be enforcing uniqueness
○ May be handling exceptions during the pointer creation(e.g. make_shared or make_unique)

125

unique_ptr example
● Scoped pointer

○ When it goes out of scope, it will
automatically be deleted.

● We cannot copy them
○ This avoids the ‘double free’ issue
○ Can be your ‘default’ if you want to be

very careful with your pointers, and do
not intend on sharing data.

● We also cannot assign unique_ptr
to something else, it has to be
unique.

● We prefer the std::make_unique
call generally (see comments) 126

shared_ptr example
● Allows a pointer to have

multiple things pointing to it.
○ As long as other pointers are

pointing to that memory, the
memory will not be deleted.

● Internally ‘reference counting’
or otherwise keeping track of
how many things point to it is
taking place

○ If nothing is pointing to it, then the
pointer can safely be deleted

■ (This is a similar idea to how
garbage collection works in
Java)

■ (Now you know why there is
no ‘delete’ in Java :))

127

weak_ptr example
● Very similar to a shared

pointer, but it does not
increase the ‘reference
count’

● In this way, you can have
‘invalid’ pointers

○ Sometimes you do not
care however, and maybe
you just want a lightweight
way to point to some
references.

○ e.g. You have a GameObject that was blown up
mid-way in the game while other objects were
communicating with it. You should check for
nullptr, but it ‘may’ be okay if these objects still
point to something deleted.

128

Another weak_ptr example
● Adapted from

https://en.cppreference.com/w
/cpp/memory/weak_ptr with
some annotation as to what is
going on

○ The motivation for weak_ptr is to
‘point’ to something that may
exist, but if it does not, you are
okay.

■ So the weak_ptr does not
own the data in anyway, can
only point to it if it exists.

129

https://en.cppreference.com/w/cpp/memory/weak_ptr
https://en.cppreference.com/w/cpp/memory/weak_ptr

std::auto_ptr - deprecated
● You may also see this type of pointer on occasion, but it has been

deprecated in c++ 17
○ Thus, don’t use it.

130

Pointers and Functions
Functions themselves have an address in memory, so we have function pointers

131

Functions have an address
● Of course they do--functions must

exist somewhere!
○ Below is a snippet showing where two

functions exist in memory
○ (use the nm tool to find symbols after compiling a debug version of your code):

■ nm -g -C ./prog

132

Creating and Using Function Pointers (1/2)
● So to the right I have an example

pointer to a function
○ Note the syntax on line 14 for creating.

■ We work inside to out
● First naming the pointer
● Then I have a list of

parameters
● Then a return type

○ On line 16 I assign the function pointer

133

Creating and Using Function Pointers (2/2)
● So to the right I have an example

pointer to a function
○ Note the syntax on line 14 for creating.

■ We work inside to out
● First naming the pointer
● Then I have a list of

parameters
● Then a return type

○ On line 16 I assign the function pointer
■ Line 17 and 20 calls are made

134

Modern C++ std::function [reference]
● std::function allows you to

store a callable object.
○ A function pointer for example would

be something that is callable
○ Syntax is almost the same

135

https://en.cppreference.com/w/cpp/utility/functional/function

Other odds and ends...for a full day course in the future :)

● (I’m probably running out of time at this point!)
○ void*
○ Casting pointers
○ Using uintptr_t
○ ptrdiff_t
○ const and pointers
○ Some examples of multi-dimensional arrays
○ Hiding behind a pointer (pIMPL idiom)

● How is a reference different? (It is essentially a const behavior)
○ It is really just a int* const pointer (pay attention to const after int*)

■ https://godbolt.org/z/7W9coGbYd
■ (i.e., we cannot change what we point to when passing by reference)

○ reference is an ‘alias’ (or another name) for which to refer to a symbol
○ reference always points to same object, so much harder to create a nullptr (still could get a

dangling reference however) 136

https://godbolt.org/z/7W9coGbYd

Data structures
Singly Linked List

(If time allows)

137TT the clock from Diddy Kong Racing N64

So Because Pointers point to other pointers

138

● We can build some cool data ‘linked’ data structures
○ My audience here attending Cppcon I am sure has done this...
○ For those watching in the future though--think about how you could

implement a ‘list’ data structure.
■ How would you add nodes?
■ How would you delete nodes? The entire list?

○ (Let’s take a look--if we have time)
■ https://github.com/MikeShah/cppcon2021/blob/main/pointers/

ll.cpp
■ (Note: This is how I cheat if my talk is going too long or too

short ;)

https://github.com/MikeShah/cppcon2021/blob/main/pointers/ll.cpp
https://github.com/MikeShah/cppcon2021/blob/main/pointers/ll.cpp

Conclusion
Wrapping up what we’ve learned

139

Conclusion -- C++ Programmers

140

● You still need to know about raw pointers
● Whether you are an expert or a beginner

○ If you’re a beginner
■ Now you know a little bit more about the foundations
■ Now you’ll understand what smart pointers are doing behind the scenes for you
■ Now you should try to build some data structures for practice, or perhaps some more

advanced ones for optimization
○ If you’re an expert

■ Consider you may need to interface with C-APIs, embedded systems, or simply using a
legacy code base.

■ You’ll have to design your functions using pointers for example
○ For expert C++ programmers teaching C++

■ It’s always worth teaching the foundations (in which order and where in the curriculum
differs however)

Some Analogies on Pointers for
Educators

(Whether teacher/professor or if you’re trying to explain to your team members
about pointers)

141

A (common) analogy of what a pointer is
● A pointer is a variable that stores the

memory address of a specific object
type

○ Okay--not so bad.
■ So a ‘pointer’ is a data type
■ And it can store objects of a specific

data type
● ^So what exactly does this

mean, and how could we do
this efficiently?

● If an object is a page in a book
● then a ‘pointer’ would be the index in

the back of the book that points you
to a specific page.

142

object: A page in a book

A (common) analogy of what a pointer is
● A pointer is a variable that stores the

memory address of a specific object
type

○ Okay--not so bad.
■ So a ‘pointer’ is a data type
■ And it can store objects of a specific

data type
● ^So what exactly does this

mean, and how could we do
this efficiently?

● If an object is a page in a book
● then a ‘pointer’ would be the index in

the back of the book that points you
to a specific page.

143

object: A page in a book

index entry, points to a
specific page that exists

A (common) analogy of what a pointer is
● A pointer is a variable that stores the

memory address of a specific object
type

○ Okay--not so bad.
■ So a ‘pointer’ is a data type
■ And it can store objects of a specific

data type
● ^So what exactly does this

mean, and how could we do
this efficiently?

● If an object is a page in a book
● then a ‘pointer’ would be the index in

the back of the book that points you
to a specific page.

144

object: A page in a book

index entry, points to a
specific page that exists

A (common) analogy of what a pointer is
● A pointer is a variable that stores the

memory address of a specific object
type

○ Okay--not so bad.
■ So a ‘pointer’ is a data type
■ And it can store objects of a specific

data type
● ^So what exactly does this

mean, and how could we do
this efficiently?

● If an object is a page in a book
● then a ‘pointer’ would be the index in

the back of the book that points you
to a specific page.

145

object: A page in a book

index entry, points to a
specific page that exists

So our index in a book stores a
location (i.e., the page number)

In C++, a pointer is thus storing a
memory location

Let’s review and visualize memory
to get a concrete understanding

Zooming into our memory (each individual rectangle)
● Each piece of memory has a value, and the

address (in hexadecimal) where it lives.

146

int a = 5 b c

5

0x56234523

Stored Value

Memory Location

Returning the address of Memory Location (1/3)
● We can retrieve that address using the ‘&’

operator.
● Ampersand (&) you can think of as ‘address of’

○ (i.e. “hey, tell me where in memory ‘a’ lives)

147

int a = 5 b c

5

0x56234523

Stored Value

Memory Location

Returning the address of Memory Location (2/3)
● We can retrieve that address using the ‘&’

operator.
● Ampersand (&) you can think of as ‘address of’
● ‘Address of’ gives you the exact location in

memory, just like a mailbox.

148

int a = 5 b c

5

0x56234523

Stored Value

Memory Location

Returning the address of Memory Location (3/3)
● We can retrieve that address using the ‘&’

operator.
● Ampersand (&) you can think of as ‘address of’
● ‘Address of’ gives you the exact location in

memory, just like a mailbox.

149

int a = 5 b c

5

0x56234523a b c

The actual
content (or
value) is stored
in the mailbox

Stored Value

Memory Location

Further resources and training materials

150

● Pointers
○ Back to Basics: Pointers and Memory by Ben Saks (CPPCON 2020)

● Smart Pointers
○ Back to Basics: Smart Pointers by Arthur O’Dwyer (CppCon 2019)
○ Back to Basics: Smart Pointers by Rainer Grimm (CppCon 2020)
○ Back to Basics: Smart Pointers and RAII by Inbal Levi (CPPCON 2021 on Thursday)

https://www.youtube.com/watch?v=rqVWj0aVSxg
https://www.youtube.com/watch?v=xGDLkt-jBJ4
https://www.youtube.com/watch?v=sQCSX7vmmKY

Back to Basics:
Pointers
Mike Shah, Ph.D.

@MichaelShah | mshah.io | www.youtube.com/c/MikeShah

Thank you Cppcon attendees, reviewers, chairs!
151

https://twitter.com/MichaelShah
http://mshah.io
http://www.youtube.com/c/MikeShah

Thank you!

152

