Back to Basics:
Pointers

MIKE SHAH

The C++ Conference 2] October 24-29

Please do not redistribute slides without
prior permission.

2021

October24-29

IN AURORA AND [ONEINE
A ‘

uuuuuuuuu

ppcon

The C++ Conference

Back to Basics:
Pointers

Mike Shah, Ph.D.
@MichaelShah | mshah.io | www.youtube.com/c/MikeShah

3:15 pm MDT, Mon. October 25
60 minutes | Introductory Audience

https://twitter.com/MichaelShah
http://mshah.io
http://www.youtube.com/c/MikeShah

2021 YA

Octob l'24 -29
INAURD

@ Eopeon | 2%
Abstract you to join me is here!

The abstract that you read and enticed

Pointers are scary. Unfortunately that previous statement is what many beginners take away when
first learning about pointers and the C++ language. In this talk, we will discuss the low level
foundations of what a raw pointer is--a variable that stores an address. We will then see some
examples of raw pointers for creating data structures, passing data into functions, dynamically
allocated arrays, and function pointers. This portion will cover capabilities of raw pointers and
syntax: * (asterisk), .(dot) , -> (arrow). By the end of the first portion of the talk, we will find pointers
are not scary, but just another tool we can use in our programmers’ toolbox.

After learning the foundations, we are then going to discuss some of the pitfalls of pointers (e.g.
nullptr’s, double frees, memory leaks). However, with modern C++, we can abstract away some of
these problems using various “smart pointers” built into the standard library in <memory>.
Attendees will leave understanding how we can use pointers in a safe manner through the
standard library smart pointer abstractions.

Code for the talk

e Located here: https://qgithub.com/MikeShah/cppcon2021

@ Vikeshah Update README.md ...

pointers pointers examples

Y README.md Update README.md

README.md

cppcon2021

Examples and materials for my talks during Cppcon 2021!

now @ 9

20 hours ago

now

4

https://github.com/MikeShah/cppcon2021

Who Am |?

by Mike Shah

Assistant Teaching Professor at Northeastern University in
Boston, Massachusetts.

o | teach courses in computer systems, computer graphics,
and game engine development.

o My research in program analysis is related to performance
building static/dynamic analysis and software visualization
tools.

| do consulting and technical training on modern C++,
Concurrency, OpenGL, and Vulkan projects

o (Usually graphics or games related)
| like teaching, guitar, running, weight training, and anything in
computer science under the domain of computer graphics,
visualization, concurrency, and parallelism.
Contact information and more on: www.mshah.io

http://www.mshah.io

One of my fondest programming
memories was...

... when | used a pointer correctly on the first try

1 i
e And maybe as a C or C++ > e
programmer you have a similar A
memory or ‘eureka’ moment. g A M
o My sophomore year in college where | 7 int X = 7;
i . 8 int* px = &x;
remember doing lots of small pointer 9
examples similar to the right 10 std::cout << << X << std::endl;
o This is what it took for me to g std::cout << << *px << std::endl;

understand pointers 3 return 0;
m It was supremely satisfying to see 4 }
my code compile successfully
e (Knowing that | did not
‘guess’ where the * and
the & go.)

But truth be told, it was probably In
graduate school....

... that | really understood the power of pointers

e [t was at this point that | had more computer systems knowledge.

o | had a mental model of a computer's memory
o | was building data structures which were using pointers
o And | could explain how to use pointers to other students.

e And post graduate school, | think about ‘ownership’, ‘lifetime’, ‘levels of
indirection’ for performance and readability (Demeter's Law), and memory-safety.

So for this talk--1 want to make:

1.) Pointers not be scary -- by showing their usage
a.) (i.e., you don’t have to guess where an asterisk goes)

2.) Show how to use pointers and avoid potential pitfalls
a.) Using lots of small examples, ranging from simple to more advanced usages (e.g., function pointers)

3.) And to appreciate that we have pointers in C++
a.) Closing with modern C++ features (std::function and smart pointers)

10

https://en.wikipedia.org/wiki/Law_of_Demeter

... that | really understood the power of pointers

e |twas

o I|h
o lw
o An

f
ory-safety.

e And po
indirect

So for this t

1.) Pointer
a.) (i.e., you don’t have to guess where an asterisk goes)

2.) Show how to use pointers and avoid potential pitfalls
a.) Using lots of small examples, ranging from simple to more advanced usages (e.g., function pointers)

3.) And to appreciate that we have pointers in C++
a.) Closing with modern C++ features (std::function and smart pointers)

https://en.wikipedia.org/wiki/Law_of_Demeter

Let’s start from the beginning*

What is a pointer?

*Although, not the exact beginning. My internet research shows the invention of pointers get credited to Harold Lawson in 1964 for the invention, though pointers 12
may have been invented by Kateryna Yushchenko in the Address Programming Language around 1955.

What is a Pointer? (1/8)

e A pointer is a variable that stores
the memory address of a specific
object type

o (Let’s look at an example)

13

What is a Pointer? (2/8)

e A pointer is a variable that stores
the memory address of a specific
object type

// @file initialize.cpp
// g++ -std=c++17 initialize.cpp -0 prog
#include <iostream>

1
2
3
4
5 int main(){
6

7

10 Std: E0UL << "X 18: * <<€ X << 570 :éndl;

11 std::cout << "*px is: " << *px << std::endl;
12

13 return 0;

14 }

14

What is a Pointer? (3/8)

e A pointer is a variable that stores
the memory address of a specific
object type

]
2
3
4
5
6
7

10
11

// @file initialize.cpp
// g++ -std=c++17 initialize.cpp -0 prog
#include <iostream>

int main(){

"X 15 % <<€ X << 5Td::éndl;
"*px is: " << *px << std::endl;

What is a Pointer? (4/8)

e A pointer is a variable that stores
the memory address of a specific
object type

]
2
3
4
5
6
7

10

e.cpp
// g++
#include

int main()

"R IR

"*px is:

initialize.cpp -0 prog

" << X << std::endl;

" << *px << std::endl;

16

What is a Pointer? (5/8)

e A pointer is a variable that stores
the memory address of a specific
object type

e So if ‘px’ stores the address of x

this allows us to:

o access the value stored in ‘x’ through
px indirectly.

1 // @file initialize.cpp

2 // g++ -std=c++17 initialize.cpp -0 prog

3 #include <iostream>

4

5 int main(){

6

7 it X = s

8 int* px = &X;

9
10 std:c0ut << "X 1§: " << X << sfd::endl:
11 std::cout << "*px is: " << *px << std::endl;
12
13 return 0;
14 }

17

What is a Pointer? (6/8)

// @file initialize.cpp
// g++ -std=c++17 initialize.cpp -0 prog
#include <iostream>

e A pointer is a variable that stores
the memory address of a specific

1
2
3
4 . .
object type oy b T
7
8
9
10

r) Nt X.=f;
e So if ‘px’ stores the address of x e T o
this allows us to: :
L std::cout << "K 15: " << X << std::éndl;
o access the value stored in ‘x’ throusis Lm—rﬂs TICOUT << DX 15. | << *pX << std::.endr,
return 0;

18

What is a Pointer? (7/8)

e A pointer is a variable that stores
the memory address of a specific
object type

e So if ‘px’ stores the address of x

this allows us to:
o access the value stored in

X’ t

]
2
3
4
5
6
7
8
9

// @file initialize.cpp
// g++ -std=c++17 initialize.cpp -0 prog
#include <iostream>

int main(){

int x.= 1:
int* px = &x;

* << X << std::endl;
*pX |<< std::endl;

Std: LEilUT << "X 18"
std: :couf << “*px is: " <<

return 0;

What is a Pointer? (8/8)

mike:pointers$ g++ -std=c++17 initialize.cpp -0 prog
mike:pointers$./prog

x i5: 7

*px is: 7

e A pointer is a variable that stores
the memory address of a specific
object type

e So if ‘px’ stores the address of x

this allows us to:
o access the value stored in

X’ t

// @file initialize.cpp
// g++ -std=c++17 initialize.cpp -0 prog
#include <iostream>

int x.= 1:

1

2

3

4

5 int main(){
6

7

8 int* px = &x;
9

Std: E0UL << "k 18: * <<€ X << 570 :éndl;
std::cout << "*px is: " <<|*px << std::endl;

return 0;

Visualizing Pointers and Memory

Let’s work on building our mental model when thinking about pointers

21

Visualizing our first program (1/5)

. . - 1
e When learning pointers, it’s often 2 =c++17
useful to draw (on pen and paper) .
our memory g A M
o Let’s represent our variables as boxes 7 int x = 7;
8 int* px = &x;
for now. 9
10 std::cout << << X << std::éndl;
11 std::cout << << *px << std::endl;
12
13 return 0;

int main(){

1Nt Xo= of:
int* px = &X;

'_1
LWL ~NOULTESE WN =

std::cout << << X << std::endl;
So every variable has some address (e.g., 9x1001) 11 std::cout << << *px << std::endl;
and then at that address we can store some value 12
3 return 0;

(e.g., 7) 14 }

Visualizing our first program (3/5)

When learning pointers, it’s often
useful to draw (on pen and paper)

our memory
o Let’s represent our variables as boxes
for now.

i
2
3
4
5
6
7

10
11

// @file initialize.cpp
// g++ -std=c++17 initialize.cpp -0 prog
#include <iostream>

int main(){

<< "% 1§: " << X << std::éndl;
< "¥px is: " << *px << std::endl;

O E WN K-

int main(){
7 int X =/,
3 int* px = &x;l
lé std::cc << << X << std::endl;
So every variable has some address (e.g., 9x1001) 11 std:: g << << *px << std::endl;
and then at that address we can store some value - N
(e.g., 7) 1‘1) =

int* (i.e., pointer to int) is no different than a
variable and has an address (e.g., 9x5021).

: i 1, L
l(*’ 300 n ot P &f However, recall that pointers store an address as

their value (so in this case, the address of x, which
So the major ‘pro tip’ is to try to draw your pointers | s at 9x1001) 5

O~ OUTESE WN -

int main(){
ANt Xo= of:
int* px = &X;
9
o Here’s an animation of what is going 10 std::cout << << X << std::endl;
. . v * . .
on in memory when we assign a i std::cout << << *px << std::endl;

.
!

pointer to the address of a variable. 13 return

O7~00\6\\\\,//~\{ffiii} ‘

,(\‘* - N i Pﬂ” &"

So the major ‘pro tip’ is to try to draw your pointers

Let's visualize memory

So we can more concretely understand what a pointer is

B wmmmmmnmmmmimm'mnmn 'mmmimmmmmmmmmmﬁnm"

27

Working with Pointers Means Thinking about Memory

e We have different layers and different types of

memory locally available on our machines

Registers

Cache

DRAM (i.e., working memory)

Hard Drive(s)

(And even non-local memory like a Networked drive (or
cloud storage))

e For this talk, let’s assume all of our memory is in
working memory (DRAM)

o This means we have an array of randomly addressable
memory where we can store data

O O O O O

28

https://en.wikipedia.org/wiki/Dynamic_random-access_memory

Visualizing Memory - Linear array of addresses (1/11)

e Memory in our machines is
represented as a linear array of
addresses (And let’s assume we

have random access)

o At each of these addresses we can
store a value (i.e, some amount of
bytes)

m Depending on the data type, we
use different amounts of
memory.

29

e Memory in our machines is L K Address (in Hex)
represented as a linear array of ' : 0x10000000
addresses (And let’s assume we

have random access)
o At each of these addresses we can

store a value (i.e, some amount of L
bytes) | 6 R 0x10000005

0x10000001

0x10000002
0x10000003

0x10000004

m Depending on the data type, we [ioman L 0x10000006
use different amounts of , | 0x10000007
memory.

0x10000008

0x10000009

0x1000000A

0x1000000B

Memory in our machines is
represented as a linear array of
addresses (And let’s assume we

have random access)

o At each of these addresses we can
store a value (i.e, some amount of
bytes)

m Depending on the data type, we
use different amounts of
memory.

oo |
T
T
T
S|
S oo |
oo [
A
oo |
T
~omeom |
BT R

e Depending on the data type, we use
different amounts of memory. _
oo |

B

B

oo |

oo |

oo |

oo |

"o [

B

N

o |

e Depending on the data type, we use
different amounts of memory. | oxiooooo0 |

o int x= 7; | ostoooooot | |

ooz |
oo |

I

oo |

oo |

oo |

"o [

oo |

o |

I

Depending on the data type, we use

different amounts of memory.
o int x= 7;
o Now, why did ‘x’ take 4 boxes?
m On my architecture an integer takes up 4
bytes of memory

We can check using the sizeof
operator to find the number of
bytes to represent an object

" oonon [
oo | \
oomom | \
|

T
T
T
A
oo |
T
~omeom |
I I

https://en.cppreference.com/w/cpp/language/sizeof

Depending on the data type, we use
different amounts of memory.

o int x= 7;

o Now, why did ‘x’ take 4 boxes?

m On my architecture an integer takes up 4
bytes of memory

nt main(){

std::cout << << (int) << std::endl;

}

mike:pointers$ g++ -Wall -Wextra -std=c++17 sizeof.cpp -0 prog
mike:pointers$./prog

sizeof(int) 4

" oonon [
oo | \
oomom | \
|

T
T
T
A
oo |
T
~omeom |
I R

e Okay, so what happens with our pointer?
o antr pre &x; oo | |
oo | |
oo |
oo |
oo |
oo |
I
oo |
ooow |
oo |
I

Visualizing Memory - Linear array of addresses (9/11)

e Okay, so what happens with our pointer?

O

(@)

int x= 7;
int* px= &x;

0x10000000

0x1000000°

0x10000002

0x10000003

0x10000004

oo |
oo |
oo
oo |

0x10000009

0x1000000A

0x1000000B

Visualizing Memory - Linear array of addresses (10/11)

e Okay, so what happens with our pointer? Address (I Hex)
o 1int x= 7; 0x10000000
o int* px= &x; 0x10000001
e Remember, px (which is an integer 0x10000002
pointer), stores the address of the 0x10000003
variable it points to 0x10000004
o So we are indirectly accessing ‘7’ at address 0x10000005

0x10000000 by doing *pX. 0x10000006
0x10000007
0x10000008

0x10000009

0x1000000A
(Also note, a pointer takes 8 bytes on my 64-bit cpu -- try sizeof(int*)) 0x1000000B

Address (in Hex)

o 1int x= 7; 0x10000000
o int* px= &x; 0x10000001
0x10000002
0x10000003

0x10000004

indirectly accessing ‘7’ 0x10000005
0x10000006

, oo |
Let’s take a moment to see how we
oo |

access the value 7 from pointer px by oaoooons |
X

dereferencing the pointer.
oo |
oo | o

Dereferencing a pointer

“Access the address stored in our pointer, and access the value pointed to by our
pointer’

40

Dereferencing a pointer (Retrieving a value referred to by a pointer)

e \We have previously observed

dereferencing
o We dereference by putting an
asterisk(*) before our pointer variable
(*px).
e [n a plain sentence, dereferencing

means:

o ”If the type of my variable is a pointer,
then if | dereference that variable, | will
retrieve the value at the address at
which | point to (i.e., retrieve the
address stored in the pointer).”

OCoo~NOUTE WN -

int main(){

ANt Xo= of:
int* px = &x;

std::cout <<
std::cout <<

return 0,

<< X
<<

::endl;

<< _std
*pxi<< std::endl;

41

Note on the asterisk (1/2)

// @file initialize.cpj
e The asterisk (*) is used in two % // 5;;\j5£i1:c+—‘17 En;giauze.cpp -0 prog
different contexts i
1 The first is part of the type when we 56’ int main(){
create the pointer 7 | = o

m Stylistically / prefer to put the 8 BRLLnt*Jpx = &x;
asterisk next to the type name 18 std: :cout << << X << std::endl;

m Stylistically / prefer to prefix my 11 std::cout << << *px << std::endl;
pointers with ‘p’ or ‘p_’ to help g G

me remember it is a pointer type 14 }

42

Note on the asterisk (2/2)

/ 1le 1nitialize.
e The asterisk () is used in two % :: ST inT e S orog
different contexts A
1 The first is part of the type when we -Z int main(){
create the pointer 7 | = 7;

m Stylistically / prefer to put the 8 BRlLnt*px = &X;
asterisk next to the type name 18 std: :cout << << x << std::endl;

m Stylistically / prefer to prefix my 11 std::cout << 2 E« std::endl;
pointers with ‘p’ or ‘p_’ to help g LB

me remember it is a pointer type 14 }
2 The second use of asterisk, is when
dereferencing a pointer
m This is what we just learned,
when we want to retrieve a value.
m The pointer already exists when

43
we dereference.

Pointers, &, and * (1/3)

Here’s an example (to the right) to
review what we’ve learned so far,
specifically the C++ syntax

AfF1ila fere
atll€ GeErec

OCoOONOULESE WN =

-std=c++17 dereferen

int main(){

/ Initialize integer

int x=

// Pointer

std::cout
std::cout
std::cout
std::cout

return 0;

== =
Farence cnn
ference.cpp

/ assigned
int* px= &(x);

/ Print out for our

to store address

unae VST,EiﬂCflTWQ,

<<
<<
<<
<<

of X

& <<
pX <<
*px <<

std:
std:
std:
std:

rendl;
rendl;
rendl;
rendl;

Pointers, &, and * (2/3)

1
Here’s an example (to the right) to 2
review what we’ve learned so far, s
;
8

int main(){

specifically the C++ syntax

int.x=

// @file dereference.cpp
// g++ -std=c++17 dereference.cpp -0 prog
#include <iostream>

// Initialize integer

// Pointer assigned to store address of X

a fint* px= &(x) ;]

10 /7 Print out Tor our understandlng

11 std::cout << "x value << X << std:
12 std::cout << "x address ¢ << [&X] << std:
13 std::cout << "px points to : " <<E << std:
14 std::cout << "px dereferenced: " << ¥px << std:
15

16 return 0;

17 }

mike:pointers$ g++ -std=c++17
mike:pointers$./prog
X value s 7

rendl;
rendl;
rendl;
rendl;

dereference.cpp -0 prog

address : Ox7ffc2db2410c
px points to : Ox7ffc2db2410c

px dereferenced: 7

Pointers, &, and * (3/3)

rendl;
rendl;
rendl;
rendl;

1 // @file dereference.cpp
Here’s an EB)(EIfT]F)lEB (t() the rig;f]t) to 2 // g++ -std=c++17 dereference.cpp -0 prog
3 #include <iostream>
. , 1
review what we’ve learned so far, S int matn({
specifically the C++ syntax N
8 // Pointer assigned to store address of x
a fint* px= &(x) ;]
10 /7 Print out Tor our understanding
11 std::cout << "x value " << [x]<< std:
12 std::cout << "x address " << & << std:
13 std::cout << "px points to " << px << std:
14 std::cout << "px dereferenced: " << << std:
15
16 return 0;
17 }
mike:pointers$ g++ -std=c++17 dereference.cpp -0 prog
mike:pointers$./prog
x value : 7
X address 0x7ffc2db2410c
pXx points to 0x7ffc2db2410c
px dereferenced: 7

Dereferencing - Test Your Knowledge (1/3)

. 1 // @file dereference2.cpp
e What happens If | 2 // g++ -std=c++17 dereference2.cpp -0 prog
dereference pXx, and 3 #include <iostream-
4
then change the 5 int main(){
value? 6 // Initialize integer
o Make your / int x= 7;
oredictions! (ans: 8 // Pointer assigned to store address of x
next slide) 2 int* px= &(x); :
10 // What happens if we dereference px
11 [/and change the value?
12 P*px = 42;]
13 std::cout << "x's value is: " << X << std
14
15 return 0;
16 }

::endl;

47

mike:pointers$ g++ -std=c++17 dereference2.cpp -0 prog
mike:pointers$./prog
Derex's value is: 42

Here’s the result above

: 1l /7 @ILLE UECTECICIClCEL. CPP
e What happensif | 2 // g++ -std=c++17 dereference2.cpp -0 prog

dereference px, and 3 #include <iostream>

4
then change the 5 int main(){
value? 6 // Initialize integer
o ans: The value / int x= 7; |
changes! 8 (/ Pointer assigned to store address of X
o The integer value in x 2 10+ pie= &)
10 // What happens if we dereference px
changes because we 17 //_and change the value?
store x’s address in 1?2 I¥px = 42; |
pX, and when we 15 std::cout << "x's value is: " << X << std::endl;
dereference, we 14
follow the pointer to 12) return 0;

that value, and modify
the value to 42

48

mike:pointers$ g++ -std=c++17 dereference2.cpp -0 prog
mike:pointers$./prog
Dergx's value is: 42

Notice--dereferencing is
happens first, before
assignment

O

(I’'ve wrapped the
dereferencing
portion in
parenthesis, but this
is not necessary as
dereferencing has
higher operator
precedence than
assignment)

https://en.cppreference.com/

w/cpp/language/operator pre
cedence

4
5
6
7
8
9
0

1
11
12
13
14
15
16 }

Here’s the result above
L WL UCIEICICHLCJ.Lpp

2 // g++ -std=c++17 dereference3.cpp -0 prog
3 #include <iostream>

int main(){

// Initialize integer

Il &= 1

// Pointer assigned to store address of x
int* px= &(x);
// What happens if we dereference px

and change the value?
(*px)] = 42;
std::cout << "x's value 1is:

return 0;

"2 X << std

::endl;

49

https://en.cppreference.com/w/cpp/language/operator_precedence
https://en.cppreference.com/w/cpp/language/operator_precedence
https://en.cppreference.com/w/cpp/language/operator_precedence

(Now why does this work?) (1/2)

e So if you were comfortable with
the last exercise--try to draw

this one out

o This time we have **p_pXx
o This is a ‘pointer to an integer

pointer’
m Two levels of indirection, thus
two *’s

e Thustwo *’s when we
want to retrieve
(dereference) a value
that is two levels of
indirection away.

// @file pointerToPointer.cpp
// g++ -std=c++17 pointerToPoi

int main(){

// 1nltiallze 1nteger
TNt X=7%
// Pointer

assigned to

int* px= &(x);

[ar—
HFOWOWOLONOULITE WN -

store address of Xx

int** p px = &x; // p_px is a pointer to an integer pointer
i E
13 // What happens if we dereference p px
14 // and change the value?
15 **p px = 5
16
17 // Follow two levels of indirection
18 std::cout << << X << std::endl;
19 std::cout << << *px << std::endl;
20 std::cout << << *¥p px << std::endl << std
24 // FYI (Here is one level of indirection)
22 std::cout << << *p px << std::endl;
23 std::cout << << &X << std::endl;
24 // FYI (Here is zero levels of indirection)
25 std::cout << << p_px << std::endl;
26 std::cout << << &px << std::endl;
27
28 return 0;

29 }

1:endl;

(Now why does this work?) (2/2)

I R . o 1 // @file pointerToPointer.cpp
X' S Value 1S.: 77 2 // g++ -std=c++17 pointerToPointer.cpp -0 prog
% : 3 #include <iostream>
pX 15z A7 4.
*ok ic: 77 6 7/ Initiatize int
. nitialize integer
p—px ls 3 7 int x= 7;
8 // Pointer assigned to store address of x
9 int* px= &(x);
* 1 . 10
p_px 15! 0X7ffe67593CC4 11 int** p px = &x; // p_px is a pointer to an integer pointer
y ~ 12
&X ls s 0X7ffe67593CC4 13 // What happens if we dereference p px
- 14 // and change the value?
p px is: Ox7ffe67593cC8 |15 “ppx < 7v;
R . 16
&pX].S . 0X7ff€67593CC8 17 / Follow two levels of indirection
- ———————— 18 std::cout << "x's value is: " << X << std::endl;
19 std::cout << "*px is: " << *px << std::endl;
20 std::cout << "**p px is: " << **kp px << std::endl << std::endl;
A d h y th It 21 / FYI (Here is one level of indirection)
22 std::cout << "*p px is: " << *p px << std::endl;
n ere S e resu 23 std::cout << "&x is: " << &X << std::endl;
24 / FYI (Here is zero levels of indirection)
25 std::cout << "p px is: " << p_px << std::endl;
indirection away. g? std::cout << "&px is: " << &px << std::endl;
28 return 0;

Why is dereferencing a big deal?

In this example | show how pointers allow us to share data, and from multiple
locations (i.e., variables) we can retrieve the same value.

52

Pointers and
sharing data (1/6)

I’'m going to push the boundaries of what fits on a
slide in a moment

I’'m allowed to do this in a technical
presentation...if | explain the code :)
(reminder full code examples are here:
https://github.com/MikeShah/cppcon2021)

53

https://github.com/MikeShah/cppcon2021

1 // @file sharing.cpp
2 // g++ -std=c++17 sharing.cpp -o prog
3 #include <iostream>
4 #include <string>
5 // Custom data structure
struct Person{

std::string nickname;

/* ... assume more attributes */

Pointers and
sharing data (2/6)

8
9}

struct Company{
Person* ceo; // The employees
12|}

struct Friends{
Person* friendl; // Only 1 friend for simplicity..]

15 ()3

54

. 1 // @file sharing.cpp
F’()If]tEBFSS Eif](j 2 // g++ -std=c++17 sharing.cpp -o prog
. 3 #include <iostream=>
Sha”ng data (3/6) 4 #include <string>
5 // Custom data structure
6 struct Person{
7 std::string nickname;
17 // Create 'me' with some attributes 8 /* ... assume more attributes */
18 Person michael; 9 };
19 michael.nickname = "Michael’; 10 struct Company{
~~— 11 Person* ceo; // The employees
21 Person* myFakeTwinBrother; 12)3
2 Company myEmployer ; 13 struct Friends{
23 Friends myFriends; | 14 Person* friendl; // Only 1 friend for simplicity...
s

55

. 1 // @file sharing.cpp
F)()|r]t63r55 Eif](j 2 /] g++ -std=c++17 sharing.cpp -0 prog
. 3 #include <ic
sharing data (4/6) 4 #lnclude <string
5 // Custom data structure
6 struct Person{
7 std::string nickname;
7 2ate €' W 8 f* assume more attributes */
18 Person michael; 9 };
19 michael.nickname = 10 struct Company{
11 Person* ceo; // The employees
21 Person* myFakeTwinBrother; 12 }s
22 Company myEmployer; 13 struct Friends{
23 Friends myFriends; 14 Person* friendl; // Only 1 friend for simplicity...
24 b 3 15 };
26 myFakeTwinBrother = &michael;
27 myEmployer.ceo = &michael; s e g s .
28 myFriends.friend1 = &michael; e Now, let’s initialize our pointers

so that they point to the address
of michael (i.e., &michael)

e If each pointer, points to the
same thing, we are effectively
sharing!

56

. 1 // @file sharing.cpp
F’()If]tEBrES Eir](j 2 // g++ -std=c++17 sharing.cpp -o prog
. 3 #include <iostream>
Sha”ng data (5/6) 4 #include <string>
5 // Custom data structure

6 struct Person{

7 std::string nickname;
17 /] Create 'me' with some attributes 8
18 Person michael; 9 };
19 michael.nickname = "“ichasl’; 10 str

12
21 Person* myFakeTwinBrother; 12 };
22 Company myEmployer;
23 Friends myFriends;
24 // For each of these other objects,
25 // share some data
26 myFakeTwinBrother = &michael;
27 myEmployer.ceo = &michael;
28 myFriends.friend1l = &mig’
30 michael.nickname = ""ike';
33 // Let's confirm our pointers update
32 std::cout << "MyFakeTwinBrother also is " << (*myFakeTwinBrother).nickname << std::endl;
33 std::cout << "MyFakeTwinBrother is still ' << myFakeTwinBrother->nickname << std::endl;
34 // ™ Note the new syntax with the arrow, which derefences a field in a struct/class
35 std::cout << "My employer should call me - << myEmployer.ceo->nickname << std::endl;
36 std::cout << "My my friend should call me - << myFriends.friend1->nickname << std::endl;

57

. 1 // @file sharing.cpp
F)()|r]t63r55 Eif](j 2 // g++ -std=c++17 sharing.cpp -o prog
. 3 #include <iostream>
Sha”ng data (6/6) 4 #include <string>
5 // Custom data structure
6 struct Person{
7 std::string nickname;
2 I 4 /] Create 'me' with some attributes 8
18 Person michael; 9 }; MyFakeTwinBrother also is : Mike
It ol i 10 st MyFakeTwinBrother is still : Mike
21 Person* myFakeTwinBrother; 12 33 y employer should call me : Mike
22 Company myEmployer; 13 <t My my friend should call me : Mike
23 Friends myFriends;
24 // For each of these other objects,
25 // share some data
26 myFakeTwinBrother = &michael;
27 myEmployer.ceo = &michael;
28 myFriends.friend1l = &mia’
30 michael.nickname = ""ike';
33 // Let's confirm our pointers update
32 std::cout << "MyFakeTwinBrother also is " << (*myFakeTwinBrother).nickname << std::endl;
33 std::cout << "MyFakeTwinBrother is still " << myFakeTwinBrother->nickname << std::endl;
34 // ™ Note the new syntax with the arrow, which derefences a field in a struct/class
35 std::cout << "My employer should call me " << myEmployer.ceo->nickname << std::endl;
36 std::cout << "My my Triend should call me @ << myFriends.friend1->nickname << std::endl;
58

. . 1 // @file sharing.cpp
POlnterS and Sharlng data 2 // g++ -std=c++17 sharing.cpp -0 prog
. 3 :1PCdeQ <iostream>
(All the code on one slide) 4 #include <string>

5 // Custom data strucLure

6 struct Person{
16 int main(){ 7 std::string nickname;
17 /| Create 'me’ with some attributes 8 /* ... assume more attributes */
18 Person michael; 9 };
19 michael.nickname = 3 10 struct Company{
20 /1 Create other objects 11 Person* ceo; // The employees
21 Person* myFakeTwinBrother; 12)3
22 Company myEmployer; 13 struct Friends{
23 Friends myFriends; 14 Person* friendl; // Only 1 friend for
24 /[For each of these other objects, > ; (L -
25 share some data
26 myFakeTwinBrother &michael;
27 myEmployer.ceo = &michael;
p: myFriends.friend1l = &michael;
29 // Hmm, I've decided to change my nickname.
30 michael.nickname = "Mike';
31 [/ Let's conflrm our pointers update
32 std::cout << "MyFakeT: ?"»f"";f 1 << (*myFakeTwinBrother).nickname << std::endl;
33 std::cout << "MyFakeTwinBrotl s still << myFakeTwinBrother->nickname << std::endl;
34 // ~ Note the new Syntax thh thc arrou, which derefences a field in a struct/class
35 std::cout << "My emplc should me << myEmployer.ceo->nickname << std::endl;
36 std::cout << "My my f d shoulc L1 me << myFriends.friend1->nickname << std::endl;
37
38 return 0;

39 }

simplicity...

59

Subtle Syntax | The arrow operator (->)

e Some folks may have noticed that there is a new ‘->’ syntax that was
introduced on the previous slide
o Recall when accessing the field of a struct we use the ‘. operator.
o If that field is a pointer, and we’d like to dereference that field and get the value, we can do
that with ->

m This is a shorthand for using the * (to dereference) and the . (dot operator to retrieve a

field).

m Note how the two are exactly the same, but | find the *->’ much easier to use.
std::cout << << |(*myFakeTwinBrother).nickname| << std::endl;
std::cout << << |myFakeTwinBrother->nickname <k std::endl;
std::cout << << myEmployer.ceo->nickname << std::endl;
std::cout << << myFriends.friend1->nickname << std::endl;

60

So we have the basic tools of pointers

And now that we understand one use case of pointers is about ‘sharing’ data.

Let’'s see how pointers work when passed to functions

61

Passing Pointers into Functions (Pass by Pointer) (1/6)

e Let’s compare two functions
One that takes an integer parameter
One that takes an integer pointer
parameter

L T ~a LU=

1

id passByValue(int x){

0 X =
7}
j passByPointer(int* intPointerj{
10 *IntPointer = 3
1; }
13 int main(){
14 LRE X =
16 passByValue(x);
17 std::cout << << X << std::endl;
18 passByPointer(&y);
19 std::cout << << y << std::endl;
21 return

62

Passing Pointers into Functions (Pass by Pointer) (2/6)

e Let’s compare two functions

One that takes an integer parameter
One that takes an integer pointer
parameter

e Now you’ll notice these functions

are named in particular way
o pass-by-value and pass-by-pointer

O~NO UL D WN =

[SCQY
N = @ W0

13
14
1 i
16
s ¢
18
19
20
21
22

// @file passByPointer.cpp
// g++ -std=c++17 passByPointer.cpp

#include iostrean

-0 prog

void passByValue(xnt x){
X = 9999;
}

void passByPointer(int* intPointer){
*intPointer = 9559;
}

int main(){
int X =53
int y = 63

passByValue(x);
std::cout << "x is now:

q passByPomter(&y) 5 7

<< X << std::endl;

std::cout << << y << std::endl;

return 0;

3

63

Passing Pointers into Functions (Pass by Pointer) (3/6)

e pass-by-value
pass-by-value: means whenever we
pass in a value, a copy of that value is
made.

m This means, the address of ‘x’ at

line 14 is going to be different
than at line 6

OO AL WN =

// @file passByPointer.cpp
// g++ -std=c++17 passByPointer.cpp -0 prog
#include <iostream>
void passByValue(int x){
X = 9999;
}
void passByPointer(int* intPointer){
*intPointer = 9999;
}
int main(){
inEix:="5;
int y = 63
passByValue(x);
std::cout << "x is now: << X << std::endl;
passByPOInter(&y),
std::cout << << y << std::endl;
return 0;
}

64

Passing Pointers into Functions (Pass by Pointer) (4/6)

e pass-by-value and pass-by-pointer
pass-by-value: means whenever we
pass in a value, a copy of that value is
made.
m This means, the address of ‘x’ at
line 14 is going to be different
than at line 6
pass-by-pointer: Well...it’s actually still
pass-by-value.
m However! The value that a pointer
holds is an actual address of ‘y’
(located at line 15).
m So sometimes we call this
pass-by-pointer

. (Note: If we re-assign our pointer in the function, that
however will not be maintained)

O~NOUN B WN =

« b 4
18
19
20
21
22

// @file passByPointer.cpp
// g++ -std=c++17 passByPointer.cpp -0 prog
#include <iostream>
void passByValue(int x){
X = 9999;
}
void passByPointer(int* intPointer){
*intPointer = 9999;
}
int main(){
inEix:="83
int y = 63
passByValue(x);
std::cout << "x is now: << X << std::endl;
passByPOInter(&y),
qstd :cout << "y is now: << y << std::endl;
return 0;
}

65

pass-by-value and pass-by-pointer

I pass-by-value: means whenever we

pass in a value, a copy of that value is
made.

This means, the address of ‘X’ at
line 14 is going to be different
than at line 6 (

[l rpass-by-pointer: Well...it’s actually still
pass-by-value.

However! The value that a pointer
holds is an actual address of ‘y’
(located at line 15).

So sometimes we call this
pass-by-pointer

° (Note: If we re-assign our pointer in the function, that
however will not be maintained)

CoO~NOTUL S WNR

13
14
3
16
i b 4
18
19
20
21
22

// @file passByPointer.

cpp

// g++ -std=c++17 passByPointer.cpp -o prog

#include <iostream>

void passByValue(int x){

X = 9999;
}

void passByPointer(int* intPointer){

*intPointer = 9999;
}

int main(){
int:x:="53
TRELY =83

passByValue(x);
std::cout << "x is

now: "

<< X << std::endl;

passByPointer(&y);
std::cout << "y 1is

now:

<< y << std::endl;

return 0;

66

mike:pointers$ g++ -std=c++17 passByPointer.cpp -0 prog
mike:pointers$./prog

- TP RSSO TITIIETDT
e pass-by-value and pass-by-pointer 2 // g++ -std=c++17 passByPointer.cpp -o prog
3 #include <iostream>
B pass-by-value: means whenever we p
pass in a value, a copy of that value is - "°‘dx":‘°‘;g39’g?1"e(‘“t XN
made. 7}
N [1) 8
m This means, the address of ‘X’ at 9 void passByPointer(int* intPointer){
line 14 is going to be different 4 4 “IntRotnter= 3999
than at line 6 (12
. . . 13 int main
B pass-by-pointer: Well...it’s actually still 14 int ,(()E 55
-bv-value. 15 int y = 6;
pass-by-value _ 16 . passByValue(x);
m However! The value that a pointer 17 ™| std::cout << "x is now: " << x << std::endl;
. . 18 passByPointer(&y);
holds is an actual address of ‘y 19 .| stdz:cout << %y is nows " <<y << stdzzendls
(located at line 15). g‘l’ ek B
m So sometimes we call this 22 } ’
pass-by-pointer
° (Note: If we re-assign our pointer in the function, that

however will not be maintained)

67

Notes: pass-by-pointer (1/3)

e Again, pass-by-pointer is
equivalent to pass-by-value,
except you are able to mutate
values through the address a

pointer stores
o (Teacher note: | like giving this a
different name so it’s clearer for
students to communicate what
they are doing)

Notes: pass-by-pointer (2/3)

1 /'/ +i’LQ asSsSb
e You'll see pass-by-pointer 2 // g+ -std=cs ely.cpp -0 prog
this in C-style APIs (e.q. 4
S C S ye S (e g g 5 // Silly examp lds 3 input parameters and
6 // sets it as an
OpenGL) 7 // The 3 inputs are consumed and set to 0.
o Careful though, excessive 8 void passByPointerExcesswely(int* out, int* inl, int* in2, int* in3){
RN 9 *out = *inl + *in2 + *in3;
use, or specifying ‘out 10 *inl = 0;
t . identified 14, *in2 = 0;
parameters IS an iaentitie 12 *in3 = 0;
code smell from Jason }i }
Turners talk! [6_ min mark] 15 int main(){
. . 16 int X = 5; int v =16 int z = %
o Also be careful, if | reassigna 15 int out:
i ithi i 18
pomter within a functlon, 19 passByPointerExcessively(&out,&x,&y,&z);
remember I’m only 20 std::cout << << out << std::endl;
.. 21 std::cout << << X << std::endl;
re-assigning the copy of the 2> std::cout << <<y << std::endl;
pointer (because, we are 22 std::cout << << 7z << std::endl;

passing by value the pointer) gg) return 0;
variable.

https://youtu.be/f_tLQl0wLUM?t=378

Notes: pass-by-pointer (3/3)

e You’ll see pass-by-pointer
this in C-style APIs (e.g.,

OpenGL)

(@)

Careful though, e
use, or specifying
parametersis an i
code smell from J
Turners talk! [6 min mark]
Also be careful, if | reassign a
pointer within a function,
remember I’m only
re-assigning the copy of the
pointer (because, we are
passing by value the pointer)
variable.

X =5; int y = 6; t z =

passByPointerExcessively(&out,&x,&y,&2Z);

std: :cout << << out << std::endl;
std::cout << << X << std::endl;
std::cout << << y << std::endl;
std::cout << << 7z << std::endl;

out, t* inl, int* in2,

t* in3){

https://youtu.be/f_tLQl0wLUM?t=378

Pointer Variables...check
Dereferencing...check
Pointers as parameters...check

Let’'s now talk about pointers versus arrays (and dynamically
allocated arrays)

71

Pointers and Arrays

Visualizing Memory - Linear array of addresses (1/4)

e Let’s again visualize memory
e This time I’'m going to show a grid
o Still alinear array of addresses as indicated by
the arrows.

o lam using a grid so | can fit more memory on
the screen.

73
*Assume 1 byte per box and assume still a linear array of memory

Visualizing Memory - Linear array of addresses (2/4)

e Different data types (whether primitive
types or user-defined types) will take
different amounts of memory

1

2 =

3

4

5

6 struct UserDefinedType{

74 int Xx,y,z; 2

8 char a,b,c;

9
10
1 };
12

13 int main(){

14

15 std::cout << << sizeof (ﬁ,om,) << std rendl;

16 std::cout << << sizeof(unsigne ar) << std::endl;
17 std::cout << << sizeof(char) << std rendl;

18 std::cout << << sizeof(short

19 std::cout << << sizeof(u
20 std::cout << << sizeof(ir << std::endl;
21 std::cout << << sizeof(float) << std::endl;
22 std::cout << << sizeof(double) << std::endl;
23 std::cout << << sizeof(UserDefinedType) << std::endl;
24
25 return 0; 74

26 } *Assume 1 byte per box and assume still a linear array of memory

Visualizing Memory - Linear array of addresses (3/4)

e ey sizeof(bool) 3 |
// @file sizeof3.cpp 2 X

2 // g++ -Wall -Wextra -std=c++17 sizeof3.cpp -0 prog SlZEOf(UnSlgnEd Char) 01
3 # :

4 // Fixed width integer types (c++11) SlZEOf(Char) . 1
5 1 .

6 struct UserDefinedType{ S]..ZEOf (ShO rt) 12
7) 12‘(x,yt,)z; // 12 bytes 51zeof(u1nt8 't) o |
8 char a,b,c; // 3 more bytes . . -

9 // +1 more bytes for padding Slzeo'f(lnt) 4
10 // (Don't assume!) sizeof(float) -4
1} g)
12) sizeof(double) :8
13 1 i . =

- adladis sizeof (UserDefinedType):16
15 std::cout << << sizeof(bool) << std::endl;

16 std::cout << "si << sizeof(unsigned char) << std::endl; Type sizes on my 64-bit machine

17 std::cout <<) << sizeof(char) << std::endl;

18 std::cout << << sizeof(short) << std::endl; . .

19 std::cout << << sizeof(uint8 t) << std::endl; (Note: The UserDefinedType Is'a good
20 std::cout << << sizeof(int) << std::endl; example of why we want to use sizeof.

R i << sizeoig glog{))« stzeendly Just ‘looking’ at the fields may not tell us
22 std::cout << 7 << sizeo ouble) << std::endl; : H : :

23 std::cout << z serDefi f << sizeof(UserDefinedType) << std::endl; hov.v the c_:ompller IS pgddlng or(as atsky
24 optimization) rearranging fields)

25 return 0;

26 }

*Assume 1 byte per box

Visualizing Memory - Linear array of addresses (4/4)
[7 [-]3.1415 [HEN

Here are a few examples of how our
memory may fill up

o (All local variables for now, that are stack allocated)

I 51zeof(bool) :
sizeof(unsigned char) :

I sizeof(char) :

I sizeof(short) =2
sizeof(uint8 t) 5 |

I sizeof(int) 14
sizeof(float) =4

I sizeof(double) :8

p sizeof(UserDefinedType):16
ik =
cha C= -

i float f= »

*Assume 1 byte per box

Visualizing Arrays (1/8)

e Okay, so what happens when we
create an array of data?

17 }

int main(){

short array[6];

for(int i=0; i < 6; i++){
array[i] = i;

}

A
eturn ;

77

int main(){

c

rt array[6];

el el el el el el s
NOUBRWNRFROOONOUIEWN -

}

TOr(1Int 1=0; 1 <

}

~e
o

~+

P

array[i] = i;

Irn ’

;o1++){

We allocate 6 shorts in a contiguous block.
6 shorts, each 2 bytes, gives us 12 bytes total
allocated.

78

i orra.cop o o AEEEEEEEEEEE
EEEEEEEEEEEE
o i EEEEEEEEEEEE

short array[6]:
for(int i=0; i < 6; i++){ Then of course, we want to initialize our memory
y arkaylil = 1 with some values--for now, i’ is fine.

Tl ol e SRS e
OB WNRFROOWINOULIE WN =

5 T T
RS T T
79

17 }

e Soiflcreate a short* p_s, based off iGN NN N2NN RS 20 S

what we learned, | should be able to point .-.--....-.-
to each individual element. .-.-.-.-.-.-
EEEEEREEEEEEN
EEEEEREEEEEEN
EEEEEREEEEEEN
EEEEEREEEEEER
EEEEEREEEEEER

80

18

HEEEEEEEEEEE
S SN
7 . HEREEEEEENENEN

8 short array .

g ainenT We create our pointer, and some

LU suisier fo cleent memory is allocated. 8-bytes used
r—STTTTIT <k oy 2] << s <o to store an address on my system.

i e o o e R — BEEEEEEEEEER
19 return 10; 81

i —— HEEEEEEEEEEE
2 g++ -std=c++17 array2. -0 pro

3

4

5
6 i
7
9

int main(){ NN,
8

short array!]; .'
I ot e We create our pointer, and some
14 } .
12 eointer g Elenent in o memory is allocated. 8-bytes used
3 short* p s arraylL-i,
Is TTCOUT << “Garray[2]:" << *p_s SSNEN to store an address on my system.
16 p_ s = &array[3]; . N ————————..’”
J st s EEEEEEEEEEER

o Lzl s [alts
o | ||
ENEEEEEEEEEN

il oo EEEEEEEEEEEE
i EEEEEEEEEEEE
PORENIL 1 A
9 igikiw?r52¥g 1'5_ ;i) {

T y” N point our pointer to an address
e . (e, index 2 of the array)

}2 p.s= &array[] . .’ | -

17

18

R e
83

return 0,

ped
(e}

20 }

1
2 -
4
>
6 int main(){
5
8 short array[6];
9 for(int i=0; i < 6; i++){
10 array[i] = i;
1. }
12 Pointer to element ir
13 short* p s = &array[2];
14 std::cout << << *p S S
15 Point jother eleme :
[16 p s = &array[3];]
17 std::cout << << *p s << std:
18
19 return 0;

20 }

o |]
HEEEEEEEEEEE

point our pointer elsewhere
(i.e., index 3 of the array)

e HEEEEEEEEEEN
84

Pointer arithmetic (1/7)

e What happens if | try to ‘increment’ a
pointer?
o Well--we can do p_s++ or ++p_s

1

2

3

4

5

6 int main(){

-

8 short array[6];

9 for(int i=0; i < 6; i++){
10 array[il = i;

11 }
12 rolnter to Sstar OoT a 1)
13 short* p s = &array[0];

14 for(int 1=0; 1 < 6; 1+M{
15 std::cout << << *p_s << std::endl;
16 p_S++;

17 }

18

19 return 0;
20 }

o |]
HEEEEEEEEEEE
HEEEEEEEEEEN

1| ~ithmetic.cpp
9, d=c++17 arithmetic.c -0 pDroa
3 HEEEEEEEEEEEN
4
s EEEEEEEEEEEN
6 int main(){
: HEEEEEEEEEEN
8 short array[6];
§ FRETRY v EEEEEEEEE
10 array[il = i;
11 }
12 Pointer to start of a
3 short* p s = &array[0];
14 for(int i=0; i < 6; i+){
15 std::cout << << *p s << std::endl;
|16 p_S++; |
1 b
s HEEEEEEEEEEEN
19 return 0; 86

20 }

o |]
HEEEEEEEEEEE
HEEEEEEEEEEN

1| ~ithmetic.cpp
9, d=c++17 arithmetic.c -0 pDroa
3 HEEEEEEEEEEEN
4
s EEEEEEEEEEEN
6 int main(){
: HEEEEEEEEEEN
8 short array[6];
§ FRETRY v EEEEEEEEE
10 array[il = i;
11 }
12 Pointer to start of a
3 short* p s = &array[0];
14 for(int i=0; i < 6; i+){
15 std::cout << << *p s << std::endl;
|16 p_S++; |
1 b
s HEEEEEEEEEEEN
19 return 0; 87

20 }

N
HEEEEEEEEEEE
HEEEEEEEEEEN

1| ~ithmetic.cpp
9, d=c++17 arithmetic.c -0 pDroa
3 HEEEEEEEEEEEN
4
s EEEEEEEEEEEN
6 int main(){
: HEEEEEEEEEEN
8 short array[6];
§ FRETRY v EEEEEEEEE
10 array[il = i;
11 }
12 Pointer to start of a
3 short* p s = &array[0];
14 for(int i=0; i < 6; i+){
15 std::cout << << *p s << std::endl;
|16 p_S++; |
1 b
s HEEEEEEEEEEEN
19 return 0; 88

20 }

1§ ~ithmetic.cpp
2 "d=c++17 ar me et -0 brod
3 HEEEEEEEEEEEN
4
s EEEEEEEEEEEN
6 int main(){
: EEEEEEEEEEEN
8 short array[6];
§ FRETRY v EEEEEEEEE
10 array[il = i;
11 }
12 Pointer
3 short* p s = &array[],
14 for(int i=0; i < 6; i+){
15 std::cout << << *p s << std::endl;
[T6 p_S++; |
1 b
s EEEEEEEEEEEN
19 return 0; 89

20 }

1§ ~ithmetic.cpp
2 "d=c++17 ar me et -0 brod
3 HEEEEEEEEEEEN
4
s EEEEEEEEEEEN
6 int main(){
: EEEEEEEEEEEN
8 short array[6];
§ FRETRY v EEEEEEEEE
10 array[il = i;
11 }
12 Pointer
3 short* p s = &array[],
14 for(int i=0; i < 6; i+){
15 std::cout << << *p s << std::endl;
[T6 p_S++; |
1 b
s EEEEEEEEEEEN
19 return 0; 90

20 }

Because our pointer type(p_s) is ‘2

bytes’, ++ (post-increment) shifts our _____\P_S pointer) .
1 // efile arithmetic.cpp mike:pointers$ g++ -std=c++17 arithmetic.cpp -0 prog
z -std=c++17 arithmetic.cpp -0 prog mike:pointers$ _/prog
A3
5
6 int main(){
7
8 short array[6];
9 for(int i=0; i < 6; i++){
10 array[il = i;
1 | }
12 // Pointer to start of array
13 short* p s = &array[0];
14 for(int i=0; i < 6; i+){
15 std::cout << << *p s << std::endl;
16 p_S++;
17 }
18
19 return 0; 91

Array offset and dereference (1/3)

e So if we think about our previous 0

example:
o The number of times we increment
p_s, was the offset into the array
o We can access a value by offsetting
to a position, and then dereferencing
that address!

Array offset and dereference (2/3)

e So if we think about our previous

example:
o The number of times we increment
p_s, was the offset into the array
o We can access a value by offsetting
to a position, and then dereferencing
that address!
m (See example on the right)

' (| | [| [| [
// @file arithmetic2.cpp

// g++ -std=c++17 arithmetic2.cpp -0 prog

#include <iostream>
#include <array>

int main(){
short array[6];
for(int i=0; i < 6; i++){

array[i] = 1i;
}

1

2

3

4

5

6

7

8

9

10

1l

12 // Array offset shorthand
ik std::cout << "array[0]:" <<|*(array+0) |<< std::endl;
14

15

16

17

18

19

20

std::cout << "array[1]:" <<|[*(array+1) |<< std::endl;
std::cout << "array[2]:" <<|*(array+2) |<< std::endl;
std::cout << "array[3]:" <<|*(array+3) |<< std::endl;
std::cout << "array[4]:" <<|*(array+4) |<< std::endl;
]

1" << |*(array+5) |<< std::endl;

std::cout << "array[5

return 0;
23 3 X

mike:pointers$ g++ -std=c++17 arithmetic2.cpp -0 prog
mike:pointers$./prog

array[0]:0

array[1l]:1

larray[2]:2

array[3]:3

array([4]:4

array[5]:5

e Soremember--an array is just a contiguous chunk of memory.
e Arrays are a homogenous data structure, meaning all the data
stored is the same type:
o We can thus use a pointer arithmetic to navigate pointers
through an array (Using ++, +1, +2, --, -2, etc.)

Array Decay to Pointer (1/2)

e Now, while traversing our
array using pointer arithmetic
was neat--there was

something subtle

o When we are doing the
‘traversal’ (p_s++) we are losing
information about the array--and
instead incrementing along a
pointer

o We actually have a pointer type,
not an array.

m Notice the difference on
the right
e array vs &array[0]

1 // @file decay.cpp

2 // g++ -std=c++17 decay.cpp -0 prog

33 nclude

4 #

)

6 int main(){

-

8 short array[6];

9 for(int i=0; i < 6; i++){
10 array[i] = i;
11 }
12 // Pointer to start of array
13 // Note: 'array' versus 'Garray[0]

14 L/ is slightly different.

15 std::cout << << sizeof(array) << std::endl;
16 std::cout << << sizeof(&array[0]) << std::endl;
17

18 short* p s = array; // Can just point to the pointer, intead of &array[0]
19 for(int i=0; i < 6; i++){
20 std::cout << = " << *p s << std::endl;
21 p_S++;
22 }
23
24 return 0;
25 }

mike:pointers$ g++ -std=c++17 decay.cpp -0 prog
mike:pointers$./prog

sizeof(array) 2 32

sizeof(&array[0]): 8
*p_s:
*p_s:
*p_s:
*p_s_—_
*p_s:
*p_s:

95

U WNREF O~

Array Decay to Pointer (2/2)

e Now, while traversing our
array using pointer arithmetic

pointer
o We actually have a pointer type,
not an array.
m Notice the difference on
the right
e array vs &array[0]

}

}

main(){
array[6];
(i=0; 1 < 6; i++){
array[i] = i;
}
std::cout << << (array) << std::endl;
std::cout << << (&array[0]) << std::endl;
* p s = array;
(i=0; i < 6; i++){
std::cout << << *p s << std::endl;
p_S++;

mike:pointers$ g++ -s
mike:pointers$./prog

td=c++17 decay.cpp -0 prog

sizeof(array) : 12
sizeof (&array[0]): 8

*p =

x

©
wn
Il

x
|
wn

\
0w n
{1 L (A [

X X *

(
0]
1
2
3
4
5

=i~ R o B o
wn

96

Pointers as parameters

arrays decay to pointers in function parameters
(Think for a moment what information we lose)

97

Arrays decay to pointers as function parameter (1/2)

In the example of the right, |
again show this, when
attempting to pass an ‘array’
as a function parameter, it’s

thus treated as a pointer.

o The dimensions of our array
would need to be sent in as a
parameter

o Personally, | would prefer using
as a parameter:

m std::vector<short>

1. 2..C
2 // g++ I=c++17 2
3 #
4 7
5
6 void arrayDecay(short* arr){
7 std::cout << << sizeof(arr) << std::endl;
8 }
9
10 int main(){
11
12 short array[6];
13 for(int i=0; i < 6; i++){
14 array[i] = i;
15 }
16
17 std::cout << << sizeof(array) << std::endl;
18 arrayDecay(array);
19
20 return
21 }
1,19

mike:pointers$ g++ -std=c++17 decay2.cpp -0 prog

mike:pointers$./prog

sizeof(array): 12)8
sizeof(arr) : 8

Arrays decay to pointers as function parameter (2/2)

e Here’s the fix
o Just pass in the size of
your collection as a
second parameter
o Then utilize your array
as needed.

OCoOoO~NOOULTE WN -

}

void arrayAsPointerWithSize(short* arr,[size t collectionSize)({]

std::cout << << sizeof(arr) << std::endl;
for(int i=0; i < collectionSize; i++){
std::cout << arr[i] << std::endl;

}

int main(){

short array[6];
for(int 1=0; i <
array[i] = i;

}

std::cout << << sizeof(array) << std::endl;
arrayAsPointerWithSize(array,6);

;i)

return

99

(Just for fun--passing std::array with template parameter) (1/2)

This is just for fun

O

@)

We could use a template parameter
to store the size
(For those who love templates)

1 // @file decay3.cpp

2 // clang++-10 -std=c++20 decay3.cpp -0 prog

3 #include

4 #i

5

6 // Kind of a wild example...

7 // We may want to use a std::vector

8 template<int T>

9 void printArrayWithoutSizeParameter(const std::array<short,T>& arr){
10 std::cout << << sizeof(arr) << std::endl;
11

12

13 int main(){

14

15 std::array<short, 11> array;

16 array.fill({{e,1,2,3,4,5,6,7,8,9,10}});

17 // array.size() is constexpr

18 printArrayWithoutSizeParameter<array.size()>(array);
19
20 // Creating another array...
21 std::array<short, 10> array2;

22 printArrayWithoutSizeParameter<10>(array2);

23

24 return 0;

25 }

26

27 1

mike:pointers$./prog
sizeof(arr) : 22
sizeof(arr) : 20

(Just for fun--passing std::array with template parameter) (2/2)

e \ery quickly we’ll start generating
lots of code for each uniquely

sized array!
o See with output with:
u clang++-10 -std=c++20
-Xclang -ast-print
-fsyntax-only

27 template <int T> void pr1ntArrayW1thout51zeParameter(const std::array<short, T> &arr) {

28 std::cout << "size << sizeof (arr) << std::endl;

}
29 template<> void pr1ntArrayW1thout51zeParameter< 1>(const std::array<short, 11> &arr) {
30 std::cout << "size ! << sizeof (arr) << std::endl;
31 }
32 template<> void prlntArraywlthout51zeParameter<)>(const std::array<short, 10> &arr) {
33 std::cout << izec << sizeof (arr) << std::endl;

34 }

Dynamically allocated arrays

We need pointers to point to a chunk of memory that our allocator gives us
(Thus pointers are necessary for dynamic memory allocation)

102

Dynamically Allocated Arrays (i.e., using new) (1/5)

e Recall: indexing into arrays works by

dereferencing at a specific offset
o The element we access is the data type size
multiplied by the index (i.e., how far we want to
shift our pointer to access a specific piece of
memory)

e Let’s now see how dynamically allocated

arrays work

o i.e., We want to see what happens when an
allocator (e.g., new) returns a pointer

103

e Let’slook at an example .-.-.-..-.-.

] HEEEEEEEEEEN
2 HEEEEEEEEEEEE
4

it S HEEEEEEEEEEN
6 [

-

8

g , f HEEEEEEEEEEN
f o oy = e Ao HEEEEEEEEEEN
11

2 * HEEEEEEEEEEN
13

14

15

16

17 delete[] intArray;

18

19 return 0;

) HEEEEEEEEEEE

104

5 int main(){

10 int* intArray|= new

12
13
14
15
16

18
19 return 0;

20 }

10
17 delete[] intArray;

int[3];

8 bytes (on my machine) used
to create the integer pointer

105

Dynamically Allocated Arrays (i.e., using new) (4/5)

e Let’slook at an example

1 // @file new.cpp
2 // g++ -std=c++17 new.cpp -0 prog
3 #include <iostream>

4
5 int main(){

6 // Request enough bytes for: sizeof(int)*3
7 // intArray points to the start of that

8 // chunk of memory i.e.,

9

// intArray = &(block of memory)
10 int* intArray|= new int[3];
11
12 // Delete the entire array
13 // Note: We use brackets to delete the entire
14 /i allocated block.
15 // Using only 'delete' removes the first
16 L/ element.
17 delete[] intArray;
18

19 return 0;
201 HEEEEREREENE

106

2

y

5 int main(){

6 R o g

7 Whole chunk of original allocation
- ! is freed.

10 int* intArray = new int[3];

11 - : . g

. : — Note: pointer still pointing to

h BORED WE UEE £ something (maybe garbage, maybe
15 ly ‘delete’ & E not’?) .careful if you dereference'

e A N N N I

17 delete[] intArray;

: llllllllllll
19 return 0;

201 HEEEEEEEEENE

107

Dynamically Allocated Arrays - Round 2 (1/2)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
A 7 g
18
19
pAC)

21

// @file new2.cpp
// g++ -std=c++17 new2.cpp -0 prog
#include <iostream>

int main(){

int* intArray = new int[3];

for(int i=0; i < 3; i++){
intArray[i] = i;

}

// Let's share our data by pointing
// to it through another pointer
Pnt* intArray2 = intArray4

std::cout << "intArray2[1l]= " << intArray2[1] << std::endl;

delete[] intArray;

// Uh-oh, what if we try to work with intArray2
std::cout << "intArray2[1]= " << intArray2[1] << std::endl;

return 0;

108

Dynamically Allocated Arrays - Round 2 (2/2)

Imike:pointers$ g++ -std=c++17 new2.cpp -0 prog
mike:pointers$./prog

intArray2[1l]= 1

intArray2[1]= 0

Ll LittATTay,
std::cout << << intArray2[1] << std::endl;
} EREEEER

o
©

nullptr

Does a pointer have to point to anything? (Think about our last example)

110

What if a pointer, points to...nothing? (1/2)

We should always initialize

our variables

In C++ 11 and beyond we
can initialize a pointer to
‘nullptr’ (This is a prvalue)
But if we try to retrieve a
value by dereferencing a
nullptr, we get a
segmentation fault.

O

There’s nothing
in-effect at that address
where we can retrieve a
value from--program
terminates

1 // @file nullptr.cpp

2 // g++ -std=c++17 nullptr.cpp -0 prog

3 #include <iostream>

4

5 int main(){

) // Initialize px

7 int* px= nullptr; // 'nullptr' is the modern C++ way

8 // Note: We could also assign to

9 // NULL or 0, but that is more
10 // of a C-style.

11 std::cout << "What happens here: << *px << std::endl;
12

13

14 return 0;

15 }

mike:pointers$ g++ -std=c++17 nullptr.cpp -0 prog
mike:pointers$./prog
Segmentation fault (core dumped)

111

https://en.cppreference.com/w/cpp/language/nullptr
https://en.cppreference.com/w/cpp/language/value_category

What if a pointer, points to...nothing? (2/2)

1 // @file nullptr2.cpp
e Sothe t|p iS: 2 // g++ -std=c++17 nullptr2.cpp -0 prog
3 Hine] A o g
o Check for nullptrifyouare 4
. 5 int main(){
going to attempt to 6 // Initialize px
dereference a pointer that 7 int* px= j o i ‘nullptr’ lsﬁ‘thew;‘:ocies‘n‘cﬂ‘ way
8 // Note: We could also assign to
may be null. 9 // NULL or ©, but that is more
. 10 ' of a C-style.
L NOte. i | // Check for nullptr
12 | rol= px){
© Modern C++ programmers 3 std::cout << << *px << std::endl;
prefer nullptr as opposed 14 }
. 15
to the macro NULL in C 16 return @
(which is essentially just 9). 17}

m nullptr provides
additional type safety

112

1 // @file nullptr.cpp
. 2 // g++ -std=c++17 nullptr.cpp -0 prog
Pitfalls of A it
4
5 int main(){
.) // Initialize px
pOInte rS 7 int* px= nullptr; // 'nullptr' is the modern C++ way
8 // Note: We could also assign to
9 // NULL or 0, but that is more
10 // of a C-style.
11 std::cout << - happens here? << *px << std::endl;
We have seen one so far, and

“with great power comes great B : return ©;
responsibility”

mike:pointers$ g++ -std=c++17 nullptr.cpp -0 prog
mike:pointers$./prog
Segmentation fault (core dumped)

Dereferencing a nullptr will cause a segmentation fault

Common Pitfalls of pointers

e Because pointers allow sharing, we need to think about ownership
o When | talk about ownership, that means ‘who or which object’ is responsible for deleting
dynamically allocated memory
m (Note: We have some rules for this: Back to Basics: RAIl and the Rule of Zero - Arthur
O'Dwyer - CppCon 2019)
e So--in one slide each | want to show you the common pitfalls of pointers
o (Note: We've already seen dereferencing a nullptr)

114

https://www.youtube.com/watch?v=7Qgd9B1KuMQ
https://www.youtube.com/watch?v=7Qgd9B1KuMQ

Memory Leaks (1/2)

. 1 // @file leak.cpp
e A memory leaks is when we forget 2 // g++ -std=c++17 leak.cpp -0 prog
3 #include ' am>
to reclaim our memory 4 #include
o To the right is an example of never 2

reclaiming (with delete or delete[]) our ; int main(){

memory. 9 // Not the worse thing, but bad...
10 int* memory = new int [1000];
11
12 while(1){
13 // Very bad...lots of allocations
14 int* lotsOfAllocation = new int [1];
15 }
16
17/ return 0;
18 }
19
20 // Eventually the operating system cleans up
21 // the memory after execution....I hope :)

115

Memory Leaks (2/2)

e You can use tools like:

o address sanitizer or valgrind (pronounced val-grinn,
not val-grind) to help you detect bugs

e For my advanced members in the audience,
consider memory tagging strategies (i.e.,
override new for your objects)

o (This applies to all pointer/memory
bugs)

|mike:pointers$ clang++-10 -g -fsanitize=address leak.cpp -o prog; ASAN OPTIONS=detect leaks=1 ./prog

==20586==ERROR: LeakSanitizer: detected memory leaks

Direct leak of 4000 byte(s) ﬁn_l_gbig;:iﬁl_gllgggted from:
#0 0x4c357d in operator jnew[](unsigned long) | (/home/mike/cppcon2021/pointers/prog+0x4c357d)
#1 0x4c5d68 in main /home/mike/cppcon202l/pointers/leak.cpp:9:19|
#2 0x7f794216ab96 in _ libc start main /build/glibc-20RdQG/glibc-2.27/csu/../csu/libc-start.c:310

SUMMARY: AddressSanitizer: 4000 byte(s) leaked in 1 allocation(s). 116

https://clang.llvm.org/docs/LeakSanitizer.html
https://valgrind.org/

Dangling pointers (1/2)

1 i -
e Dangling pointers arise when 2. 7.
we point to the address of a 5 char+ dangerouslyReturnLocalValue(){
6 char ¢ = .
value that may not exist é . D
o Most of our compilers are good 10 int main(){
at giving warnings these days 12 char* danglingPointerl = dangerouslyReturnLocalValue();
13
(See to the rlght) 14 std::cout << << *danglingPointerl << std: :endl;
15
e So we try to avoid pointingto 7, “""
18

data that does not have the 'dangting.cp” 191, 334C written
mike:pointers$ g++ -std=c++17 dangling.cpp -0 prog

same IifEBtirT]EB as our F)()ir]tf}r dangling.cpp: In function ‘char* dangerouslyReturnLocalValue()’:

dangling.cpp:7:14: warning: address of local variable ‘c’ returned [-Wreturn-local-addr]

o Otherwise, we need to update char ¢ = 'c';

A

i 1 mike:pointers$./prog
our pomter tO Va“d data or Segmentation fault (core dumped)
nullptr

117

Dangling pointers (2/2)

e Again, use address sanitizers, memory tools, and your interactive debuggers

(e.g., GDB) to help detect these errors.
o (See some magic debug values like OXDEADBEEF to help catch dangling pointers
https://en.wikipedia.org/wiki/Magic number (programming)#Magic debug values)

118

https://en.wikipedia.org/wiki/0xDEADBEEF
https://en.wikipedia.org/wiki/Magic_number_(programming)#Magic_debug_values

1 // @file double.cpp
2 // g++ std:c++17 double.cpp -0 prog
3 #include
Double Frees :
6 int main(){
e A double free occurs when we are /
. 8 float* fl1 = new float[100];
sharing data between 2 or more 9 float* f2 = fl:
' 10
pomters _ 11 delete[] f2;
e We *are trying* to be good and free 12 12 =4
13 delete[] il:
our memory 14 // Be good and set fl to nullptr
o The problem is we end up freeing the same | 15 f1l = ;
memory twice. 16 // Did I delete f2? I'll try again
17 delete[] f2;
e Note: 18 L]
o My runtime protects me, so | don’t see a 19 return 0;
crash--at least on a toy example. 20 }
o That does not mean it is not there though! 21
m (What happens if | change allocators, "double.cpp” 21L, 330C written
platforms, hardware, etc.?)

mike:pointers$ g++ -std=c++17 double.cpp -0 prog
mike:pointers$./prog

And more....

e For memory and pointer related
best practices on common
pitfalls see the ISOCPP guide

here: reues
. . . Current ISO C++ status
o https://isocpp.ora/wiki/fag/freestor .
e_ m m‘t Upcoming C++ conferences

e And since we’re on
. . NAVIGATION (e iters allo v delete pointers allocated with malloc()?
pointers...some tips on when to

@ FAQ RSS Feed

return a pointer from a function

o https://isocpp.qgithub.io/CppCoreG —
uidelines/CppCoreGuidelines#Rf-re
turn-ptr

o (Carefull) 120

Get Started! Tour Core Guidelines Super-FAQ Standardization =~ About

Memory Management

Contents of this section:

or the pointed-to-data *p?

https://isocpp.org/wiki/faq/freestore-mgmt
https://isocpp.org/wiki/faq/freestore-mgmt
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-return-ptr
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-return-ptr
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-return-ptr

Bug Mitigate with a Wrapper Class

e We can build our own pointer class
o (Example sketch to the right)
o Theidea is to build abstraction around a
‘raw/naked/plain pointer’

e Luckily, the standard library (C++11
and beyond) provides ‘smart

pointers’ for us
o Very briefly (one slide each) | will cover the
three types of smart pointers
o There will be at least one talk on smart
pointers after this talk by Inbal Levi
m (and there are a few other cppcon
talks on smart pointers | will link at
the end)

ate <class T>

~lass MikeSafePointer{

MikeSafePointer(){

rawPointer = new T;
use_count = 1;

}

~MikeSafePointer(){
if(1==use_count){
delete rawPointer;
rawPointer =

Yelse{

}
}

rivate:

T* rawPointer;
int use_count;

int main(){

MikeSafePointer<int> mike_int_pointer;

Getting Smart (with smart pointers)

Using Modern C++ to write safer code

122

What is a smart pointer?

e A container in C++, that wraps a Dynamic memory management

‘pointer’ Smart pointers | | -
Smart pointers enable automatic, exception-safe, object lifetime management.
o It’'s a‘proxy’ in the sense that we Uefined o header-memony

Pointer categories

can use it in place of other pointers.

smart pointer with unique object ownership semantics
(class template)

unique_ptr(c++11)

o We construct the p0|nter US”’]g _— (scrgsasrfeg%i‘r;ttgr with shared object ownership semantics
One O.I: the fO”OWlng typeS weak_ptr (c++11) ygisasktgifigser;ce to an object managed by std::shared ptr
o std::unique_ptr
o std::shared_ptr https://en.cppreference.com/w/cpp/memory

o std::weak_ptr

123

https://en.cppreference.com/w/cpp/memory

What problem does a smart pointer solve?

e We don’t have to call ‘delete’ explicitly anymore!

e \We can even avoid calling ‘new’
o (e.g.if we use make_shared or make_unique)

e We ultimately are enforcing constraints with each of the three types of smart
pointers!

124

What smart pointers are doing?

e Behind the scenes, smart pointers have different ‘constraints’ and are

otherwise doing bookkeeping for you.

o May be reference counting
o May be enforcing uniqueness
o May be handling exceptions during the pointer creation(e.g. make_shared or make_unique)

125

unique_ptr example

e Scoped pointer
o When it goes out of scope, it will
automatically be deleted.

e \We cannot copy them

o This avoids the ‘double free’ issue

o Can be your ‘default’ if you want to be
very careful with your pointers, and do
not intend on sharing data.

e We also cannot assign unique_ptr
to something else, it has to be
unique.

e \We prefer the std::make_unique
call generally (see comments)

ass Object{
Object() { std::cout << w3
~0bject() { std::cout << 5
main (argc, char* argv[]){

{
std::unique ptr<Object> myObjectPtr(Object);

std::unique ptr<Object> myObjectPtr = std::make unique<Object>();
}

shared_ptr example

e Allows a pointer to have

multiple things pointing to it. 4 class Object{
o As long as other pointers are poiinnd R Ak i)

pointing to that memory, the
memory will not be deleted.

e Internally ‘reference counting’ main (it argc, ovi){
or otherwise keeping track of ,
how many things point to it is st snres servsecs e
taking place s fidls z=haped phirabiechs iEanedib]e sRE = st nake Sharea0n]eer-:
o If nothing is pointing to it, then the | msnaredObjectper = mystoredObjectptra

pointer can safely be deleted
m (This is a similar idea to how
garbage collection works in

127
Java)

weak_ptr example

e \ery similar to a shared

pointer, but it does not 14 class Object{
increase the ‘reference 16 Object() { std::cout <<)
~0Object() { std::cout << e
count’ 1
e Inthis way, you can have i/ & o oo e
‘invalid’ pointers u g
o Sometimes you do not :
2 std: :weak ptr<Object> myWeakPtr;
care however, and maybe {
you just want a lightweight std: :shared ptr<Object> mySharedObjectPtr2 = std::make shared<Object>();
way to point to some :
32 myWeakPtr = mySharedObjectPtr2;
references. , }
o e.g. You have a GameObject that was blown up 35 }

mid-way in the game while other objects were 2

communicating with it. You should check for : ;
nullptr, but it ‘may’ be okay if these objects still
point to something deleted.

Another weak _ptr example

Adapted from
https://en.cppreference.com/w
/cpp/memory/weak ptr with
some annotation as to what is
going on
o The motivation for weak_ptr is to
‘point’ to something that may
exist, but if it does not, you are
okay.
m So the weak_ptr does not

own the data in anyway, can
only point to it if it exists.

}

std: :weak ptr<int> gw;

id £(){

to spt = gw.lock();

(spt != Yo,
std::cout << *spt <<
}

std::cout <<
}
X

t main(){
tix = 5
int* p = &x;
std::shared ptr<int> sp = std::make_shared<int>(
gw = sp;

f();
}

T();

https://en.cppreference.com/w/cpp/memory/weak_ptr
https://en.cppreference.com/w/cpp/memory/weak_ptr

e You may also see this type of pointer on occasion, but it has been

deprecated in c++ 17
o Thus, don’t use it.

130

Pointers and Functions

Functions themselves have an address in memory, so we have function pointers

131

. mike:pointers$ nm -g -C ./prog
Functlons have an addreSS 0000000000201010 B _ bss_start
U _cxa_atexit@@GLIBC 2.2.5
w __cxa_finalize@@GLIBC_2.2.5
e Of course they do--functions must | 0000000000201660 D __data_start
_ 0000000000201000 W data_start
exist somewhere! 0000000000201008 D __dso_handle
: - - 0000000000201010 D _edata
o Belov.v isa srup!oet showing where two 0000000000201138 B _end
functions exist in memory 0000000000000ac4 T _fini
o (use:he nmnt:l)]ol_tgofi_r;d s;;r;t;zlgs after compiling a debug version of your code): W _.glrlon_stal't_
0000000000000778 T _init
T - : : 0000000000000ad0® R _IO_stdin_used
// @file functionPointer.cpp w _ITM deregisterTMCloneTable
// g++ -std=c++17 functionPointer.cpp -o prog W :ITM:registerTMCIOneTable
#lnclude <iostream> 0000000000000ac® T _ libc_csu_fini
0000000000000a50 T __libc_csu_init

int add(int x,int y){ U _ libc_start_main@@GLIBC_2.2.5

return x+y; 0000000000000931 T main
); 0000000000000800 T _start
int multiply(int x, int y){ 0000000000201010 D __TMC_END__

return x*y; 000000000000090a T add(int, int)
} 000000000000091e T multiply(int, int)

Creating and Using Function Pointers (1/2)

1 e functionPointer.cpp
H 2 ++ -std=c++17 e 0 J
e So to the right | have an example : : :
. . 4
pointer to a function 5 int add(int x,int y){
)) 6 return x+y;
o Note the syntax on line 14 for creating. 7} ama ‘
L 8 int multiply(int x, int y){
m We work inside to out 2 i return x*y;
e First naming the pointer 11
. 12 int main(){
(] Then | have a list of 13 Create a pointer to the function
14 |int (*pfn_arithmetic)(1nt,‘1nt);|
parameters 15 /7 Point to the add function
16 | pfn_arithmetic = add; |
e Then areturn type 17 Std::cout << << pfn_arithmetic(2,7) << std::endl;
. . . . 18 Point to the multiply function
o Online 16 | assign the function pointer 19 pfn_arithmetic = multiply;
20 std::cout << << pfn_arithmetic(2,7) << std::endl;
21
22 return 0;

Creating and Using Function Pointers (2/2)

1 // @file functionPointer.cpp
PY So tO .the rlgh.t I have an example g ii »ffdes’td ‘c++17 functionPointer.cpp -0 prog
. . 4
pointer to a function 5 int add(int x,int y){
) . 6 return x+y;
o Note the syntax on line 14 for creating. 7}
L 8 int multiply(int x, int y){
m We work inside to out 2 i return x*y;
e First naming the pointer 11
. 12 int main(){

[] Then | have a list of 13 Create a pointer to the function

14 |int (*pfn_arithmetic)(int,int);]
parameters 15 // Point to the add function

16 | pfn_arithmetic = add

e Then areturn type 17 Std::cout << i AMEta - " << |pfn_arithmetic(2,7)| << std::endl;

. . . . 18 // Point to the multlp y furvtlon
o Online 16 | assign the function pointer 19 pfn arithmetic = multlply
. 20 td: t 7 (2.7 = f ithmetic(2,7 td::endl;
m Line 17 and 20 calls are made -+ S e 4 [0 BRI 3)| 42 ST

22 return
23 }

mike:pointers$ g++ -std=c++17 functionPointer.cpp -0 prog
mike:pointers$./prog

pfn arithmetic(2,7) = 9

pfn arithmetic(2,7) = 14

Modern C++ std: :function [reference]

1 // @file stdfunction.cpp

o o : 2 // g++ -std=c++17 stdfunction.cpp -o prog
e std::function allows you to 3 ¥include <iostream
4 #include <functional> // std::function
H 5
store a callable object. G int add(int x,int y){
. . 7 return x+y;
o A function pointer for example would 8 } . _
9 int multiply(int x, int y){
be something that is callable Iy TERM
: 12
o Syntax is almost the same 13 int main(){

14 // Use the modern std::function
15 std::function<int(int,int)> f arithmetic = add;
16 POINT tO the add rtunction
17 f arithmetic = add;
18 std::cout << "pfn arithmetic(2,7) = " << f_arithmetic(2,7) << std::endl;
19 // Point to the multiply function
20 f arithmetic = multlply
21 std::cout << "pfn etic(2,7) = " << f_arithmetic(2,7) << std::endl;
22
23 return 0;
24 }

mike:pointers$ g++ -std=c++17 stdfunction.cpp -0 prog
mike:pointers$./prog

f arithmetic(2,7) =9

f arithmetic(2,7) = 14

https://en.cppreference.com/w/cpp/utility/functional/function

Other odds and ends...for a full day course in the future :)

e (I’m probably running out of time at this point!)
void*
Casting pointers
Using uintptr_t
ptrdiff_t
const and pointers
Some examples of multi-dimensional arrays
Hiding behind a pointer (pIMPL idiom)
e How is a reference different? (It is essentially a const behavior)
o ltisreally justa int* const pointer (pay attention to const after int*)
m https://godbolt.org/z/7W9coGbYd
m (i.e., we cannot change what we point to when passing by reference)
o reference is an ‘alias’ (or another name) for which to refer to a symbol
o reference always points to same object, so much harder to create a nullptr (still could get a
dangling reference however)

0O O O O O O O

136

https://godbolt.org/z/7W9coGbYd

Data structures

Singly Linked List

—_— (If time allows)

ST NTLSSS
TIME TRIAL OFF
REVURE

TT the clock from Diddy Kong Racing N64 137

So Because Pointers point to other pointers

e We can build some cool data ‘linked’ data structures
o My audience here attending Cppcon | am sure has done this...
o For those watching in the future though--think about how you could
implement a ‘list’ data structure.
m How would you add nodes?
m How would you delete nodes? The entire list?
o (Let’s take a look--if we have time)
m https://qgithub.com/MikeShah/cppcon2021/blob/main/pointers/
l.cpp
m (Note: This is how | cheat if my talk is going too long or too
short ;)

SinglyLinkedList{

SinglylLinkedList() {
m_head =

}

}

id PrependNode(
f(m ead==

(

oo
aaaa

->n

(e e e
R
mw D

}
Node* new
newNode- >
newNo

aaa
"

m_hea

}

Printlis
i

tO{
Node* r=

te
(iter!=

>da

ta

t
Node =
e->data = d
e->next = n
newNo

e
a

da

No

ta){
M

de;

= data;
ext =

m_hea

std::cout <<

std::cout <<

~SinglylLinkedList
e* i

mylis
mylLis
mylis
mylLis

mylLis

d: iter =

t main(){

std::e

Of
n_he

No

ata;
_hea

de;

ndl;

L H

de;

https://github.com/MikeShah/cppcon2021/blob/main/pointers/ll.cpp
https://github.com/MikeShah/cppcon2021/blob/main/pointers/ll.cpp

Conclusion

Wrapping up what we’ve learned

139

Conclusion -- C++ Programmers

e You still need to know about raw pointers

e Whether you are an expert or a beginner
o If you’re a beginner
m Now you know a little bit more about the foundations
m Now you’ll understand what smart pointers are doing behind the scenes for you
m Now you should try to build some data structures for practice, or perhaps some more
advanced ones for optimization
o If you’re an expert
m Consider you may need to interface with C-APIs, embedded systems, or simply using a
legacy code base.
m You’ll have to design your functions using pointers for example
o For expert C++ programmers teaching C++
m It’s always worth teaching the foundations (in which order and where in the curriculum

differs however)
140

Some Analogies on Pointers for
Educators

(Whether teacher/professor or if you're trying to explain to your team members
about pointers)

141

A (common) analogy of what a pointer is

e A pointer is a variable that stores the
memory address of a specific object

type
o Okay--not so bad.
m So a ‘pointer’ is a data type
m And it can store objects of a specific

data type
e ASo what exactly does this
mean, and how could we do

this efficiently?
e If an object is a page in a book
e then a ‘pointer’ would be the index in
the back of the book that points you
to a specific page.

object: A page in a book

142

A (common) analogy of what a pointer is

e A pointer is a variable that stores the
memory address of a specific object

type
o Okay--not so bad.
m So a ‘pointer’ is a data type
m And it can store objects of a specific

data type
e ASo what exactly does this
mean, and how could we do

this efficiently?
e If an object is a page in a book
e then a ‘pointer’ would be the index in
the back of the book that points you
to a specific page.

object: A page in a book

index entry, points to a
specific page that exists

A (common) analogy of what a pointer is

e A pointer is a variable that stores the
memory address of a specific object

type
o Okay--not so bad.
m So a ‘pointer’ is a data type
m And it can store objects of a specific

data type
e ASo what exactly does this
mean, and how could we do

this efficiently?
e If an object is a page in a book
e then a ‘pointer’ would be the index in
the back of the book that points you
to a specific page.

f—

A page in a book

index entry, points to a
specific page that exists

A (common) analogy of what a pointer is

e A pointer is a variable that stores the

memory address Ghamanaifianhinat
type So our index in a book stores a
o Okay--not so bac location (i.e., the page number)

m So a ‘pointe
= Anditcans |n C++, a pointer is thus storing a A page in a book

datatype memory location
e /Sow

mean
this ef

e If an object is a pe
e then a ‘pointer’ would be the index in

Let’s review and visualize memory
to get a concrete understanding

the back of the book that points you iIndex entry, points to a
specific page that exists

to a specific page.

Zooming into our memory (each individual rectangle)

e FEach piece of memory has a value, and the .-' ‘..======
address (in hexadecimal) where it lives. .'-

Stored Value

5

Memory Location

0x56234523

o

146

Returning the address of Memory Location (1/3)

e We can retrieve that address using the ‘&’ ..======
operator HP. UEEEEEEE

e Ampersand (&) you can think of as ‘address of’

o (i.e. “hey, tell me where in memory ‘a’ lives)

5

Memory Location

0x56234523

o

147

Returning the address of Memory Location (2/3)

e We can retrieve that address using the ‘&’ ..======
operator HP. UEEEEEEE

e Ampersand (&) you can think of as ‘address of’
e ‘Address of’ gives you the exact location in
memory, just like a mailbox.

Stored Value

5

Memory Location

0x56234523

o

148

Returning the address of Memory Location (3/3)

e We can retrieve that address using the ‘&’ ..======
operator, | (AN [[[
e Ampersand (&) you can think of as ‘address of’

e ‘Address of’ gives you the exact location in
memory, just like a mailbox.

Stored Value

5

Memory Location

0x56234523

o

149

Further resources and training materials

e Pointers
o Back to Basics: Pointers and Memory by Ben Saks (CPPCON 2020)

e Smart Pointers
o Back to Basics: Smart Pointers by Arthur O’Dwyer (CppCon 2019)
o Back to Basics: Smart Pointers by Rainer Grimm (CppCon 2020)
o Back to Basics: Smart Pointers and RAIl by Inbal Levi (CPPCON 2021 on Thursday)

150

https://www.youtube.com/watch?v=rqVWj0aVSxg
https://www.youtube.com/watch?v=xGDLkt-jBJ4
https://www.youtube.com/watch?v=sQCSX7vmmKY

2021 N
October 24-29
IN AUROR A0 NN

@® Copcon

Back to Basics:
Pointers

Mike Shah, Ph.D.
@MichaelShah | mshah.io | www.youtube.com/c/MikeShah

Thank you Cppcon attendees, reviewers, chairs!

151

https://twitter.com/MichaelShah
http://mshah.io
http://www.youtube.com/c/MikeShah

Thank you!

