
Add cover slide

1

Please do not redistribute slides without
prior permission.

2

Software Design:
Factory Pattern

Mike Shah, Ph.D.
@MichaelShah | mshah.io | www.youtube.com/c/MikeShah

2:00 pm MDT, Wed. October 27
60 minutes | Introductory Audience

3

https://twitter.com/MichaelShah
http://mshah.io
http://www.youtube.com/c/MikeShah

Abstract
C++ programs that are dynamic in nature have to create objects at some time during run-time. New
objects can be created by explicitly calling ‘new’ and then the data type of that object. However, this
requires that a programmer knows at ‘compile-time’ what object should be created. What we would like,
is to have a layer of abstraction, or someway to create objects at run-time to reflect the dynamic nature
of some C++ programs. Luckily, there is a common pattern that can help solve this problem--the factory
design pattern.

In this talk, we are going to discuss a creational design pattern known as a factory. The pattern can be as
simple as a function, or take on other forms as a distributed factory, or an abstract factory. We’ll show
some basic examples of a factory in modern C++ as well as real world use cases of where factories
occur for further study. Finally, we’ll discuss the tradeoffs of the factory pattern, and discuss which
scenarios you may not actually want to use a factory. Attendees will leave this talk with the knowledge to
go forward and implement the factory pattern, as well as how to spot the factory pattern in projects they
may already be working on!

4

The abstract that you read and enticed
you to join me is here!

Code for the talk
Available here: https://github.com/MikeShah/cppcon2021

5

https://github.com/MikeShah/cppcon2021

Who Am I?
by Mike Shah

● Assistant Teaching Professor at Northeastern University in
Boston, Massachusetts.
○ I teach courses in computer systems, computer graphics,

and game engine development.
○ My research in program analysis is related to performance

building static/dynamic analysis and software visualization
tools.

● I do consulting and technical training on modern C++,
Concurrency, OpenGL, and Vulkan projects
○ (Usually graphics or games related)

● I like teaching, guitar, running, weight training, and anything in
computer science under the domain of computer graphics,
visualization, concurrency, and parallelism.

● Contact information and more on: www.mshah.io
6

http://www.mshah.io

Who Am I?
by Mike Shah

● Assistant Teaching Professor at Northeastern University in
Boston, Massachusetts.
○ I teach courses in computer systems, computer graphics,

and game engine development.
○ My research in program analysis is related to performance

building static/dynamic analysis and software visualization
tools.

● I do consulting and technical training on modern C++,
Concurrency, OpenGL, and Vulkan projects
○ (Usually graphics or games related)

● I like teaching, guitar, running, weight training, and anything in
computer science under the domain of computer graphics,
visualization, concurrency, and parallelism.

● Contact information and more on: www.mshah.io
7

This will be an interactive session, please shout out
answers

(Note: I never call on audience members randomly, I
did not like that as a student)

http://www.mshah.io

8

I was asking a few folks at the conference earlier
a question:

I was asking a few folks at the conference earlier
a question:

How did you get your start in Programming?
(Or rather--what domain peaked your interest?)

9

Video Games! (That’s my answer) (1/2)

10
(Here are some favorites from around the time I was learning how to program, can you name them all?)

Video Games! (That’s my answer) (2/2)

11
(Here are some favorites from around the time I was learning how to program, can you name them all?)

And for this talk--I don’t care if you like games (that’s
totally fine!), or if you do not know anything about them
at all.

But I do think games are an interesting use case case
of real-time systems.

Real time systems (1/2)
● So just looking at the animation on

the right--there is a lot going on.
○ There are many different types of

objects
■ Some of these objects are being

destroyed
■ New objects are being created

○ Objects are moving around
○ Artificial intelligence (path finding and

other decision making)
○ In-game resource management is

taking place

12

Command and Conquer Red Alert

Real time systems (2/2)
● So just looking at the animation on

the right--there is a lot going on.
○ There are many different types of

objects
■ Some of these objects are being

destroyed
■ New objects are being created

○ Objects are moving around
○ Artificial intelligence (path finding and

other decision making)
○ In-game resource management is

taking place

13

Command and Conquer Red Alert

For today’s talk, I want us to
think about software design for
a real time application--I’ll use
a ‘game’ as an example

My expectations and why this talk exists (1/2)

14

● This talk is part of the Software Design Track at Cppcon
○ Klaus Iglberger and I (Klaus doing the majority of the work!) put together the software design

track
■ Part of this track we thought would be good to have some ‘tutorial like’ or ‘more

fundamental’ (i.e. like the back to the basics) talks on Design Patterns.
■ (Perhaps 1 or 2 talks like this a year--stay tuned and submit to future Cppcons!)

● So this probably is not an ‘expert-level’ talk, but aimed more at beginners
○ That said, I hope experts will derive some value for looking at today’s pattern.

■ Or otherwise, be able to refresh and point out some tradeoffs with today’s pattern

● The design pattern of today is....
○ But before I spoil the pattern (even though it’s the name of the talk) let’s think about what our

goals are

My expectations and why this talk exists (2/2)

15

● This talk is part of the Software Design Track at Cppcon
○ Klaus Iglberger and I (Klaus doing the majority of the work!) put together the software design

track
■ Part of this track we thought would be good to have some ‘tutorial like’ or ‘more

fundamental’ (i.e. like the back to the basics) talks on Design Patterns.
■ (Perhaps 1 or 2 talks like this a year--stay tuned and submit to future Cppcons!)

● So this probably is not an ‘expert-level’ talk, but aimed more at beginners
○ That said, I hope experts will derive some value for looking at today’s pattern.

■ Or otherwise, be able to refresh and point out some tradeoffs with today’s pattern

● The design pattern of today is....
○ But before I spoil the pattern (even though it’s the name of the talk) let’s think about what our

goals are

A user-driven application
(e.g., a video game)

16

Question to Audience:
● If I have a user-driven application

(e.g., a game)
● And part of that game is the users

ability to ‘create’ objects at
run-time.

○ How well do you think I as a developer
can predict at compile-time what
objects to create?

● What are your thoughts?

17

(Observe the user creating a new
object)

Thought Process (1/16)
● How well do you think I as a

developer can predict at
compile-time what objects to create?
(in a very dynamic program...)

18

(Observe the user creating a new
object)

Thought Process (2/16)
● How well do you think I as a

developer can predict at
compile-time what objects to create?
(in a very dynamic program...)

○ Maybe we could guess 100 of each type
of our objects?

○ Maybe we have played our game a few
times and ‘100’ feels like a good number
(or otherwise you have empirical
evidence).

■ What happens if a player goes
over?

■ Maybe we restrict them? Maybe
reallocate 19

Thought Process (3/16)
● How well do you think I as a

developer can predict at
compile-time what objects to create?
(in a very dynamic program...)

○ Maybe we could guess 100 of each type
of our objects?

○ Maybe we have played our game a few
times and ‘100’ feels like a good number
(or otherwise you have empirical
evidence).

■ What happens if a player goes
over?

■ Maybe we restrict them? Maybe
reallocate 20

In a video game, let’s assume
these objects are potentially

very large

We may run out of stack space
here! (Click here to review

stack memory)

https://www2.cs.sfu.ca/CourseCentral/225/johnwill/lab_arrays_intro.html
https://www2.cs.sfu.ca/CourseCentral/225/johnwill/lab_arrays_intro.html

Thought Process (4/16)
● How well do you think I as a

developer can predict at
compile-time what objects to create?
(in a very dynamic program...)

○ So, let’s allocate our memory on the heap.
■ We can also resize if the user goes

over the limit.
● What’s the problem here?

21

Thought Process (3/16)
● How well do you think I as a

developer can predict at compile-time
what objects to create? (in a very
dynamic program...)

○ So, let’s allocate our memory on the heap.
■ We can also resize if the user goes

over the limit.
● What’s the problem here?

22

Well, if I need 200 units, that copy takes O(n) time.

(Or--even if I shrink the array, I have to reallocate.)

Thought Process (6/16)
● How well do you think I as a

developer can predict at
compile-time what objects to create?
(in a very dynamic program...)

○ So I don’t want to manage resizing, so I’ll
just use a data structure.

■ I could also preallocate some
objects (say 100 again) if I know
that’s reasonable for the game.

● (Often games prefer to
preallocate (i.e., give you a
load screen))

23

Thought Process (7/16)
● How well do you think I as a

developer can predict at compile-time
what objects to create? (in a very
dynamic program...)

■ Now, what if half-way through
development the team decides we
don’t want ‘ObjectType3’--it does
not make the game fun?

● I have to delete everywhere.

24

Thought Process (8/16)
● How well do you think I as a

developer can predict at compile-time
what objects to create? (in a very
dynamic program...)

○ Okay, ObjectType3 is gone.
■ I still need to create my 100 objects,

and perhaps some of them are going
to be different (meaning created
using different constructors)...

25

Thought Process (9/16)
● How well do you think I as a

developer can predict at compile-time
what objects to create? (in a very
dynamic program...)

○ Wait...
○ How do I even construct my objects?

■ What if there are multiple
constructors?

■ Do I think I’ll be able to guess at
compile-time which one to use?

26

Thought Process (10/16)
● How well do you think I as a

developer can predict at compile-time
what objects to create? (in a very
dynamic program...)

○ Wait...
○ How do I even construct my objects?

■ What if there are multiple
constructors?

■ Do I think I’ll be able to guess at
compile-time which one to use?

● Okay, I can again try to fix
that...let’s just have one
function (and I need to do this
for each type) 27

Thought Process (11/16)
● How well do you think I as a

developer can predict at compile-time
what objects to create? (in a very
dynamic program...)

○ Wait...
○ How do I even construct my objects?

■ What if there are multiple
constructors?

■ Do I think I’ll be able to guess at
compile-time which one to use?

● Okay, I can again try to fix
that...let’s just have one
function (and I need to do this
for each type) 28

And maybe I could generalize this function to
handle the creation of multiple objects.

Certainly that could be a parameter!

If there are different numbers of arguments....well,
I’ll just use the maximum number (and guess the
types that may be used...)

Hmm, I probably should be careful about passing
in my std::vector as a parameter--but by reference
is okay...

Thought Process (12/16)
● How well do you think I as a

developer can predict at compile-time
what objects to create? (in a very
dynamic program...)

○ Wait...
○ How do I even construct my objects?

■ What if there are multiple
constructors?

■ Do I think I’ll be able to guess at
compile-time which one to use?

● Okay, I can again try to fix
that...let’s just have one
function (and I need to do this
for each type) 29

So we’re slowly getting closer to something interesting
here.

I like that we can create all of our objects in one place.

The parameters and their types that may (or may not
be used) is concerning to get correct.

I also don’t particularly like that we made units1 and
units2 global to simplify this function

And, I’m starting to think about where these objects will
live (right now in a global vector...probably a bad idea)

Question to Audience:
● How well do you think I as a

developer can predict at compile-time
what objects to create? (in a very
dynamic program...)

○ Wait...
○ How do I even construct my objects?

■ What if there are multiple
constructors?

■ Do I think I’ll be able to guess at
compile-time which one to use?

● Okay, I can again try to fix
that...let’s just have one
function (and I need to do this
for each type) 30

So... this works.

Question to Audience: How do I know when
I’m done?
(Your thoughts)

Question to Audience:
● How well do you think I as a

developer can predict at compile-time
what objects to create? (in a very
dynamic program...)

○ Wait...
○ How do I even construct my objects?

■ What if there are multiple
constructors?

■ Do I think I’ll be able to guess at
compile-time which one to use?

● Okay, I can again try to fix
that...let’s just have one
function (and I need to do this
for each type) 31

So... this works.

Question to Audience: How do I know when
I’m done?
(Your thoughts)

● Maybe a deadline hits, maybe it’s good
enough, maybe we are tired...

● How about some better criteria--where I
can check off three boxes
○ When we’re convinced our solution

(especially if the code is going to live
a long time) is:
❏ Flexible
❏ Maintainable
❏ Extensible

Question to Audience:
● How well do you think I as a

developer can predict at compile-time
what objects to create? (in a very
dynamic program...)

○ Wait...
○ How do I even construct my objects?

■ What if there are multiple
constructors?

■ Do I think I’ll be able to guess at
compile-time which one to use?

● Okay, I can again try to fix
that...let’s just have one
function (and I need to do this
for each type) 32

● So is this code (‘makeObject’ specifically)
○ Flexible?

❏ (your thoughts?)
○ Maintainable

❏ (your thoughts?)
○ Extensible

❏ (your thoughts?)

Question to Audience:
● How well do you think I as a

developer can predict at compile-time
what objects to create? (in a very
dynamic program...)

○ Wait...
○ How do I even construct my objects?

■ What if there are multiple
constructors?

■ Do I think I’ll be able to guess at
compile-time which one to use?

● Okay, I can again try to fix
that...let’s just have one
function (and I need to do this
for each type) 33

● So is this code (‘makeObject’ specifically)
○ Flexible?

❏ sort-of, we can extend our list of objectTypes
❏ But how many params should we add?

❏ Maybe we can have a separate
ObjParamsType and use inheritance
for the types (okay interesting
idea...needs to be worked out more)

○ Maintainable?
❏ Not really

❏ If I remove an object type, do I
renumber?

❏ What about the parameters?
❏ How much knowledge do I need to

add to this function--it seems like a lot!
○ Extensible?

❏ I suppose--we can add ObjectTypes
❏ BUT, we have to figure out which vector to

add to...
● I’ll give this score a 1 out of 3--we can probably do

better.

What Problem Am I Trying to Solve?
Claim: If I have a user-driven application (e.g., a game)

A. It can be difficult to figure out how to create objects of different types
a. (And we probably cannot do this well at compile-time)

B. It can be difficult to figure out ‘where’ to create objects
a. (i.e., If I have lots of free functions)

And it’s worth thinking about this problem at scale--where I have 10 different
types, or even 100 different object types.

34

So let’s think about this game (1/2)

● There are many different types of objects
○ How do we create the different objects in this

real-time application such that our code design
is:

■ flexible
■ maintainable
■ and extensible

○ In other words--what is the right pattern?

35
Command and Conquer Red Alert

So let’s think about this game (2/2)

● There are many different types of objects
○ How do we create the different objects in this

real-time application such that our code design
is:

■ flexible
■ maintainable
■ and extensible

○ In other words--what is the right pattern?

36
Command and Conquer Red Alert

Luckily, some smart folks have thought
about this problem.

We have a design pattern to help us
create objects

Design Patterns
 ‘templates’ or ‘flexible blueprints’ for developing software.

37

What is a Design Pattern?
● A common repeatable solution for solving problems.

○ Thus, Design Patterns can serve as ‘templates’ or ‘flexible blueprints’ for developing
software.

● Design patterns can help make programs more:
○ Flexible
○ Maintainable
○ Extensible
○ (Recall, these are our three criteria we’d like to satisfy)

38

Design Patterns Book
● In 1994 a book came out collecting heavily used

patterns in industry titled “Design Patterns”
○ It had four authors, and is dubbed the “Gang of Four” book

(GoF).
○ The book is popular enough to have it’s own wikipedia

page: https://en.wikipedia.org/wiki/Design_Patterns

○ C++ code samples included, but can be applied in many
languages.

○ This book is a good starting point on design patterns for
object-oriented programming

39
* See also the 1977 book “A Pattern Language: Towns, Buildings, Construction” by Christopher Alexander et al. where I believe the term design
pattern was coined.

https://en.wikipedia.org/wiki/Design_Patterns

Design Patterns Book * Brief Aside *
● In 1994 a book came out collecting heavily used

patterns in industry titled “Design Patterns”
○ It had four authors, and is dubbed the “Gang of Four” book

(GoF).
○ It is popular enough to have a wikipedia page:

https://en.wikipedia.org/wiki/Design_Patterns
○ C++ code samples included, but can be applied in many

languages.
○ This is a good starting point on design patterns for

object-oriented programming

40

● I really enjoyed this book (as a graphics
programmer) for learning design patterns.

○ There’s a free web version here:
https://gameprogrammingpatterns.com/

○ I also bought a physical copy to keep
on my desk

https://en.wikipedia.org/wiki/Design_Patterns
https://gameprogrammingpatterns.com/

Design Patterns
Book (1/2)
● So design patterns are

reusable templates that can
help us solve problems that
occur in software

○ One (of the many) nice thing the
Design Patterns Gang of Four
(GoF) book does is organize the
23* presented design patterns into
three categories:

■ Creational
■ Structural
■ Behavioral

41
*Keep in mind there are more than 23 design patterns in the world

Design Patterns
Book (2/2)
● So design patterns are

reusable templates that can
help us solve problems that
occur in software

○ One (of the many) nice thing the
Design Patterns Gang of Four
(GoF) book does is organize the
23* presented design patterns into
three categories:

■ Creational
■ Structural
■ Behavioral

42
*Keep in mind there are more than 23 design patterns in the world

Today we are focusing on
‘creation’ of objects

I’ve highlighted the 5
creational patterns.

Creational Design
Patterns

4343

Creational Design Patterns
● Provide program more flexibility on how to create objects,

often avoiding direct instantiation of a specific object.
○ So this means:

■ We try to avoid directly creating instances of objects in our code:
● ObjectType1 myObject = new ObjectType1;

■ We prefer instead to encapsulate how an object is created

44
https://en.wikipedia.org/wiki/Design_Patterns#Patterns_by_type

https://en.wikipedia.org/wiki/Design_Patterns#Patterns_by_type

We are close to a creational pattern here

● We are somewhat encapsulating
how we create our objects

○ It’s just not very robust
■ What if a user types in an ‘int’ for

the wrong objectType
■ Or we otherwise remove

objectType’s
● (We also need to remove our

vector)
○ We need to clean this up--and it will

require thinking about our ‘ObjectType’
with a little more structure.

45

Quick Refresh: Object-Oriented Programming Toolbox

● One of our tools that we can utilize is
inheritance

○ This is a mechanism where we create an is-a
relationship between two types

■ The relationship is a parent-child
relationship

■ (e.g., on right, we see that a ‘Dog’ is-an
‘Animal’

● Now, I can use the ‘is-a’ relationship to
my advantage and utilize polymorphism

○ (i.e., inheritance based polymorphism)

46https://cdn.programiz.com/sites/tutorial2program/files/cpp-inheritance.png

https://en.cppreference.com/book/intro/inheritance
https://cdn.programiz.com/sites/tutorial2program/files/cpp-inheritance.png

We were close in solving our problem

47

Our Object Inheritance Hierarchy (1/4)

48

● So to start, we’re going to want
some common Interface for which
our different game objects can
inherit from

○ This is probably a good idea to enforce
(with the pure virtual member functions)
properties of each Game Object.

○ Second, we can inherit from any
IGameObject from this common
interface to help ease our construction
of different types of objects.

■ (again leveraging
inheritance-based polymorphism)

Our Object Inheritance Hierarchy (2/4)

49

● So to start, we’re going to want
some common Interface for which
our different game objects can
inherit from

○ This is probably a good idea to enforce
(with the pure virtual member functions)
properties of each Game Object.

○ Second, we can inherit from any
GameObject from this common
interface to help ease our construction
of objects.

So observe to the bottom-right our inheritance
hierarchy we want to establish.

ObjectType1 is-a IGameObject
ObjectType2 is-a IGameObject

IGameObject

ObjectType1 ObjectTypeNth...

Our Object Inheritance Hierarchy (3/4)

50

● So to start, we’re going to want
some common Interface for which
our different game objects can
inherit from

○ This is probably a good idea to enforce
(with the pure virtual member functions)
properties of each Game Object.

○ Second, we can inherit from any
GameObject from this common
interface to help ease our construction
of objects.

(Code) So we’ll have something like this for each
different ObjectType that we create

IGameObject

ObjectType1 ObjectTypeNth...

Our Object Inheritance Hierarchy (4/4)

51

● So to start, we’re going to want
some common Interface for which
our different game objects can
inherit from

○ This is probably a good idea to enforce
(with the pure virtual member functions)
properties of each Game Object.

○ Second, we can inherit from any
GameObject from this common
interface to help ease our construction
of objects.

Two subtle changes, let’s give more specific
names to our objects (Plane and Boat), and
make sure we’re inheriting publicly
IGameObject.

IGameObject

Plane Boat...

Updated ‘function’ to create objects (1/4)

52

● So next I have updated our ‘creation’ function shown on the right

Before After

Updated ‘function’ to create objects (2/4)

53

● So next I have updated our ‘creation’ function shown on the right

Before After

● The first major change is that I have an enum class for the different types of objects
○ (I could have also done this on the left)
○ This ensures we’ll create the correct object type (i.e., better than using a plain ‘int’)

Updated ‘function’ to create objects (3/4)

54

● So next I have updated our ‘creation’ function shown on the right

Before After

● The second major idea, is that I have simplified the function function
○ We just return an *IGameObject
○ This is much cleaner that what we were doing previously

■ (The managing of which collection to push to is gone!)
○ We’re also moving towards the ‘Single Responsibility Principle’ where I could create all

of my objects in CreateObjectFactory

Updated ‘function’ to create objects (4/4)

55

● So next I have updated our ‘creation’ function shown on the right

Before After

● Another small change, is to slightly modify our return type to keep with the modern times :)
○ I recommend shared_ptr for this game example.
○ In a game, we might have multiple pointers to the same resource

■ e.g. Objects may share resources (e.g., pixel data, texture, etc.)

Usage in Main Loop (1/3)
● Here’s the creation of our

two different object types
(Boat’s and Planes)

○ Notice we only now have 1
collection (std::vector) to
store our types

■ (Due to our
abstraction layer for
IGameObject)

56

Usage in Main Loop (2/3)
● Here’s the creation of our

two different object types
(Boat’s and Planes)

○ Notice we only now have 1
collection (std::vector) to
store our types

■ (Due to our
abstraction layer for
IGameObject)

○ Additionally notice the
‘main game loop’ is
simplified

■ We only have to
iterate through one
collection

57

Usage in Main Loop (3/3)
● Here’s the creation of our

two different object types
(Boat’s and Planes)

○ Notice we only now have 1
collection (std::vector) to
store our types

■ (Due to our
abstraction layer for
IGameObject)

○ Additionally notice the
‘main game loop’ is
simplified

■ We only have to
iterate through one
collection

58

Note: To experts--we can refactor for performance and a more
‘data-oriented’ approach. That is a separate talk--this is fine
for our needs for now.

We have implemented
The Factory Method

(A creational design pattern)

59

The Factory Method (1/5)
The Factory Method pattern provides a
generalized way to create instances of
an object and can be a great way to
hide implementation details for derived
class

60

Here is our factory--and perhaps we should also add a ‘default’ case
which returns nullptr.

The Factory Method (2/5)
The Factory Method pattern provides a
generalized way to create instances of
an object and can be a great way to
hide implementation details for derived
class

● Yes, we have that!
○ We can add new types to our enum

class and function easily.

61

Here is our factory--and perhaps we should also add a ‘default’ case
which returns nullptr.

The Factory Method (3/5)
The Factory Method pattern provides a
generalized way to create instances of
an object and can be a great way to
hide implementation details for derived
class

● We could extend our enum class
creatively as well

■ e.g., PLANE_IN_AIR
● This handles constructing the

same types with different
parameters or setup functions

62

Here is our factory--and perhaps we should also add a ‘default’ case
which returns nullptr.

The Factory Method (4/5)
The Factory Method pattern provides a
generalized way to create instances of
an object and can be a great way to
hide implementation details for derived
class

63

Updated with another object type (PLANE_IN_AIR) that we can create

The Factory Method (5/5)
The Factory Method pattern provides a
generalized way to create instances of
an object and can be a great way to
hide implementation details for
derived class

● This we did not talk about, but we
can hide our implementation to
clients of our API fairly well

○ Client really only needs to know that
they can create IGameObject’s

64

This is the Factory.hpp
Here I’m only exposing the enum class (which could also be hidden) to

the client of our API.

(Full example in ./simplefactory -- Not 100% optimal, but shows how to
setup your Factory in a header file)

The Factory Method - Pros and Cons? (1/2)
● So, no design pattern is perfect,

computer science is about
trade-offs.

○ What do we like about this?
■ (i.e., the pros)

○ (Question to the audience)
■ Is this pattern:

● Flexible
● Maintainable
● Extensible

○ What do we dislike?
■ (i.e., the cons)

65

Here is our factory--and perhaps we should also add a ‘default’ case
which returns nullptr.

The Factory Method - Pros and Cons? (2/2)
● Pros

○ Flexible
■ Relatively flexible

○ Maintainable
■ 1 update to the enum class, and one update to

the switch statement--not too bad.
○ Extensible

■ Creating new object types is done through
inheritance is easy

● Cons
○ May need several factories for different hierarchies
○ Still potentially two ‘updates’ in two places of our code

(i.e. the enum class and then in our actual function)
■ So potentially over-engineered for a very small

project

● Other thoughts
○ You should probably think more about if you want to use

shared_ptr or unique_ptr for your domain
■ (i.e., think about your ownership)

○ Probably need a way to ‘destroy’ all objects. 66

Here is our factory--and perhaps we should also add a ‘default’ case
which returns nullptr.

Some other *neat* ideas - Example of loading objects

● We can make our application
data-driven using some
simple configuration file

○ Much more intuitive in
our pattern

67level1.txt

Some other *neat* ideas - Tracking Object Counts

● We may also want to manage
object counts.

○ Several ways to do so
■ Could do it directly in each of our

game objects

● Remember one of our earlier
questions:

○ How well do you think I as a developer
can predict at compile-time what
objects to create? (slide 17)

○ (The answer might be--an exact
number)

68

Let’s make our factory more extendable
Extensible Factory (Alexandrescu, 2001 in Modern C++ Design)

(Example based on Martin Reddy’s API Design for C++)

69

The Goal is to allow us at run-time to create new types (1/4)

70

● And this makes sense for a
game, or some system that
may be long running (and we
want flexibility)

○ So I am going to create a
‘MyGameObjectFactory’

○ My class has all static member
functions for now...I want to
keep things simple

■ Pros/Cons of that can be
discussed.

The Goal is to allow us at run-time to create new types (2/4)

71

● And this makes sense for a
game, or some system that
may be long running (and we
want flexibility)

○ So I am going to create a
‘MyGameObjectFactory’

○ My class has all static member
functions for now...I want to
keep things simple

■ Pros/Cons of that can be
discussed.

So the key component is the
ability to ‘register’ and
‘unregister’ object types.

Our types will now be stored
in a std::map

The Goal is to allow us at run-time to create new types (3/4)

72

● And this makes sense for a
game, or some system that
may be long running (and we
want flexibility)

○ So I am going to create a
‘MyGameObjectFactory’

○ My class has all static member
functions for now...I want to
keep things simple

■ Pros/Cons of that can be
discussed.

So for whatever type we are
creating, we’ll pass in a
callback function for that type.

This is one way you could
implement a ‘plugin system’
to your software.

The Goal is to allow us at run-time to create new types (4/4)

73

● And this makes sense for a
game, or some system that
may be long running (and we
want flexibility)

○ So I am going to create a
‘MyGameObjectFactory’

○ My class has all static member
functions for now...I want to
keep things simple

■ Pros/Cons of that can be
discussed.

Our previous ‘Factory Pattern’
is almost the same.

The difference is we have to
search for the type (as new
types could be registered at
run-time at any time)

(Maybe this is not as fast or direct--as always,
patterns have trade-offs)

Creating our Previous Types (1/2)
● To the right we can see

how to create our
previous types: plane
and boat.

74

Creating our Previous Types (2/2)
● To the right we can see

how to create our
previous types: plane
and boat.

75

And here is our new data type (created by a user),
and then later registered by the user

Is this pattern actually used?

76

Factory Method/Pattern Usage (1/6)

77

● I dug around a few open source projects to see if the factory pattern is
actually used

○ grep -irn “factory” .

● The answer is yes!

Factory Method/Pattern Usage

78

● I dug around a few open source projects to see if the factory pattern is
actually used

○ grep -irn “factory” .

● The answer is yes!
● https://github.com/horde3d/Horde3D
●

https://github.com/horde3d/Horde3D

Factory Method/Pattern Usage

79

● I dug around a few open source projects to see if the factory pattern is
actually used

○ grep -irn “factory” .

● The answer is yes!
● https://github.com/OGRECave/ogre
●
●

https://github.com/OGRECave/ogre

Factory Method/Pattern Usage

80

● I dug around a few open source projects to see if the factory pattern is
actually used

○ grep -irn “factory” .

● The answer is yes!
● https://github.com/blender/blender
●
●
●

https://github.com/blender/blender

Factory Method/Pattern Usage (5/6)

81

● I dug around a few open source projects to see if the factory pattern is
actually used

○ grep -irn “factory” .

● The answer is yes!
● https://github.com/id-Software/Quake-III-Arena

https://github.com/id-Software/Quake-III-Arena

Factory Method/Pattern Usage (6/6)

82

● And of course--command and conquer
● https://github.com/electronicarts/CnC_Re

mastered_Collection
○ (Aside, that there is a type called a ‘Factory, that is literally a ‘factory’ in the

game -- not to be confused with the pattern!)

https://github.com/electronicarts/CnC_Remastered_Collection
https://github.com/electronicarts/CnC_Remastered_Collection

Actual Hierarchy of Objects
● (An aside for those that are interested)

○ I also thought Jason Turners Review of the
source was interesting!

■ https://www.youtube.com/watch?v=Oe
e7gje-XRc

83

Unit and Structure Hierarchy

https://www.youtube.com/watch?v=Oee7gje-XRc
https://www.youtube.com/watch?v=Oee7gje-XRc

No Design Pattern is perfect -- recap

84

● Trade offs
○ Pros

■ Can hide lots of implementation details (only need to know type)
■ Can be extensible

○ Cons
■ Still need to document how to create the different types and what is available.

● (Maybe this is in text documentation, or maybe the factory can print a listing for
you)

■ Perhaps some performance issue if we have lots of inheritance
● (Needs to be measured, potentially able to be optimized away--I have no

empirical evidence for this specific talk)

‘Mike careful calling it Factory Pattern’
Factory Method Pattern (What we have largely discussed) is different and exist

several various for Factory Pattern

e.g., abstract factory, extensible factory, distributed factories, etc.
(I’m providing some key words here for you to continue forward)

85

Conclusion
A Summary of what we have learned

86

Summary of what we have learned and should learn next

87

● We have learned about the ‘Factory Method Pattern’
○ We have thought a bit about some of the pros and cons.

● We have learned about an extensible Factory Pattern
● We did not talk about creating multiple factories

○ (We could have used one single Templated Factory for this)

● There are several alternations of the factory pattern as well
○ The Abstract Factory Pattern is likely the most popular (and in the Gang of Four book)

■ Multiple interfaces for each of the products that you want to build.

Going Further
Some things that may be useful for learning more design patterns

88

Some References

89

● Videos
○ C++ Design Patterns: From C++03 to C++17 - Fedor Pikus - CppCon 2019

■ Overview of evolution of design patterns
○ Introduction to Design Patterns (Back to Basics Track CPPCON 2020)

■ (I give an overview and 3 patterns)
● (Some folks aren’t going to like Singleton!)

○ And many more!
■ https://www.youtube.com/results?search_query=cppcon+design+patterns

● Books
○ API Design for C++
○ Game Programming Patterns
○ Modern C++ Design

https://www.youtube.com/watch?v=MdtYi0vvct0
https://www.youtube.com/watch?v=2UUqX2eIdSM
https://www.youtube.com/results?search_query=cppcon+design+patterns

Code for the talk
Available here: https://github.com/MikeShah/cppcon2021

90

https://github.com/MikeShah/cppcon2021

Software Design:
Factory Pattern

Mike Shah, Ph.D.
@MichaelShah | mshah.io | www.youtube.com/c/MikeShah

Thank you Cppcon attendees, reviewers, chairs!
91

https://twitter.com/MichaelShah
http://mshah.io
http://www.youtube.com/c/MikeShah

Thank you!

92

93

