p 2

MIKE SHAH

EEEEEEEEEEEEEEEE 2] October 24-29

Back to Basics:
The Factory Pattern

Please do not redistribute slides without
prior permission.

2021 AP

Octob r~24 25

INAURD

/L(ppcon

Software Design:
Factory Pattern

Mike Shah, Ph.D.
@MichaelShah | mshah.io | www.youtube.com/c/MikeShah

2:00 pm MDT, Wed. October 27
60 minutes | Introductory Audience

lllllllll

https://twitter.com/MichaelShah
http://mshah.io
http://www.youtube.com/c/MikeShah

2021 YA

Octob l'24 -29
INAURD

@® Eopcon
Abstract you to join me is here!

The abstract that you read and enticed

C++ programs that are dynamic in nature have to create objects at some time during run-time. New
objects can be created by explicitly calling ‘new’ and then the data type of that object. However, this
requires that a programmer knows at ‘compile-time’ what object should be created. What we would like,
is to have a layer of abstraction, or someway to create objects at run-time to reflect the dynamic nature
of some C++ programs. Luckily, there is a common pattern that can help solve this problem--the factory
design pattern.

In this talk, we are going to discuss a creational design pattern known as a factory. The pattern can be as
simple as a function, or take on other forms as a distributed factory, or an abstract factory. We’ll show
some basic examples of a factory in modern C++ as well as real world use cases of where factories
occur for further study. Finally, we’ll discuss the tradeoffs of the factory pattern, and discuss which
scenarios you may not actually want to use a factory. Attendees will leave this talk with the knowledge to
go forward and implement the factory pattern, as well as how to spot the factory pattern in projects they
may already be working on!

Code for the talk

Available here: https://github.com/MikeShah/cppcon2021

mike factory examples obf7cGe 40 minutes ago) 17 commits
concurrency concurrency examples 2 days ago
factory factory examples 40 minutes ago
pointers More pointer examples

README.md Update README.md

README.md

cppcon2021

Examples and materials for my talks during Cppcon 2021!

https://github.com/MikeShah/cppcon2021

Who Am |?

by Mike Shah

Assistant Teaching Professor at Northeastern University in
Boston, Massachusetts.

o | teach courses in computer systems, computer graphics,
and game engine development.

o My research in program analysis is related to performance
building static/dynamic analysis and software visualization
tools.

| do consulting and technical training on modern C++,
Concurrency, OpenGL, and Vulkan projects

o (Usually graphics or games related)
| like teaching, guitar, running, weight training, and anything in
computer science under the domain of computer graphics,
visualization, concurrency, and parallelism.
Contact information and more on: www.mshah.io

http://www.mshah.io

Who Am |?

by Mike Shah

Assistant Teaching Professor at Northeastern University in
Bost
O

| do
Con
(@)

(Usually graphics or games related)
| like teaching, guitar, running, weight training, and anything in
computer science under the domain of computer graphics,
visualization, concurrency, and parallelism.

Contact information and more on: www.mshah.io

http://www.mshah.io

| was asking a few folks at the conference earlier
a question:

| was asking a few folks at the conference earlier
a question:

How did you get your start in Programming?

(Or rather--what domain peaked your interest?)

(Here are some favorites from around the time | was learning how to program, can you name them all?)

10

Video Games! (That's my answer) (2/2)

=
(y\

o,

(Here are some favorites from around the time | was learning how to program, can you name them all?)

1

Real time systems (1/2)

e S0 just looking at the animation on

the right--there is a lot going on.
o There are many different types of

objects
m Some of these objects are being
destroyed

m New objects are being created
o Objects are moving around
o Artificial intelligence (path finding and
other decision making)
o In-game resource management is
taking place

SHortEvERm

iy
3
o 4
- -
=i
et
S
e

(Gl

12

For today's talk, | want us to
think about software design for
a real time application--I'll use
a ‘game’ as an example

My expectations and why this talk exists (1/2)

e This talk is part of the Software Design Track at Cppcon
o Klaus Iglberger and | (Klaus doing the majority of the work!) put together the software design
track
m Part of this track we thought would be good to have some ‘tutorial like’ or ‘more
fundamental’ (i.e. like the back to the basics) talks on Design Patterns.
m (Perhaps 1 or 2 talks like this a year--stay tuned and submit to future Cppcons!)

e So this probably is not an ‘expert-level’ talk, but aimed more at beginners
o That said, | hope experts will derive some value for looking at today’s pattern.
m Or otherwise, be able to refresh and point out some tradeoffs with today’s pattern

14

My expectations and why this talk exists (2/2)

e This talk is part of the Software Design Track at Cppcon
o Klaus Iglberger and | (Klaus doing the majority of the work!) put together the software design
track
m Part of this track we thought would be good to have some ‘tutorial like’ or ‘more
fundamental’ (i.e. like the back to the basics) talks on Design Patterns.
m (Perhaps 1 or 2 talks like this a year--stay tuned and submit to future Cppcons!)

e So this probably is not an ‘expert-level’ talk, but aimed more at beginners
o That said, | hope experts will derive some value for looking at today’s pattern.
m Or otherwise, be able to refresh and point out some tradeoffs with today’s pattern
e The design pattern of today is....

o But before | spoil the pattern (even though it’s the name of the talk) let’s think about what our
goals are

A user-driven application

(e.g., a video game)

16

Question to Audience:

e If | have a user-driven application
(e.g., a game)

e And part of that game is the users
ability to ‘create’ objects at

run-time.
o How well do you think | as a developer
can predict at compile-time what
objects to create?

e What are your thoughts?

(Observe the user creating a new
object)

7 TR Yk () 1] SR § TR R AT
N

17

Thought Process (1/16)

e How well do you think | as a (Observe the user creating a new
developer can predict at object)

compile-time what objects to create? .
(in a very dynamic program...)

18

1 // @file compiletimel.cpp
2 // g++ -std=c++17 compiletimel.cpp
3
Thought Process (2/16) 4 class ObjectTypel;
5 class ObjectType2;
6 class ObjectType3;
e How well do you think | as a 7
developer can predict at g TIE AN
compile-time what objects to create? [10 // Create your units ahead of time.
- - 11 ObjectTypel unitsl[100];
(in a very dynamic program...) 12 ObjectType2 units2[100];
o Maybe we could guess 100 of each type |13 ObjectType3 units3[100];
of our objects? T2
o Maybe we have played our game a few 15 |
times and ‘100’ feels like a good number 16 while(true){
(or otherwise you have empirical %273 // Run your game here
evidence). _ 19 // Iterate through your units
= What happens if a player goes 20 // update them, run logic, etc.
over? 21 }
m Maybe we restrict them? Maybe 22
reallocate 23 return 0;

Tl

3/16)

aS a

compile-time what objects to cre
(in a very dynamic program...)

(@)

Maybe we could guess 100 of each type
of our objects?
Maybe we have played our game a few
times and ‘100’ feels like a good number
(or otherwise you have empirical
evidence).
m What happens if a player goes
over?
m Maybe we restrict them? Maybe
reallocate

\%

// @file compiletimel.cpp
// g++ -std=c++17 compiletimel.cpp

class ObjectTypel;
class ObjectType2;
class ObjectType3;

int main(){

OCooNOUTE WN -

(©)

// Create your units ahead of time.
ObjectTypeljunitsl1[100];

12 ObjectType2junits2[100];

13 ObjectType3junits3[100];

14

15

16 while(true){

17 // Run your game here

18

19 // Iterate through your units
20 // update them, run logic, etc.
21 }

22

23 return 0;

https://www2.cs.sfu.ca/CourseCentral/225/johnwill/lab_arrays_intro.html
https://www2.cs.sfu.ca/CourseCentral/225/johnwill/lab_arrays_intro.html

Thought Process (4/16)

e How well do you think | as a
developer can predict at

compile-time what objects to create?

(in a very dynamic program...)

o

So, let’s allocate our memory on the heap.
We can also resize if the user goes

over the limit.

What’s the problem here?

ot
Cwoo~NOULESE WN =

11
12
13
14
15
16
17
18
19
20
21
22
258
24
25
26
27

// @file compiletime2.cpp
// g++ -std=c++17 compiletime2.cpp

class ObjectTypel;
class ObjectType2;
class ObjectType3;

int main(){

// Create your units ahead of time.

ObjectTypel* unitsl = new ObjectTypel[100];
ObjectType2* units2 = new ObjectType2[100];
ObjectType3* units3 = new ObjectType3[100];

while(true){
// Run your game here

// Iterate through your units
// update them, run logic, etc.
}
delete[] unitsl;
delete[] units2;
delete[] units3;

return 0;

}

1 // @file compiletime2.cpp

2 // g++ -std=c++17 compiletime2.cpp
3

4 class ObjectTypel;

8 // Delete old array and copy in data 5 class ObjectType2;

9 ObjectTypel* ResizeObjectTypel(ObjectTypel* array, : u
size t oldsize, 6 class ObjectType3;

size t newsize)

7
8 int main(){
9

ObjectTypel* newArray = new ObjectTypel[newsize];
for(size t i=0; i < oldsize; i++){

newArray[i] = array[il; 10 // Create your units ahead of time.
ﬁdﬁte“ e — 11 ObjectTypel* unitsl = new ObjectTypel[100];
return newArray; ObjectType2* units2 = new ObjectType2[100];
13 ObjectType3* units3 = new ObjectType3[100];

o So, let’s allocate our memory on the heap. 14

N 15
m We can also resize if the user goes 16 while(true){
over the limit. 17 // Run your game here
18
’ 2
* What's the problem here’ 19 // Iterate through your units

20 // update them, run logic, etc.
pal }
22 delete[] unitsl;

23 delete[] units2;
24 delete[] units3;

26 return 0;

Thought Process (6/16)

e How well do you think | as a
developer can predict at
compile-time what objects to create?
(in a very dynamic program...)

o So | don’t want to manage resizing, so I'll
just use a data structure.

m | could also preallocate some
objects (say 100 again) if | know
that’s reasonable for the game.

e (Often games prefer to
preallocate (i.e., give you a
load screen))

1 // @file compiletime4.cpp

2 // g++ -std=c++17 compiletimed.cpp

3 #include <vector>

4

5 class ObjectTypel{};

6 class ObjectType2{};

7 class ObjectType3{};

8

9 int main(){

10

11 // Create your units ahead of time.
12 std::vector<ObjectTypel> unitsl;
13 std::vector<ObjectType2> units2;
14 std::vector<ObjectType3> units3;
15

16

17 while(true){

18 // Run your game here

19
20 // Iterate through your units
21 // update them, run logic, etc.
22 }
23
24 return 0,

// @file compiletime4.cpp
// g++ -std=c++17 compiletimed.cpp
#include <vector>

class ObjectTypel{};
class ObjectType2{};
class ObjectType3{};

int main(){
// Create your units ahead of time.

std::vector<ObjectTypel> unitsl;
std::vector<ObjectType2> units2;

std::vector<ObjectType3> units3; |
4'

while(true){
// Run your game here

// Iterate through your units
// update them, run logic, etc.
}
return 0,

1
2
3
Thought Process (7/16) .
6
e How well do you think I as a ;
developer can predict at compile-time 9
what objects to create? (in a very ﬁ’
dynamic program...) 12
m Now, what if half-way through 13
. [14
development the team decides we 15
don’t want ‘ObjectType3’--it does o=
not make the game fun? 17
e | have to delete everywhere. ig
20
21
22
23
24
25

}

// @file compiletime5.cpp
Thoug ht Process (8/1 6) // g++ -std=c++17 compiletime5.cpp
#include <vector>
class ObjectTypel{
ObjectTypel(){}
ObjectTypel(int x,int y){ // do some work}

e How well do you think | as a
developer can predict at compile-time
what objects to create? (in a very

}i
10 class ObjectType2{};

OCoo~NOOUTE WN =

dynamic program... 11
y P _SJ)_ 12 int main(){
o Okay, ObjectType3 is gone. 13
m | still need to create my 100 objects, 14 // Create your units ahead of time.
. 15 std::vector<ObjectTypel> unitsl;
and perhaps some of them are going 15 std::vector<ObjectType2> units2;
to be different (meaning created 17
. . i ' ?
using different constructors)... ig égjZiﬁ)’/p\gglégogg’gi;?dor o I U
20 ObjectTypel myObject2(10,20);
21 // Do I care....does it matter, do I know?
22 unitsl.push back(myObjectl);
23 units2.push back(myObject?2);
24 T

25

1 // @file compiletime5.cpp
Thought Process (9/1 6) 2 // g++ -std=c++17 compiletime5.cpp
3 #include <vector>
4
. 5 class ObjectTypel
e How well do you think | as a e
. . . 7 ObjectTypel(int x,int y){ // do some work}
developer can predict at compile-time g ,. 1P Y
] 7 (] 9
what objects to create? (in a very o elass DilfEctTyez:

s
[

dynamic program...) 12 int main(){

o Wait... 13
e} How do | even construct my objects? 14 // Create your units ahead of time.
. . 15 std::vector<ObjectTypel> unitsl;
m What if there are multiple 16 std::vector<ObjectType2> units2;
constructors? 17 . -
.) 18 // Wait, which constructor do I use?
m Do | think I'll be able to guess at 19 ObjectTypel myObjectl:
compile-time which one to use? 20 ObjectTypel myObject2(16,20);
21 // Do I care....does it matter, do I know?
22 unitsl.push back(myObjectl);
23 units2.push back(myObject?2);
24 & S

26

14 // Try to handle creation of objects here

Th O u g ht P ro CeSS (1 0/1 6) 15 void makeObjectlAndPushToVector(std::vector<ObjectTypel>& unitslVector,
16 int x,

17 int y){
18 ObjectTypel newObjectlix,yl;
) 19 unitslVector.push back(newObject);
e How well do you think | as a 285
) . . 22
developer can predict at compile-tir 23 int nain()¢
24
1 1 25 // Create your units ahead of time.
What ObjeCtS to Createo (In a Very 26 std::vector<ObjectTypel> unitsl;
. 27 std::vector<ObjectType2> units2;
dynamic program...) 28
29 // Wait, which constructor do I use?
@] Walt - 30 makeObject1lAndPushToVector(unitsl,0,0);
31 makeObject1lAndPushToVector(unitsl,10,20);

o How do | even construct my objects?
m What if there are multiple
constructors?
m Do | think I'll be able to guess at
compile-time which one to use?
e Okay, | can again try to fix
that...let’s just have one
function (and | need to do this
for each type) 27

14 // T to handle creation of ohjects here

Tho u g ht P roceSS (1 1 /1 6) 15 void|makeObjectlAndPushToVector|std::vector<ObjectTypel>& unitslVector,
16 int x,
—_int y){

17
18 ObjectTypel newObjectlix,yl;
unitslVector.push back(newObject);

0"}
24
. 22
[T 23 int main(){
24
25 // Create your units ahead of time.
26 std::vector<ObjectTypel> unitsl;
27 std::vector<ObjectType2> units2;
28
29 // Wait, which constructor do I use?

30 makeObject1lAndPushToVector(unitsl1,0,0);
31 makeObject1lAndPushToVector(unitsl,10,20);

std::vector<ObjectTypel> unitsil;
std::vector<ObjectType2> units2;
makeObjecti1AndPushToVector (unitsi,o,0);

makeObjectiAndPushToVector(units1,10,20);

(M

that...let’s just have one }
function (and | need to do this -
for each type) 28

14 // Create your units ahead of time.
15 std::vector<ObjectTypel> unitsi;

Thought PrOCGSS (1 2/1 6) 16 std::vector<ObjectType2> units2;

// Try to handle creation of objects here
void makeObject(int objectType,
int parami,
int param2){
if(1 == objectType){
ObjectTypel newObject(parami,param2);
unitsiVector.push_back(newObject);

}

if(2 == objectType){
ObjectType2 newObject; aflam2);
units2Vector.push_back(newObject);

],

int main(){

makeObject(1,0,0);
makeObject(1,10,20);

/] Look different object types!
makeObject(2,10,20);

e Okay, | can again try to fix 55
that...let’s just have one 40 /...
function (and | need to do this

for each type)

So... this works.

Question to Audience: How do | know when

I’'m done?
(Your thoughts)

]
]

P pd b
[V TN N

g 3

LN S R s e aak = O RES
*ate Vyou ITTS aneal 01 \ me.

:vector<ObjectTypel> unitsi;

std::vector<ObjectType2> units2;

O~y O

=3
@ 0

N OO s WN -

tn handl =

e creation of objects here

void hakeobject(int objectType,

int paramil,
int param2){
if(1 == objectType){
ObjectTypel newObject(paramil,param2);
unitsiVector.push_back(newObject);

if(2 == objectType){
ObjectType2 newObject;

OoO~NOYWUV O

LW WwwwwwWwUuWWINININININNNN NN =
O

(<)

8 units2Vector.push_back(newObject);
9 I

0

3 int main(){

makeObject(1,0,0);
makeObject(1,10,20);

ferent object

hékéébject(,;A ,20);

14 // Create your units ahead of time.
15 std::vector<ObjectTypel> unitsi;
std::vector<ObjectType2> units2;

// Try to handle creation of objects here
void makeObject(int objectType,
int parami,
int param2){
if(1 == objectType){
ObjectTypel newObject(parami,param2);
unitsiVector.push_back(newObject);

}

if(2 == objectType){
ObjectType2 newObject;
units2Vector.push_back(newObject);

int main(){

makeObject(1,0,0);
makeObject(1,10,20);

/] Look different object types!
makeObject(2,10,20);

iF we

/] Create your units ahead of time.
std::vector<ObjectTypel> unitsi;
std::vector<ObjectType2> units2;

// Try to handle creation of objects here
void makeObject(int objectType,
int parami,
int param2){
if(1 == objectType){
ObjectTypel newObject(parami,param2);
unitsiVector.push_back(newObject);

}

if(2 == objectType){
ObjectType2 newObject;
units2Vector.push_back(newObject);

int main(){

makeObject(1,0,0);
makeObject(1,10,20);

/] Look different object types!
makeObject(2,10,20);

§F o

/] Create your units ahead of time.
std::vector<ObjectTypel> unitsi;
std::vector<ObjectType2> units2;

// Try to handle creation of objects here
void makeObject(int objectType,
int parami,
int param2){
if(1 == objectType){
ObjectTypel newObject(parami,param2);
unitsiVector.push_back(newObject);

}

if(2 == objectType){
ObjectType2 newObject;
units2Vector.push_back(newObject);

int main(){

makeObject(1,0,0);
makeObject(1,10,20);

/] Look different object types!
makeObject(2,10,20);

iF we

What Problem Am | Trying to Solve?

Claim: If | have a user-driven application (e.g., a game)

A. It can be difficult to figure out how to create objects of different types
a. (And we probably cannot do this well at compile-time)

B. It can be difficult to figure out ‘where’ to create objects
a. (i.e., If I have lots of free functions)

And it’s worth thinking about this problem at scale--where | have 10 different
types, or even 100 different object types.

K2

So let’s think about this game (1/2) @
e There are many different types of objects

o How do we create the different objects in this
real-time application such that our code design

is:
m flexible
m maintainable = A
m and extensible 0, ol
)) Y. R g crpr
o In other words--what is the right pattern? e, : £
L Lo » v 5
SRS o ’-T:m%r
1Y) o i %E’

35
Command and Conquer Red Alert

So let’s think about this game (2/2]

e There are many different types of objects i
o How do we create the different objects in this :
real-tim

is:

fle

E M

an

o In other

Command and Conquer Red Alert

Design Patterns

‘templates’ or ‘flexible blueprints’ for developing software.

G g
Patterns

What is a Design Pattern?

e A common repeatable solution for solving problems.
o Thus, Design Patterns can serve as ‘templates’ or ‘flexible blueprints’ for developing

software.
e Design patterns can help make programs more:
o Flexible

o Maintainable
o Extensible
o (Recall, these are our three criteria we’d like to satisfy)

38

Design Patterns Book

e In 1994 a book came out collecting heavily used Desien Patterns
. . «© . ” Elements of Reusable
patterns in industry titled “Design Patterns Object Oriental sobire
o It had four authors, and is dubbed the “Gang of Four” book e cening
(GoF). jonn visides.

o The book is popular enough to have it’s own wikipedia
page: https://en.wikipedia.org/wiki/Design_Patterns

o C++ code samples included, but can be applied in many
languages.

o This book is a good starting point on design patterns for
object-oriented programming

S3IHIS DNILLNAWOD TYNOISSIHO¥d ATISIM-NOSIaay #

* See also the 1977 book “A Pattern Language: Towns, Buildings, Construction” by Christopher Alexander et al. where | believe the term design
pattern was coined.

https://en.wikipedia.org/wiki/Design_Patterns

Design Patterns Book * Brief Aside *

e In 1994 a book came out collecting heavily used
patterns in industry titled “Design Patterns”

e | really enjoyed this book (as a graphics
programmer) for learning design patterns.

o There’s a free web version here:
https://gameprogrammingpatterns.com/

o | also bought a physical copy to keep
on my desk

Game Programming
Patterns

Robert Nystrom L

40

https://en.wikipedia.org/wiki/Design_Patterns
https://gameprogrammingpatterns.com/

Design Patterns
Book (1/2)

e So design patterns are
reusable templates that can
help us solve problems that

occur in software
o One (of the many) nice thing the
Design Patterns Gang of Four
(GoF) book does is organize the
23" presented design patterns into
three categories:
m Creational
m Structural
m Behavioral

*Keep in mind there are more than 23 design patterns in the world

Today we are focusing on
‘creation’ of objects

I've highlighted the 5
creational patterns.

m Creational

*Keep in mind there are more than 23 design patterns in the world

adding
responsibilities—
to objects

Decorator
'Y
|

changihg skin
versus guts

sharing

defining
algorithm’s
steps e

single
instance

i strategies shérinq Interpreter __—operations

sharing

h 4
Strategy states ~ Symbols
/ management

S —.——— Template Method —
Prototype |-

—

saving state
of iteration

s
[terator |, : ridge
creating hysteresis

A
posties enumerating
children composed
R ‘ S —""using T —"
' . e Command
—{ Composite [¢— = - ——
sharing e SO
composites i defining ~defining
\ [traversals the chain

adding
__FI weight \ operstions.__ . — ‘
z B = defining ———»{ Visitor \
grammer A

adding

I Chain of Responsibility
terminal

complex

~often uses

goggﬁjircea:;mow | Factory Method
Y Y implement using 9
Abstract Factory

__—instance Facade

Singleton |«

Design pattern relationships

__—»| Momento

of iteration

Builder
N hysteresis

creating A

composites "
enumerating

adding children composed

responsibilities— - p =
| N using

to objects

- Command
Composite — S e— _
¥ sharing Yy P ~ o »
composites enning ce ning
Decorator ¥ traversals the chain
= |

adding
Flyweight [operations]
A

changing skin defining
Versus guts g-’ammer
- L sharing (addu'-% .
| strategles L Interpreter e OPNERIONS - s
sharing s [Chain of Responsibility
sharing terminal
states symbols complex

management

Patterns

algonthm’s
steps —— —..——— Template Method — SEON
often uses
Prototype
dynamically s I Factory Method
implement using
Abstract Factory

o)
instance

single
instance

Singleton [«

Design pattern relationships

Creational

Creational Design Patterns

e Provide program more flexibility on how to create objects,

often avoiding direct instantiation of a specific object.
o So this means:
m We try to avoid directly creating instances of objects in our code:
e ObjectTypel myObject = new ObjectTypel;
m We prefer instead to encapsulate how an object is created

Behavioral |[edit

Most of these design patterns are spec

https://en.wikipedia.ora/wiki/Design_Patterns#Patterns_by_type

https://en.wikipedia.org/wiki/Design_Patterns#Patterns_by_type

We are close to a creational pattern here

e \We are somewhat encapsulating

how we create our objects
o It’s just not very robust
m What if a user types in an ‘int’ for
the wrong objectType
m Or we otherwise remove

objectType’s
e (We also need to remove our
vector)

o We need to clean this up--and it will
require thinking about our ‘ObjectType’
with a little more structure.

;“'(

bid makeObject(int objectType,

int parami,
int param2){
== objectType){
ObjectTypel newObject(parami,param2);
unitsiVector.push_back(newObject);

== objectType){
ObjectType2 newObject;
units2Vector.push_back(newObject);

Quick Refresh: Object-Oriented Programming Toolbox

e One of our tools that we can utilize is

inheritance
o This is a mechanism where we create an is-a
relationship between two types
m The relationship is a parent-child
relationship
m (e.g., onright, we see that a ‘Dog’ is-an
‘Animal’
e Now, | can use the ‘i1s-a’ relationship to

my advantage and utilize polymorphism
o (i.e., inheritance based polymorphism)

Animal

Derived
Class

https://cdn.programiz.com/sites/tutorial2program/files/cpp-inheritance.png

46

https://en.cppreference.com/book/intro/inheritance
https://cdn.programiz.com/sites/tutorial2program/files/cpp-inheritance.png

We were close In solving our problem

47

Our Object Inheritance Hierarchy (1/4)

e So to start, we’re going to want :
some common Interface for which

35S I_Gameobject{
our different game objects can e ,
inherit from /irtual ~IGameobject() {)
o This is probably a good idea to enforce 11) erive
. . . 12 virtual void ObjectPlayDefaultAnimation() =
(with the pure virtual member functions) 13 sirtual void ObjectMoveInGame() =
properties of each Game Object. sl e
o Second, we can inherit from any 16 ¥

IGameObject from this common
interface to help ease our construction
of different types of objects.
m (again leveraging
inheritance-based polymorphism)

48

Our Object Inheritance Hierarchy (2/4)

1 // @file hierarchy.cpp
2 /] g++ -std=c++17 hierarchy.cpp
3 #include <vector>
4
class IGameObject{
public:
// Ensure derived classes call
// the correct destructor (i.e., top of the chain)
virtual ~IGameObject() {}
// Pure virtual functions that must be
// implemented by derived class
virtual void ObjectPlayDefaultAnimation() = ©;
virtual void ObjectMoveInGame() = ©;
virtual void Update() = 0;
virtual void Render() = 0;

Our Object Inheritance Hierarchy (3/4)

18 class ObjectTypel : IGameObject{ 1 // @file hierarchy.cpp

19 public: 2 /] g++ -std=c++17 hierarchy.cpp
20 ObjectTypel1(int x,int y){ /* ... */ } 3 #include <vector>

21 void ObjectPlayDefaultAnimation() { /* ... */} 4
22 void ObjectMoveInGame() { /* ... */} 5> class IGameObject{

23 id A public:

24 zg;d :Zﬁ::igg E ;* *5% // Ensure derived classes call

25 3; . // the correct destructor (i.e., top of the chain)
k]

9 virtual ~IGameObject() {}

26 2 2
10 // Pure virtual functions that must be

27 class ObjectTypeZ : IGameObject{ 11 /] implemented by derived class

28 pu?llc: ') " 2 12 virtual void ObjectPlayDefaultAnimation() = ©;

29 ObjectType2(int x,int y){ /* ... */ } 13 virtual void ObjectMoveInGame() = ©;

30 void ObjectPlayDefaultAnimation() { /* ... */} | 14 virtual void Update() = ©;

31 void ObjectMovelInGame() { /* ... */} virtual ;
32 void Update() { /* ... */}
33 void Render() { /* ... */}

34 };

void Render() = 0;

Our Object Inheritance Hierarchy (4/4)

// @file hierarchy.cpp
/] g++ -std=c++17 hierarchy.cpp
#include <vector>

18 class|Plane
19 public:
20 Plane(int x;int y){ /* ... */ }

21 void ObjectPlayDefaultAnimation() { /* ... */}
22 void ObjectMoveInGame() { /* ... */}

23 void Update() { /* ... */}

24 void Render() { /* ... */}

25 };
26
27 classIBoat: public IGameObject{ I

: public IGameObject{

class IGameObject{
public:
// Ensure derived classes call
// the correct destructor (i.e., top of the chain)
virtual ~IGameObject() {}
0 // Pure virtual functions that must be

1
2
3
4
a8

// implemented by derived class
28 pUDllF: ; i 12 virtual void ObjectPlayDefaultAnimation() = ©;
29 Boat(int x,int y){ /* ... */ } 13 virtual void ObjectMoveInGame() = 0;
30 void ObjectPlayDefaultAnimation() { /* ... */} 14 virtual void Update() = ©;
31 void ObjectMoveInGame() { /* ... */} 15 virtual void Render() = 0;

32 void Update() { /* ... */}

16 };
33 void Render() { /* ... */}

Updated ‘function’ to create objects (1/4)

e So next | have updated our ‘creation’ function shown on the right

void makeObject(int objectType,
int paramil,
int param2){
if(1 == objectType){
ObjectTypel newObject(parami,param2);
unitsiVector.push_back(newObject);

}
if(2 == objectType){
ObjectType2 newObject;
units2Vector.push_back(newObject);
}

Before

37 ff

Enum class so vLLL d

38 enum class ObJectType{PLANE BOAT};

39

40 //
41 /,

One single function to
The *.'Z-C”;r?uk will just 'do the ri Q‘WL

“reate a type

create our v'":"'“: aC

llmt_']

42 IGameObject* CreateObjectFactory(ObjectType 0){

43
44
45
46
47
48

49 }

switch(o){
case ObjectType::PLANE:
return new Plane(©,0);
case ObjectType::BOAT:
return new Boat(0,0);

After

Updated ‘function’ to create objects (2/4)

37 i pe
G6la nakeobjectbjectType, gg enum class ObjectType{PLANE, BOAT};
int parami
int garaHZS{ 40 // One single function to create our object types

41 // The object will just 'do the right thing'
42 IGameObject* CreateObjectFactory(jobjectType|o){
43 switch(o){

if(1 == objectType){
ObjectTypel newObject(parami,param2);
unitsiVector.push_back(newObject);

} 44 case ObjectType::PLANE:
if(2 == objectType){ 45 return new Plane(©,0);
ObjectType2 newObject; 46 case ObjectType::BOAT:
units2Vector.push_back(newObject); 47 return new Boat(0,0);
} 48 }
} 49 }

37 I EN we will create a type
38 enum class ObjectType{PLANE, BOAT};

39

40 // One single function to create our object types
41 // The object will just 'do the right thing'

42 |IGameObject* CreateObjectFactory(ObjectType o0){
43 switch(o){

void makeObject(int objectType,
int parami,
int param2){
if(1 == objectType){
ObjectTypel newObject(parami,param2);
| unitsiVector.push_back(newObject);|

} 44 case ObjectType::PLANE:
if(2 == objectType){ 45 return new Plane(©,0);
ObjectType2 newObject; 46 case ObjectType::BOAT:
| units2Vector.push back(newObject);| 47 return new Boat(0,0);
} 48 3}
} 49 3

Updated ‘function’ to create objects (4/4)

void makeObject(int objectType,
int parami,
int param2){
if(1 == objectType){
ObjectTypel newObject(parami,param2);
unitsiVector.push_back(newObject);

}
if(2 == objectType){

ObjectType2 newObject;
units2Vector.push_back(newObject);

}

38
39
40
41
42
43
44
45
46
47
48
49
50

// Enum class so we will create a type
enum class ObjectType{PLANE, BOAT};

// One single function to create our object types

J fhe right thing'
std::shared_ptr<IGameObject>| CreateObjectFactory(ObjectType 0){

SWLLCN(O)1
case ObjectType::PLANE:
return=std::nake_shared<Plane>(0,0)1
case Objec AT:
return std::make_shared<Boat>(0,0);|
}
}

Usage in Main Loop (1/3)

53 int maln(){
, . - = - o AR + c
o 54 & t
FiEBFEB S tf]EB (:rEBEItIC)r] ()f our 55 std vector<std shared ptr<IGame0bJect>> gameObJectCollectlon
: : 56 dd the ct object tc
t\A/() (ﬂlffEEFEBF]t ()t)JEBC:t t)/F)EBE; 57 gameObJectCollectton push_back(CreateobjectFactory(ObJectType::PLANE));
, 58 gameObjectCollection.push_back(CreateObjectFactory(ObjectType::PLANE));
(ES()Eit S Eir](j F3|21r163§;) 59 gameObjectCollection.push_back(CreateObjectFactory(ObjectType: :PLANE));
60 gameObjectCollection.push_back(CreateObjectFactory(ObjectType: :BOAT));
i 61 gameObjectCollection.push_back(CreateObjectFactory(ObjectType: :BOAT));
o Notice we only now have 1
collection (std::vector) to 63 77 Matn Game Loop
() 64 while(t M
store our types 65 /| Iterate throug : t
66 / the ogi et
[| (Due to our 67 for(ﬁ uto& e: gameObJectCollectlon){
. 68 e->Update();
abstraction layer for 69 e->Render();
) 70 }
IGameObject) 71 }
72
73 return 0;
74 }

Usage in Main Loop (2/3)

53 int main(){

® Here’s ‘the Creat|on Of our 54 // Formerly our unitsi and units2

55 std::vector<std::shared_ptr<IGameObject>> gameObjectCollection;
. . 56 // Add the correct object to our collection
t\A/() (j|ff€3r63r]t ()k)JEBC:t t)/F)EBE; 57 gameObjectCollection.push_back(CreateObjectFactory(ObjectType: :PLANE));
; 58 gameObjectCollection.push_back(CreateObjectFactory(ObjectType: :PLANE));
(EB()Eit S Eir](j F)|51r16355) 59 gameObjectCollection.push_back(CreateObjectFactory(ObjectType: :PLANE));
60 gameObjectCollection.push_back(CreateObjectFactory(ObjectType: :BOAT));
0 Notice we onIy now have 1 61 gameObjectCollection.push_back(CreateObjectFactory(ObjectType::BOAT));
62
collection (std::vector) to 63 // Main Game Loop
64 while(true){
store our types 65 /] Iterate through your game object
66 // update them, run logic, etc.
[| (Due to our 67 for(auto& e: gameObjectCollection){
. 68 e->Update();
abstraction layer for 69 e->Render();
. 70 }
IGameObject) |y
iy . 72
o Additionally notice the 73 return 0;
. . 74
‘main game loop’ is 3
simplified

m We only have to
iterate through one
collection

Usage in Main Loop (3/3)

53 int main(){

PY Here’s ‘the Creation Of our 54 // Formerly our unitsl and units2

55 std::vector<std::shared_ptr<IGameObject>> gameObjectCollection;
: . 56 // Add the correct object to our collection
tWO dlﬁerent ObJeCt typeS 57 gameObjectCollection.push_back(CreateObjectFactory(ObjectType: :PLANE));
, 58 gameObjectCollection.push_back(CreateObjectFactory(ObjectType: :PLANE));
(Boa‘t S and PlaneS) 59 gameObjectCollection.push_back(CreateObjectFactory(ObjectType: :PLANE));
60 gameObjectCollection.push_back(CreateObjectFactory(ObjectType: :BOAT));
0 Notice we only now have 1 61 gameObjectCollection.push_back(CreateObjectFactory(ObjectType: :BOAT));
62
collection (std::vector) to 63 // Main Game Loop
64 while(true){
store our typeS 65 /] Iterate through your game object
66 // update them, run logic, etc.
[| (Due to our 67 Tor(auto& e: gameObjectCollection)q
. 68 e->Update();
abstraction layer for 69 e->Render();
. 70 }
IGameObject) n 3
e . 72
o Additionally notice the 73 return 6;
‘main game loop’ is
simplified

m We only have to
iterate through one
collection

We have implemented
The Factory Method

(A creational design pattern)

59

The Factory Method (1/5)

The Factory Method pattern provides a
generalized way to create instances of
an object and can be a great way to
hide implementation details for derived
class

Here is our factory--and perhaps we should also add a ‘default’ case
which returns nullptr.

60

The Factory Method (2/5)

The Factory Method pattern provides a
generalized way to create instances of
an object and can be a great way to
hide implementation details for derived
class

e Yes, we have that!
o We can add new types to our enum
class and function easily.

38
39
40
41
42
43
44
45
46
47
48
49
50

// Enum class so we will create a type
enum class ObjectType{PLANE, BOAT};

// One single function to create our object types

// The object will just 'do the right thing'
std::shared_ptr<IGameObject> CreateObjectFactory(ObjectType o0){
switch(o){
case ObjectType::PLANE:
return std::make_shared<Plane>(0,0);
case ObjectType::BOAT:
return std::make_shared<Boat>(0,0);
}
}

Here is our factory--and perhaps we should also add a ‘default’ case
which returns nullptr.

61

The Factory Method (3/5)

The Factory Method pattern provides a
generalized way to create instances of
an object and can be a great way to
hide implementation details for derived
class

B8 // Enum class so we will create a type
e \We could extend our enum class 39 enum class ObjectType{PLANE,PLANE_IN_AIR, BOAT};

40

Creatlvely as We” 41 // one single function to create our object types
42 // The object will just 'do the right thing'
u e.g PLANE IN AIR 43 std::shared_ptr<IGameObject> CreateObjectFactory(ObjectType o0){
I - - 44 switch(o){
e This handles constructing the 45 case ObjectType::PLANE: _
]] 46 return std::make shared<Plane>(0,0);
same types with different 47 Case ObjectType::PLANE_IN_AIR:
. 48 return std::make=shared<P1ane>(ff-,;~:th3>£;~3:~:;‘,=); /] (x,y)
parameters or setup functions 49 case ObjectType::BOAT:
50 return std::make_shared<Boat>(0,0);

51 }
52 }

The Factory Method (4/5)

The Factory Method pattern provides a
generalized way to create instances of
an object and can be a great way to
hide implementation details for derived
class

38 // Enum class so we will create a type

39 enum class ObjectType{PLANE,PLANE_IN_AIR, BOAT};

40

41 // One single function to create our object types

42 // The object will just 'do the right thing'

43 std::shared_ptr<IGameObject> CreateObjectFactory(ObjectType 0){
44 switch(o){

45 case ObjectType::PLANE:

46 return std::make_shared<Plane>(0,0);

47 case ObjectType::PLANE_IN_AIR:

48 return std::make_shared<Plane>(0,100000); // (x,v)
49 case ObjectType::BOAT:

50 return std::make_shared<Boat>(0,0);

51

52 }

Updated with another object type (PLANE_IN_AIR) that we can create

63

The Factory Method (5/5)

The Factory Method pattern provides a
generalized way to create instances of
an object and can be a great way to
hide implementation details for
derived class

e This we did not talk about, but we
can hide our implementation to

clients of our API fairly well

o Client really only needs to know that
they can create IGameObiject’s

#ifndef FACTORY_HPP

#define FACTORY_HPP

// @directory /simplefactory

// 9++ -std=c++17 main.cpp Factory.cpp

#o ae <memory=

OO b WN =

// Declare our one interface type
class IGameObject;

[y
[Y]

// Enum class so we will create a type

// Could list it in the header here so clients
// know what types they can create

enum class ObjectType{PLANE,PLANE_IN_AIR, BOAT};

S S
b WwN e

// One
// The object will just 'do the right thing'

single function to create our object types

N b
QOO ~NO

#tendif

std::shared_ptr<IGameObject> CreateObjectFactory(ObjectType o0);

This is the Factory.hpp
Here I’'m only exposing the enum class (which could also be hidden) to
the client of our API.

(Full example in ./simplefactory -- Not 100% optimal, but shows how to
setup your Factory in a header file)

64

The Factory Method - Pros and Cons? (1/2)

39 enum class ObjectType{PLANE,PLANE_IN_AIR, BOAT};

e S0, no design pattern is perfect,
CompUter SCIence IS abOUt :; s’cd::svhatr‘er‘d_:;v)rtr<IGar;1e0t;jecvt>vé}esféobje:éfFactory(ObjectType o){
44 switch(o){
trade-OﬁS' j‘ CES{:"’SE?‘e’?t-sr}clg?i;:thEEared&lan@()
. : 47 case ObjectType::PLAEE_IN_AIR: e
o What do we like about this? 48 return std::make_shared<Plane>(0,)3
. 49 case ObjectT 1 :BOAT:
u (l.e., the prOS) » ‘~*J<ec s}clg?:make_shared<80at>(85
o (Question to the audience) 0 D

u Is this pattem: Here is our factory--and perhaps we should also add a ‘default’ case
L] Flexible which returns nullptr.

e Maintainable
e Extensible
o What do we dislike?
m (i.e., the cons)

65

The Factory Method - Pros and Cons? (2/2)

e Pros

o Flexible
[Relatively flexible
o Maintainable
[1 update to the enum class, and one update to
the switch statement--not too bad.
o Extensible
[Creating new object types is done through
inheritance is easy

« Cons
o May need several factories for different hierarchies
o Still potentially two ‘updates’ in two places of our code
(i.e. the enum class and then in our actual function)
[So potentially over-engineered for a very small
project

e Other thoughts

o You should probably think more about if you want to use

shared_ptr or unique_ptr for your domain
[(i.e., think about your ownership)
o Probably need a way to ‘destroy’ all objects.

46

49

50

enum class ObjectType{PLANE, BOAT};

e =17 it 1 +he ~iah+ +hin

std::shared_ptr<IGameObject> CreateObjectFactory(ObjectType o0){
switch(o){
case ObjectType::PLANE:
return std::make_shared<Plane>(0,0);
case ObjectType::BOAT:
return std::make_shared<Boat>(0,0);
}
}

Here is our factory--and perhaps we should also add a ‘default’ case
which returns nullptr.

66

Some other *neat” ideas - Example of loading objects

We can make our application
data-driven using some
simple configuration file
o Much more intuitive in
our pattern

plane

plane

boat

4 boat

5 plane_1in_air

w N =

levell.txt

O~V A WN =

i T T B

4

int main(){
std::vector<std::shared ptr<IGame0bJect>> gameObjectCollection;

dd the correct c:j~ t to our collection

ased on a .
std::string line;
std::ifstream myFile("levell.txt");
if(myFile.is_open()){
uhlle(std getllne(myFlle line)){
if(line=="pla M
gameob]ectCollectlon push_back(CreateObjectFactory(ObjectType:

txt fi

}
/* You get the idea...

else if(line==""

:PLANE));

67

Some other *neat” ideas - Tracking Object Counts

e \We may also want to manage

object counts.
o Several ways to do so
m Could do it directly in each of our
game objects

e Remember one of our earlier

questions:

o How well do you think | as a developer
can predict at compile-time what
objects to create? (slide 17)

o (The answer might be--an exact
number)

17 @directory ./tracking

19 class Plane : public IGameObject{

20 public:

21 Plane(int x,int y){

22 ObjectsCreated++;

k }

24 id ObJectPlayDefaultAnlmatlon() { k13
25 void Ob]ectMoveInGame() £ }
26 id Update() { , *J:}

27 w*d Render() { /* of 7

28 private:

29 static int ObjectsCreated;

30 }3

4 int Plane::0ObjectsCreated = 0;

68

Let’'s make our factory more extendable

Extensible Factory (Alexandrescu, 2001 in Modern C++ Design)
(Example based on Martin Reddy’s API Design for C++)

69

The Goal is to allow us at run-time to create new types (1/4)

e And this makes sense for a
game, or some system that

may be long running (and we
want flexibility)

o Solam going to create a
‘MyGameObijectFactory’

o My class has all static member
functions for now...| want to
keep things simple

m Pros/Cons of that can be
discussed.

The Goal is to allow us at run-time to create new types (2/4)

11 // one change is that I have removed our 'enum class'
12 // This is because during run-time I want to be able to
13 // create different types

14 class MyGameObjectFactory{

15 public:

16 // Callback function for creating an object

17 typedef IGameObject *(*CreateObjectCallback)();

18 // Register a new user created object type

19 // Again_we also have to pass in how to 'create' an object

20

static void RegisterObject(const std::string& type, CreateObjectCallback cb){
s_Objects[type] = cb;

¥
// Unregister a user created object type
// Remove from our map
static void UnregisterObject(const std::string& type){
s_Objects.erase(type);
3
// Our Previous 'Factory Method'
. 29 //
funCt|0nS for nOW---l Want to 30 static IGameObject* CreateSingleObject(const std::string& type){
. . 31 CallBackMap::iterator it = s_Objects.find(type);
keep things simple 32 1f(it!=s_objects.end()){
EE] // call the callback function
m Pros/Cons of that can be 34 , resurn (it->second)();
35
discussed_ 36 return nullptr;
37 }
38 private:
39 /] Convenience typedef
40 typedef std::map<std::string, CreateObjectCallback> CallBackMap;
41 // Map of all the different objects that we can create
42 static CallBackMap s_Objects;
43 };

The Goal is to allow us at run-time to create new types (3/4)

11 // one change is that I have removed our 'enum class'
12 // This is because during run-time I want to be able to
13 // create different types

14 class MyGameObjectFactory{

15 public:

16 // Callback function for creating an object

17 typedef IGameObject *(*CreateObjectCallback)();

18 // Register a new user created object type

19 // Again_we also have to pass in how to 'create' an object

20

static void RegisterObject(const std::string& type, CreateObjectCallback cb){
s_Objects[type] = cb;

¥
77 Unregister a user created object type
// Remove from our map
static void UnregisterObject(const std::string& type){
s_Objects.erase(type);
// Our Previous 'Factory Method'
functions f | want t 5 4
unctions 1or now...I want to 30 static IGameObject* CreateSingleObject(const std::string& type){
. . 31 CallBackMap::iterator it = s_Objects.find(type);
keep things simple 32 1f(it!=s_objects.end()){
EE] // call the callback function
m Pros/Cons of that can be o , resurn (it->second)();
discussed_ 36 return nullptr;

37)

38 private:

39 // Convenience typedef

40 typedef std::map<std::string, CreateObjectCallback> CallBackMap;

41 // Map of all the different objects that we can create

42 static CallBackMap s_Objects;

43 };

The Goal is to allow us at run-time to create new types (4/4)

discussed.

11 // one change is that I have removed our 'enum class'
12 // This is because during run-time I want to be able to
13 // create different types

14 class MyGameObjectFactory{

15
16

public:

// Callback function for creating an object
typedef IGameObject *(*CreateObjectCallback)();
// Register a new user created object type

s_Objects[type] = cb;
¥
// Unregister a user created object type
// Remove from our map

s_Objects.erase(type);

// Again, we also have to pass in how to 'create' an object.
static void RegisterObject(const std::string& type, CreateObjectCallback cb){

static void UnregisterObject(const std::string& type){

/] Our Previous 'Factory Method’

/1

if(it!=s_objects.end()){
// call the callback function
return (it->second)();

return nullptr;

3

static IGameObject* CreateSingleObject(const std::string& type){
CallBackMap::iterator it = s_Objects.find(type);

private:
// Convenience typedef

t CallBackMap;

typedef std::map<std::string, [CreateObjectCallback}
// Map of all the different o

static CallBackMap s_Objects;

ate

Creating our Previous Types (1/2)

To the right we can see
how to create our
previous types: plane
and boat.

int main(){

|/ Register a Diff 't type
MyGameObjectFactory::RegisterObject(
MyGameObjectFactory: :Registerobject(

=" ,Plane::Create);
t",Boat::Create);

std::vector<IGameObject*> gameObjectCollection;
// Add the correct ject to our collection

std::string line;

std::ifstream myFile("levell.txt");
if(myFile.is_open()){

while(std::getline(myFile,lin

// IE: we'll have to it

e)?

// R se
if(line=="pla M
gameObjectCollection.push_back(MyGameObjectFactory::CreateSingleObject(

));

74

Creating our Previous Types (2/2)

To the right we can see
how to create our
previous types: plane
and boat.

13 // For fun, create a new type
14 class Ant : public IGameObject{

15
16
17
18
19
20
21
22
23
24
25
VA
27
28
29

)

public:
Ant(int x,int y){
ObjectsCreated++;

}
void ObjectPlayDefaultAnimation() { /* ...

void ObjectMoveInGame() { /* ... */}

void Update() { /* ... */}

void Render() { /* ... */}

static IGameObject* Create() {
return new Ant(0,0);

}

private:
static int ObjectsCreated;

30 int Ant::0ObjectsCreated = 0;

i

|36

. —
HyGameObjectFactory::Registerobject("ant",Ant::Create);l

Is this pattern actually used?

Factory Method/Pattern Usage (1/6)

e | dug around a few open source projects to see if the factory pattern is

actually used
o grep -irn “factory” .
e The answer is yes!

77

HORDE 4D

NEXT-GENERATION GRAPHICS ENGINE

Factory Method/Pattern Usag

e | dug around a few open source project

actually used
o grep -irn “factory” .
e The answer is yes!
e https://github.com/horde3d/Horde3D

Horde3DEditor/src/GameEnginePlugIn/QGameEntityNode.h:61: * To be able to use a factory, we need a static method as a callback that can be registered in the factory.
Horde3DEditor/src/GameEngi 1gIn/QGameEntityNode.h:62: * This method will be registerd in the PlugInManager as an Extra node factory by the GameControllerAttachment using
Horde3DEditor/src/GameEnginePlugIn/ExtraTreeModel.h:50: ExtraTreeModel(PlugInManager* factory, const QDomElement& extrasRoot, QObject* parent = 0);
Horde3DEditor/src/GameEnginePlugIn/ExtraTreeModel.h:61: PlugInManager* nodeFactory() const {return m_extraNodeFactory;}

Horde3DEditor/src/GameEnginePlugIn/ExtraTreeModel.h:65: PlugInManager* m_extraNodeFactory;

Horde3DEditor/src/GameEnginePlugIn/QExtraNode.cpp:50: QXmlTreeNode* childItem = static_cast<ExtraTreeModel*>(m_model)->nodeFactory()->loadExtraNode(childNode, row, m_model, this);
Horde3DEditor/src/GameEngi igIn/ExtraTreeModel.cpp:32:ExtraTreeModel: :ExtraTreeModel(PlugInManager* factory, const QDomElement& extrasRoot, QObject* parent /*=0*/) : QXmlTreeModel(parent),
Horde3DEditor /src/GameEnginePl /ExtraTreeModel.cpp:33:m_extraNodeFactory(factory)

Horde3DEditor /src/HordeSceneEditorCore/ExtSceneNodePlugIn.h:62: virtual void setPlugInManager(PlugInManager* factory) = 0;
Horde3DEditor/src/HordeSceneEditorCore/SceneTreetodel.cpp:38:SceneTreeModel: :SceneTreeModel(PlugInManager* factory, const QDomElement &node, QSceneNode* parentNode) : QXmlTreeModel(),
Horde3DEditor/src/HordeSceneEditorCore/SceneTreeModel.cpp:39:m_parentNode(parentNode), m_sceneNodeFactory(factory)

Horde3DEditor/src/HordeSceneEditorCore/SceneTreeModel.cpp:41: m_rootItem = m_sceneNodeFactory->loadSceneNode(node, 0, this, parentNode);
Horde3DEditor/src/HordeSceneEditorCore/SceneTreeModel.h:44: SceneTreeModel(PlugInManager* factory, const QDomElement &node, QSceneNode* parentNode);

Horde3DEditor /src/HordeSceneEditorCore/SceneTreeModel.h:60: PlugInManager* nodeFactory() const {return m_sceneNodeFactory;}

Horde3DEditor /src/HordeSceneEditorCore/SceneTreeModel PlugInManager* m_sceneNodeFactory;

Horde3DEditor/src/HordeSceneEditorCore/QSceneNode.c m_knownNodeNames = model->nodeFactory()->sceneNodeNames();
Horde3DEditor/src/HordeSceneEditorCore/QSceneNode.cpp: AttachmentPlugIn* plugIn = model->nodeFactory()->attachmentPlugIn();

Horde3DEditor/src/HordesS Cch:Eu‘tvt[OFe/Q(Cc"c\ode.ch:87: QSceneNode* childItem = model->nodeFactory()->loadSceneNode(childNode, row, model, this);
Horde3D/Source/Horde3DEngine/eg SceneNode *sn = Modules::sceneMan().findType(SceneNodeTypes::Group)->factoryFunc(tpl);

HUFUESC,JOdfcﬁ’HOth?[EPg‘Pe/egL SceneNode *sn = Modules::sceneMan().findType(SceneNodeTypes::Model)->factoryFunc(tpl);

Horde3D/Source/Horde3DEngi SceneNode *sn = Modules::sceneMan().findType(SceneNodeTypes::Mesh)->factoryFunc(tpl);

Horde3D/Source/Horde3DEngine SceneNode Modules::sceneMan().findType(SceneNodeTypes::Joint)->factoryFunc(tpl);

Horde3D/Source/Horde3DEngine/eg SceneNode *sn = Modules::sceneMan().findType(SceneNodeTypes::Light)->factoryFunc(tpl); '8
Horde3D/Source/Horde3DEngine/egMain.c SceneNode *sn = Modules::sceneMan().findType(SceneNodeTypes::Camerq)->factoryFunc(tpl);

*
%
2
o uwon

n

https://github.com/horde3d/Horde3D

Factory Method/Pattern Usac

e | dug around a few open source project

actually used
o grep -irn “factory” .
e The answer is yes!
e https://github.com/OGRECave/ogre

Components/Overlay/include/OgreOverlay.i:33:%include factory.i

Components/Overlay/include/OgreOverlay.i:65:%feature("director") Ogre::OverlayElementFactory;
Components/Overlay/include/OgreOverlay.i:66:%include "OgreOverlayElementFactory.h"
Components/Overlay/include/OgreOverlay.i:72:%factory(Ogre::OverlayElement* Ogre::OverlayManager::createOverlayElement, Ogre::OverlayContainer);

Components/Bites/src/OgreApplicationContextAndroid.cpp:107: ogre::ArchiveManager: :getSingleton().addArchiveFactory(new Ogre::APKFileSystemArchiveFactory(mAAssetMgr));
Components/Bites/src/OgreApplicationContextAndroid.cpp:108: ogre::ArchiveManager::getSingleton().addArchiveFactory(new Ogre::APKZipArchiveFactory(mAAssetMgr));
Components/Volume/include/OgreVolumeOctreeNode.h:128: /** Factory method to create octree nodes.

Components/Volume/include/OgreVolumeChunk.h:415: /** Overridable factory method.

Components/RTShaderSystem/src/OgreShaderFFPFog.h:146:A factory that enables creation of FFPFog instances.

Components/RTShaderSystem/src/0greShaderFFPFog.h:147:@remarks Sub class of SubRenderStateFactory

Components/RTShaderSystem/src/OgreShaderFFPFog.h:149:class FFPFogFactory : public SubRenderStateFactory

Components/RTShaderSystem/src/OgreShaderFFPFog.h:154: @see SubRenderStateFactory::getType.

Components/RTShaderSystem/src/OgreShaderFFPFog.h:159: @see SubRenderStateFactory::createInstance.

Components/RTShaderSystem/src/OgreShaderFFPFog.h:164: @see SubRenderStateFactory::writeInstance.

Components/RTShaderSystem/src/OgreShaderFFPFog.h:172: @see SubRenderStateFactory::createInstanceImpl.

Components/RTShaderSystem/src/0OgreShaderProgramManager.cpp:130: mProgramWriterFactories.push_back(OGRE_NEW ShaderProgramWriterCGFactory());

Components /RTShaderSystem/src/OgreShaderProgramManager.cpp:131: mProgramWriterFactories.push_back(OGRE_NEW ShaderProgramWriterGLSLFactory());
Components/RTShaderSystem/src/OgreShaderProgramManager.cpp:132: mProgramWriterFactories.push_back(OGRE_NEW ShaderProgramWriterHLSLFactory());
Components/RTShaderSystem/src/OgreShaderProgramManager.cpp:134: mProgramWriterFactories.push_back(OGRE_NEW ShaderProgramWriterGLSLESFactory());
Components/RTShaderSystem/src/OgreShaderProgramManager.cpp:138: ProgramWriterManager::getSingletonPtr()->addFactory(mProgramWriterFactories[i]);
Components/RTShaderSystem/src/OgreShaderProgramManager.cpp:147: ProgramWriterManager::getSingletonPtr()->removeFactory(mProgramiWriterFactories[i]);
Components/RTShaderSystem/src/OgreShaderProgramiriterManager.cpp:60:void ProgramWriterManager::addFactory(ProgramWriterFactory* factory)
Components/RTShaderSystem/src/OgreShaderProgramWriterManager.cpp:62: mFactories[factory->getTargetLanguage()] = factory; 7S)

Components/RTShaderSystem/src/0OgreShaderProgramiWriterManager.cpp:65:void ProgramWriterManager::removeFactory(ProgramWriterFactory* factory)
9 9

https://github.com/OGRECave/ogre

The FrQEd , | e)blender
Factory Method/Pattern Us to Create

e | dug around a few open source Proj¢ tools in the hands of artists, for Il platforms, everywhere
actually used in the world, free and open sc

. “"] 2B . .
e The answer is yes!
e https://github.com/blender/blender
i:33:%include factory.i
5:%feature("director”) Ogre::OverlayElementFactory;
:%include "OgreOverlayElementFactory.h"
\:72 %factory(ogre :OverlayElement* Ogre::OverlayManager::createOverlayElement, Ogre::OverlayContainer);
107: ogre::ArchiveManager: :getSingleton().addArchiveFactory(new Ogre::APKFileSystemArchiveFactory(mAAssetMgr));
):108: Ogre::ArchiveManager::getSingleton().addArchiveFactory(new Ogre::APKZipArchiveFactory(mAAssetMgr));

/** Factory method to create octree nodes.
/** Overridable factory method.
5:A factory that enables creation of FFPFog instances.
:@remarks Sub class of SubRenderStateFactory
:class FFPFogFactory : public SubRenderStateFactory
@see SubRenderStateFactory::getType.
@see SubRenderStateFactory::createInstance.
@see SubRenderStateFactory::writeInstance.
@see SubRenderStateFactory::createInstanceImpl.
mProgramWriterFactories.push_back(OGRE_NEW ShaderProgramWriterCGFactory());
mProgramWriterFactories.push_back(OGRE_NEW ShaderProgramWriterGLSLFactory());
mProgramWriterFactories.push_back(OGRE_NEW ShaderProgramWriterHLSLFactory());
mProgramWriterFactories.push_back(OGRE_NEW ShaderProgramWriterGLSLESFactory());
ProgramWriterManager::getSingletonPtr()->addFactory(mProgramWriterFactories[i]);
ProgramWriterManager::getSingletonPtr()->removeFactory(mProgramiWriterFactories[i]);
60:void ProgramWriterManager::addFactory(ProgramWriterFactory* factory)
g 62: mFactories[factory->getTargetLanguage()] = factory; 8()
/ogreSshaderProgramWriterManager.cpp:65:void ProgramWriterManager::removeFactory(ProgramWriterFactory* factory)

https://github.com/blender/blender

Factory Method/Pattern Usage (5/1

| dug around a few open source projects to see i

actually used

o grep -irn “factory” .
The answer is yes!
https://qithub.com/id-Software/Quake-Ill-Arena

Quake Il Arena

mike:Quake-III-Arena-master$ grep -irn "factory"

./q3radiant/PlugIn.h:54:

_QERPlugEntitiesFactory* m_pQERPlugEntitiesFactory;

./q3radiant/IPluginEntities.h:60:// _QERPlugEntitiesFactory is a set of commands Radiant uses to instanciate plugin entities
./q3radiant/IPluginEntities.h:94:static const GUID QERPlugEntitiesFactory_GUID =
./q3radiant/IPluginEntities.h:99:struct _QERPlugEntitiesFactory

./q3radiant/PlugIn.
./q3radiant/PlugIn.
./q3radiant/PlugIn.
./q3radiant/PlugIn.
./q3radiant/PlugIn.
./q3radiant/PlugIn.
./q3radiant/PlugIn.
./q3radiant/PlugIn.

etBuffer(0));

./q3radiant/PlugIn.
./q3radiant/PlugIn.

./q3radiant/PlugIn.

cpp:
cpp:
cpp:
cpp:
cpp:
cpp:

<pp

cpp:

cpp

cpp:
cpp:

./code/ui/ui_main.c:71:
./code/unix/pcons-2.3.1:4849:# factory that creates packages like sig::md5::debug, etc., on the fly.
./code/unix/cons:3775:# factory that creates packages like sig::md5::debug, etc., on the fly.
./code/unix/README. Linux:65:minimum requirements, you are unlikely to be able to run a satisfactory
./lcc/x86/1inux/tst/paranoia.1bk:182:The arithmetic diagnosed seems Satisfactory though flawed.
./lcc/tst/paranoia.c:1794: printf("Satisfactory though flawed.\n");
./lcc/tst/paranoia.c:1814: _ printf("The arithmetic diagnosed seems Satisfactory.\n");

43: m_pQERPlugEntitiesFactory = NULL;

48: if (m_pQERPlugEntitiesFactory)

49: delete m_pQERPlugEntitiesFactory;

218: // resquest a _QERPlugEntitiesFactory

221: m_pQERPLlugEntitiesFactory = new _QERPlugEntitiesFactory;

2221 m_pQERPLlugEntitiesFactory->m_nSize = sizeof(_QERPlugEntitiesFactory);

52232 if (m_pfnRequestInterface(QERPlugEntitiesFactory_GUID, m_pQERPlugEntitiesFactory))
PEH Sys_Printf("WARNING: failed to request QERPlugEntitiesFactory from plugin %s\n"
:285: if (m_pQERPlugEntitiesFactory)

289: IPluginEntity *pEnt = m_pQERPlugEntitiesFactory->m_pfnCreateEntity(e->eclass, pEp);

295: Sys_Printf("WARNING: unexpected m_pQERPlugEntitiesFactory is NULL in CPlugin::CreatePluginEntity\n");

{"Weapons Factory Arena"”, "wfa"

81

https://github.com/id-Software/Quake-III-Arena

Factory Method/Pattern Usage (6/6

And of course--command and conquer
https://qithub.com/electronicarts/CnC Re
mastered Collection

o (Aside, that there is a type called a ‘Factory, that is literally a ‘factory’ in the
game -- not to be confused with the pattern!)

/REDALERT/DLLInterface.cpp:5847: FactoryClass * factory =
/REDALERT/DLLInterface.cpp:5945: FactoryClass * f
/REDALERT/DLLInterface.cpp:7898: FactoryClass* factory = FactorieSTPTr{tnaex/);
/REDALERT/SCENARIO.CPP:834: FactoryClass::Init();

/REDALERT/SIDEBARGlyphx.CPP:415: FactoryClass * factory = Factories.Raw_Ptr(factoryid);
/REDALERT/FACTORY.H:40:class FactoryClass : private StageClass

/REDALERT/FACTORY.H:47: FactoryClass(void);

/REDALERT/FACTORY.H:48: FactoryClass(NoInitClass const & x) : StageClass(x) {};
/REDALERT/FACTORY.H:49: ~FactoryClass(void);

/REDALERT /BUILDING.H:68: CCPtr<FactoryClass> Factory;

/REDALERT /HOUSE.H:45:class FactoryClass;

/REDALERT /HOUSE.H:714: FactoryClass * Fetch_Factory(RTTIType rtti) const;

/REDALERT /HOUSE.H:715: void Set_Factory(RTTIType rtti, FactoryClass * factory);

/REDALERT/IOOBJ.CPP:37: * FactoryClass::Code_Pointers -- codes class's pointers for load/save
/REDALERT/IOOBJ.CPP:38: * FactoryClass::Decode_Pointers -- decodes pointers for load/save
JREDALERT/IOOBJ.CPP:317: * FactoryClass::Code_Pointers -- codes class's pointers for load/save
/REDALERT/IO0BJ.CPP:336:void FactoryClass::Code_Pointers(void)

/REDALERT/IOOBJ.CPP:347: * FactoryClass::Decode_Pointers -- decodes pointers for load/save
/REDALERT/IO0BJ.CPP:364:void FactoryClass::Decode_Pointers(void)

/REDALERT /HEAP.CPP:71:template class TFixedIHeapClass<FactoryClass>;

/REDALERT /CCPTR.CPP:49:template class CCPtr<FactoryClass>;

/REDALERT /BUILDING.CPP:426: mono->Printf("%s %d%%", Factory->Get_Object()->Class_Of().IniName, (100*Factory->Completion())/FactoryClass::STEP_COUNT);

/REDALERT/BUILDING.CPP:524: FactoryClass * factory = NULL;

INFAAL FAT IRIITI ATAMA FARR.4c7c. IR R s om PIGIDRE L | S

82

https://github.com/electronicarts/CnC_Remastered_Collection
https://github.com/electronicarts/CnC_Remastered_Collection

LEJnit and Structure Hierarchy

Actual Hierarchy of Objects

e (An aside for those that are interested)
o | also thought Jason Turners Review of the
source was interesting!
m https://www.youtube.com/watch?v=0e

AAAAAA

e/gje-XRc

MISSILE SiL

https://www.youtube.com/watch?v=Oee7gje-XRc
https://www.youtube.com/watch?v=Oee7gje-XRc

No Design Pattern is perfect -- recap

e Trade offs
o Pros
m Can hide lots of implementation details (only need to know type)
m Can be extensible
o Cons
m Still need to document how to create the different types and what is available.
e (Maybe this is in text documentation, or maybe the factory can print a listing for
you)
m Perhaps some performance issue if we have lots of inheritance
e (Needs to be measured, potentially able to be optimized away--I have no
empirical evidence for this specific talk)

84

‘Mike careful calling it Factory Pattern’

Factory Method Pattern (What we have largely discussed) is different and exist
several various for Factory Pattern

e.g., abstract factory, extensible factory, distributed factories, etc.
(I'm providing some key words here for you to continue forward)

85

Conclusion

A Summary of what we have learned

86

Summary of what we have learned and should learn next

e We have learned about the ‘Factory Method Pattern’
o We have thought a bit about some of the pros and cons.

e We have learned about an extensible Factory Pattern
e We did not talk about creating multiple factories
o (We could have used one single Templated Factory for this)

e There are several alternations of the factory pattern as well
o The Abstract Factory Pattern is likely the most popular (and in the Gang of Four book)
m Multiple interfaces for each of the products that you want to build.

87

Going Further

Some things that may be useful for learning more design patterns

88

Some References

e Videos
o C++ Design Patterns: From C++03 to C++17 - Fedor Pikus - CppCon 2019
m Overview of evolution of design patterns
o Introduction to Design Patterns (Back to Basics Track CPPCON 2020)
m (Il give an overview and 3 patterns)
e (Some folks aren’t going to like Singleton!)
o And many more!
m https://www.youtube.com/results?search query=cppcon+design+patterns

e Books
o API Design for C++
o Game Programming Patterns
o Modern C++ Design

89

https://www.youtube.com/watch?v=MdtYi0vvct0
https://www.youtube.com/watch?v=2UUqX2eIdSM
https://www.youtube.com/results?search_query=cppcon+design+patterns

Code for the talk

Available here: https://github.com/MikeShah/cppcon2021

mike factory examples sbf7cOe 40 minutes

concurrency concurrency ex amples

factory factory examples

pointers More pointer examples

README.md Update README.md

README.md

cppcon2021

Examples and materials for my talks during Cppcon 2021!

ago

@ 17 commits
2 days ago

40 minutes ago

90

https://github.com/MikeShah/cppcon2021

2021 A8
October24-29

@ /6 The C++ Conference

Software Design:
Factory Pattern

Mike Shah, Ph.D.
@MichaelShah | mshah.io | www.youtube.com/c/MikeShah

Thank you Cppcon attendees, reviewers, chairs!

91

https://twitter.com/MichaelShah
http://mshah.io
http://www.youtube.com/c/MikeShah

Thank you!

93

