MAYSTREET

Failing Successfully

Reporting and Handling Errors

ERROR:

ERROR: No such file or directory

What Went Wrong”?

Actually a success story
Program acknowledged that it couldn’t proceed
Gave some vague indication as to why it couldn’t proceed
Wound itself down properly (didn’t “crash®)

Better than a lot of production programs

Which motivates this talk

Not All Terminations Are Equal

Ending the program is a very common response to errors
If something went wrong how can you proceed?

Not all means of terminating a program are desirable
Program termination through...

..proper structure: Good

...exit and friends: Not so much

What's Wrong With exit?

Hidden control flow
goto renders control flow inscrutable intra-function
exit et al. render control flow inscrutable inter-function
Global state

Commonly understood in terms of variables

More broadly understood as referring to non-local effects

Kicking the Can Down the Road

Don’t...

..couple unrelated decisions
Extension of “single-responsibility principle”
Coupling decisions hurts ability to reuse code

...pollute code with non-local concerns and knowledge
Errors may result in program termination eventually
Termination is not a local responsibility
Introducing termination undermines decomposition

Defer decisions until context is available to make them appropriately

What About That Error Message”?

Pretty standard error string for ENOENT

Message would be useful alongside path of missing file or directory

Somewhere in layers of application decision made to discard that context
Path was available when calling open (for example)
Context was allowed to expire rather than be preserved for output
Decision may have been...

..structural (no channel for context)
..functional (context not preserved via available channel)

Integer Parsing

int atoi(const char® str

Design is perfect for the success case: Accepts a string, returns an integer
What if the string doesn’t contain an integer?

Returns zero, but string could be a valid representation of zero
Effectively assumes string is never non-integer (i.e. that error never occurs)

lgnores any trailing non-integer part

Integer Parsing

optional<int> real _atoi(const char® str) noexcept
const auto result std: :atoi(str
if (result
return result

while str std: :isspace(static cast<unsigned char str
str

it (*str te str

it (*str ‘0’ return ©

return nullopt

Integer Parsing

long strtol(const char® str, char®® str_end, int base

Still returns zero on error

*str_end will be set to...
..str on failure
..address of character past last character consumed on success

Can effectively differentiate success and failure

What about...
..differentiating different kinds of failure?
..determining where the failure occurred?

Integer Parsing

struct from_chars_result
const char* ptr
errc ec

from_chars_result from chars(const char® first, const char*® last
T& value, int base = 10

Mechanism to report failure much clearer: ec
Can differentiate overflow and non-integer string

ptr set to first on failure: Still can’t determine where failure occurred

Fail Fast, Fail Often

Aforementioned integer parsing functions silently ignore leading whitespace
Callers can easily skip whitespace if they want:
std: :find_if not(first, last const char c¢) noexcept

const unsigned char u(c
return std::isspace(u

What if they consider leading whitespace to be an error?
lgnoring leading whitespace makes a decision on behalf of the user

Error Vocabulary

Standard C-style error reporting uses int or an enum, for example:
errno
CURLcode

This works in isolation: Cause of failure is transmitted to the caller

What about in composition?

For example: Function in turn calls POSIX and libcurl functions

What should be returned to avoid losing context?

std: :error_code

Combines a “code” (an int) with a pointer to a “category”
Category determines how the code should be interpreted
Different category with same code interpreted as different error

Category singleton instance of type derived from std: :error_category

Category identity is assumed to be pointer identity

Error Handling

What if code needs to handle a file not being found?
errno: ENOENT
CURLcode: CURLE_FILE_COULDNT READ FILE et al.
With C-style handling could check for certain well known values

How can this be accomplished with std: :error_code?

Number of possible errors theoretically unbounded

std: :error_condition

Same basic structure as std: :error_code
Intended to encapsulate root cause which can be consumed programmatically
Can be compared to std: :error_code
std: :error_category::equivalent used for comparison
Doesn’t necessarily model an “equality relation”
std: :error_code can be equal to many std: :error_condition

And vice versa

17

enum class error { success = 0, bad whole, no decimal, bad decimal

std: :error_code make_error_code(error e) noexcept
static const struct std: :error_category
virtual const char® name const noexcept override
return "Decimal Parser"

virtual std::string message(int code) const override
switch (static cast<error>(code
case error::success
return "Success"

default
break

return "Unknown"

virtual std::error_condition default_error_condition(int code) const noexcept
override

if (code) return std::errc::invalid _argument
return

— 8

virtual bool equivalent(int code, const std::error_condition& condition) const
noexcept override

return default_error_condition(code condition

virtual bool equivalent(const std::error_code& code, int condition) const
noexcept override

return (*this code.category code.value condition

category
return std::error_code(static cast<int>(e category

namespace std
template
struct is_error_code_enum<error true_type

std::system _error

Exception type which wraps a std: :error_code
Can derive and provide custom what to bundle additional context
Frames up the stack can catch and handle std: :system_error

Alternately can catch std: :exception and print what

Use of this type supposes that we should be throwing an exception

Exceptions

Common to say that exceptions are for “exceptional” situations
Deeming something “exceptional” makes a decision on behalf of user

Exceptions simplify...

...error reporting: Just throw

..context propagation: Add to exception type, provide custom what
Exceptions complicate...

...error handling: What to catch?

...code analysis: What can fail and how?

The higher level the building block the more appropriate exceptions become

— 1

Tag could not be parsed as an integer

8=FIX.4.2\x019=00238\x0135=D\x0134=160\x0149=P98004N\x015a=004\x0152=2

AN

Tag could not be parsed as an integer

struct fix _message reader

fix_message™ next(std::error_code& ec

struct fix _message reader

fix_message™ next(std::error_code& ec
std: :string format _last error() const

struct fix _message reader

fix_message™ next(std::error_code& ec

std: :string format _last error() const

const std: :byte* last const noexcept

const std: :byte* last begin const noexcept
const std: :byte* last _end const noexcept
const std: :byte™ begin const noexcept
const std: :byte* end const noexcept

struct standard fix client

std: :string format _last error() const

struct standard fix client

std: :string format _last error() const
enum class error_source

parsable

verify

parse_ fix

parse_unknown

stop

other

error_source last _error_source const noexcept

fix _message reader& message reader() noexcept
const fix_message reader& message reader const noexcept

— 8

Multi-Threading

Reporting errors via returned value supposes there’s a returned value
Non-trivial programs tend to have multiple threads
“Returned value” doesn’t make sense in this context
Requirement to handle errors still exists

Need to “gather” errors from all threads

Also need to be able to stop if one thread encounters an error

class thread pool
struct state asio::io _context
std: :thread thread

using states type = std::list<state
states type states_

mutable std: :mutex m_

std: :exception ptr ex_

public
explicit thread pool(unsigned threads
void run
void stop(std::exception ptr ex std: :exception ptr noexcept

using iterator states type::iterator
iterator begin() noexcept
iterator end noexcept

void thread pool: :run
const auto run auto ctx) noexcept
try
ctx.run
catch
stop(std: :current_exception

auto begin std: :next(states .begin 1
const auto g make scope_exit noexcept
for (auto iter = std::next(states_.begin 1); iter begin iter

iter->stop
iter->thread.join

for (const auto end = states_.end begin end begin
begin->thread = std: :thread begin noexcept run(*begin
run(states_.front

const std::lock guard g(m_
if (ex_) std::rethrow_exception(std: :move(ex_

10.244.0.33:41534 => 0.0.0.0:11653 disconnected due to failure reading
from socket: End of file

Whose Error?

Whether something is an error depends on...

...level of abstraction
read does not consider end of file to be an error
Attempting to fill a buffer we may treat it as an error
Managing connections may not consider it an error: Stream is done

..purpose
Invalid XML is an error when parsing XML
Not an error when trying to heuristically determine if a file is XML

Succeed, Fail, Who Cares”

What does it mean for a TCP connection to “succeed?”
Useful distinction to a client, but for a server?
Success might mean “goodbye” message received or graceful shutdown
Does that really matter?
Connection is still gone
Doesn’t affect overall server

Failure and success handled in essentially the same manner

struct processor_manager settings

struct processor_manager
explicit processor_manager
const processor_manager_ settings& settings
void add _device(device& d
void add_feed(feed& f
void start
void stop noexcept

struct processor_manager callback

struct processor_manager settings

struct processor_manager
explicit processor_manager
const processor_manager_ settings& settings
void add _device(device& d
void add_feed(feed& f
void start
void stop noexcept
void subscribe(processor_manager callback& callback

36

struct device processor_begin
device processoré& processor

struct packet processor_begin
packet_processoré& processor

struct device processor_end : device_processor_begin

struct packet_processor_end : packet_processor_begin

struct processor_manager callback

virtual void on(const device processor_begin& e 0
virtual void on(const packet processor _begin& e 0
virtual void on(const device processor_end& e 0
virtual void on(const packet processor_end& e 0

struct device processor_begin
device processoré& processor

struct packet processor_begin
packet_processoré& processor

struct device processor_end : device_processor_begin
std: :error_code ec
std: :exception_ptr ex
device® which

struct packet_processor_end : packet_processor_begin
std: :exception_ptr ex

session® which

struct processor_manager callback

virtual void on(const device processor_begin& e 0
virtual void on(const packet processor _begin& e 0
virtual void on(const device processor_end& e 0
virtual void on(const packet processor_end& e 0

struct eof processor _manager callback
processor_manager_ callback

virtual void on(const device processor_begin& e) override
virtual void on(const packet processor_begin& e) override
virtual void on(const device processor_end& e) override
virtual void on(const packet processor_end& e) override
enum class processor { packet, device

processor source const noexcept

const std::string& name() const noexcept

void wait const noexcept

bool eof const noexcept

void maybe throw() const

Warnings & Logging

Forms of out of band communication
Succeed but also warn
Fail but also log

Logging can be used in short term to compensate for lack of error reporting
Short term because logging isn’t always appropriate

Warnings should have a bona fide channel
Logging shouldn’t be coupled into components

Emit events
Separate component consumes events and writes to log

summary

Don’t...
..assume failure conditions won’t happen

..unnecessarily make decisions on behalf of your user

..throw away potentially useful context

ErrorInvalidRange

Domain: 1libs3 code domain

Description: ErrorInvalidRange

File: ../src/apps/cme/data _conn/product _info query.cpp
Line: 61

Built: Sep 17 2021 23:08:39

Revision: 1035-f685c515fa6c89fe25c27e9fc3te89d88735F83fF
Database: /db

Bellport Revision: 10742-35ad327965de328e7bf3e6823102c46827516b54
Session: 387

DXF Type: Symbols

MIC: GLBX

Date: 2021-08-06

Identifier: b6 4e 11 49 9d 9e c8 b8 00 00 00 01 83 04 06 00

Questions? Robert Leant

Lead Software Engineer
rleahy@rleahy.ca

MAYSTREET

