
1

AN ALGEBRAIC BESTIARY

3

SUMS, PRODUCTS, EXPONENTS, MONOIDS, FUNCTORS,
OH MY!

5

OH MY!

7

OH MY!
Why Should I Care?

7

OH MY!

Why Should I Care

7

OH MY!

Abstract Nonsense in Practice

7

TYPES AND STRUCTURES

9

ALGEBRAIC TYPES
Composition of Types

10

ALGEBRAIC STRUCTURES
Patterns of Operations on Types

11

HIGHER ORDER STRUCTURES
Patterns of Composition of Operations

12

PART I
Basic Algebraic Types

14

ALGEBRAIC TYPES
Manipulation of types with the rules of basic algebra

We add, multiply, and exponentiate types with each other

16

COUNTING HOW MANY OBJECTS IN A TYPE

17

PRODUCT TYPES
Structs
Pairs
Tuples

18

SUM TYPES
Unions
Variants
Optional/Expected

19

VOID AND MONOSTATE

The empty product, a tuple of no types has one member

The empty variant, a variant of no types has none

C++ void is not Void, there are expressions of type void

std::monostate ought to be std::tuple<>

20

EXPONENTIAL TYPES
Functions from A to B are B^A

21

EXAMPLE OF FUNCTIONS

A unary function

Let have three elements

The eight possible functions are defined by this table

A → Bool

A , ,a0 a1 a2

a0 a1 a2

()f0 true true true

()f1 true true false

()f2 true false true

()f3 true false false

()f4 false true true

()f5 false true false

()f6 false false true

 a0 a1 a2

()f7 false false false

22

"THE SAME TYPE"

23

ISOMORPHISM

Same Shape

Mapping in both directions

24

NORMAL FORM IS SUM OF PRODUCTS

Types with the Same NF are Isomorphic

25

EXAMPLES OF TYPE FORMULAS
Type Formula

optional<A>

pair<A,B>

monostate

bool

{true, false, FileNotFound}

struct {A a; B b};

(A) -> B

union {A a; B b};

variant<A, B, C>

1 + A

A × B

1

2

3

A × B

BA

A + B

A + B + C

26

FORMULA MANIPULATION
Type Formula

variant<A, A>

pair<bool, A>

A tagged pair is equivalent to a variant

⇒ A + A ⇒ 2A

⇒ 2 × A ⇒ 2A

27

TUPLE
Type Formula

tuple<A, A, A>

3 -> A

A function that takes an index and returns an A is equivalent to a 3-tuple, or Array

⇒ AxAxA

A3

⇒ A3

28

RECURSIVE TYPES
A list is either null or a value followed by a list

We can expand in L

So a list of A is either nil or A or two A or three A and so on

L = 1 + AL

L = 1 + A(1 + AL)

L = 1 + A + AAL

L = 1 + A + AA + AAAL

L = 1 + A + AA + AAA + AAAAL

29

CALCULUS
It's been recently demonstrated that the first derivative of an algebraic type is the type of its

one hole context, which is the "zipper" datatype

30

PART II
Algebraic Structures

32

TYPES WITH OPERATION(S)
These kinds of structures guide not only how operations should behave, but also inform

what constructors should be provided for a type

Quasigroup Semigroup

MonoidLoop
Inverse

semigroup

Magma

Unital
magma

Group

identity

identity

identity

identity

associativityassociativity

associativity

associativity

associativity

divisibility

invertibility

invertibility

divisibility

34

ONE TYPE AND A BINARY OPERATION OR GROUP LIKE
Three 'interesting' properties of the operation

Associativity

Identity
There exists an element of A such that

Inverse
For all elements of A, there exists an element such that

(A, A) ⇒ A

a + (b + c) = (a + b) + c

op(a, op(b, c)) = op(op(a, b), c)

a + i = a

a′ a + = ia′

35

ALSO SOMETIMES
Commutivity

Abelian (a�er the mathematician Abel) groups have commutitity.

(a + b) == (b + a)

36

THE TAXONOMY

37

BUT FIRST A DISCLAIMER

Various reputable sources and texts disagree slightly in terminology for this and the rest of
the algebraic structures. Many will include or exclude some particular requirement. The

language grew out of more than a century of mathematicians trying to describe things to
each other. Papers, and entire books, will start with definitions that hold for the scope of

that writing.

Don't panic!

38

THE TAXONOMY
Name Associativity Identity Inverse

Magma No No No

Semigroup Yes No No

Monoid Yes Yes No

Group Yes Yes Yes

Unital Magma No Yes No

Quasigroup No No Yes

Loop No Yes Yes

Inverse Semigroup Yes No Yes

Abelian Group adds Commutivity to Group (or monoid, or semigroup)

Two of these are interesting to C++ Programmers
39

ONE HAS A DIRECT IMPACT ON CODE: MONOID
It shows up because it means we can work by parts in any order and we have an initial

element

Folds, tree operations, scans, etc

We don't have a standard function that can return the identity, sometimes called mzero

We do have a default constructor

If you are creating a type and operation to be a monoid, make the default constructor
create the zero (or 1) element

40

MONOIDAL OPERATIONS

plus
identity is 0

times
identity is 1

concatenation
identity is empty list, []

min
identity is INT_MAX, std::numeric_limits<T>::max()

max
identity is INT_MIN, std::numeric_limits<T>::min()

41

FREE OPERATOR

If you choose to have a free operator for your type in C++, the natural spelling is

This is the hidden friend idiom. The operation is available if a T is involved, but not for other
types, making ADL lookup less unpleasant

It's fine not to provide an operator form for the monoidal operation

class T {
 // ...
 friend T operator+(T const& lhs, T const& rhs) { /* ... */ }
 // ...
};

42

GROUPS AND ABELIAN GROUP
Groups add an inverse operation to monoid, allowing the operation in many cases to be

undone

Abelian groups add commutivity to the operation

For groups there are curently no great ways to signal the pattern directly in C++ other than
Concepts

Being able to replace with can substantially simplify and improve parallel
and concurrent algorithms

op(a, b) op(b, a)

43

ONE TYPE AND TWO OPERATIONS
OR RINGOID

These types generally look number-ish.

integers
floating point
bignum
complex
vectors
matrices

(A, A) ⇒ A

44

RING-LIKE
Two operations and , where distributes over + × × +

a × (b + c) = (a × b) + (a × c)

(b + c) × a = (b × a) + (c × a)

45

SOME IMPORTANT RINGOIDS
Semiring

Both operations are semigroups
Ring

The additive monoid is an abelian group
Field

A commutative ring with inverses for multiplication (division is closed)

46

SEMIRING

 is a commutative semigroup:

 is a semigroup:

Multiplication le� and right distributes over addition:

(R, +)
(a + b) + c = a + (b + c)
a + b = b + a

(R, ×)
(a × b) × c = a × (b × c)

a × (b + c) = (a × b) + (a × c)
(a + b) × c = (a × c) + (b × c)

47

RING

 is a commutative monoid with identity element :

 is a monoid with identity element :

Multiplication le� and right distributes over addition:

(R, +) 0
(a + b) + c = a + (b + c)
a + b = b + a
0 + a = a = a + 0
∀a∃ − a ∈ R : (−a) + a = 0 = a + (−a)

(R, ×) 1
(a × b) × c = a × (b × c)
1 × a = a = a × 1

a × (b + c) = (a × b) + (a × c)
(a + b) × c = (a × c) + (b × c)

48

FIELD

A Ring with division

For field F(+, ×)

∀a ∈ F ! = 0, ∃ : a × = 1 = × aa−1 a−1 a−1

49

PART III
Higher Order Structures

Composing operations

51

CATEGORICAL STRUCTURES
Category theory studies morphisms, or arrows, largely ignoring the objects

It is concerned with how operations compose, and what structures allow us to reason
about those compositions

Category theory has provided many useful results, and a lot of terrible names

These are generic types, over some underlying type. In C++ terms something like

Composed functions are what defines the structures

 template class T<typename A>

53

FUNCTION COMPOSITION
Because not everyone agrees everywhere

The composition of two functions

is written

 ,or,

and has the type

A function from to and a function from to compose to a function from to .

f(g(x))

f ∘ g circ(f, g)

(β → γ) → (α → β) → (α → γ)

f β γ g α β α γ

54

C++
auto circ(auto&& f, auto&& g) {
 return [=](auto&& x) { return f(g(x)); };
}

55

FUNCTOR
A functor allows a function to be mapped in to the type

in such a way that it composes sensibly

Containers are natural Functors

Not all Functors are Containers

56

INTERFACE

fmap or transform

Apply a function of type A to B to a functor over A producing a functor of B

(A → B) → T ⟨A⟩ → T ⟨B⟩

57

LAWS

transform(functor, std::identity)

std::identity(functor)

transform(functor, circ(g, h))

circ(transform(functor, g), transform(functor, h))

fmap id = id
fmap (g . h) = (fmap g) . (fmap h)

⇕

⇕

58

C++

If your type is Container like, make it a Range or provide a Range Adaptor

If it's not a Container, name the operation `transform`

std::transform(InputIt first1,
 InputIt last1,
 OutputIt d_first,
 UnaryOperation unary_op);

std::ranges::transform(R&& r, O result, F op, Proj proj = {});

std::optional::transform(F&& f);

59

MONAD
Monads allow functions returning the type of the monad to be bound into an instance of

the monad, or for two functions that return monads over different types to be chained
together

A monadic type over the same monadic type can be 'flattened' into the underlying monad

Monads are also Functors

An intuition is a context for a computation

60

INTERFACE

bind or and_then

fish or kleisli arrow

join or flatten or mconcat

M⟨a⟩ → (a → M⟨b⟩) → M⟨b⟩

(a → M⟨b⟩) → (b → M⟨c⟩) → (a → M⟨c⟩)

M⟨M⟨a⟩⟩ → M⟨a⟩

61

APPLICATIVE AND FUNCTOR PARTS

make or pure or return

fmap or transform

Any one of the first three and one of the second two can define the other three

a → M⟨a⟩

(a → b) → M⟨a⟩ → M⟨b⟩

62

LAWS

le� identity
bind(pure(a), h) == h(a)

right identity
bind(m, pure) == m

associativity
bind(bind(m, g), h) == bind(m, bind((\x -> g(x), h))

63

THE INTERESTING POWER OF MONAD

They can change the context

Functors can't escape the shape of the context they are in

The monad returning function passed in to bind can change everything

64

C++
template<class A> optional {
 // ...
 template <class F> constexpr auto and_then(F&& f);
 template <class F> constexpr auto transform(F&& f);
 // ...
};

65

A SMALL CORO EXAMPLE

Where Lazy<T> is a coroutine holding a function returning T and the arguments to be
evaluated

// Value categories and moves elided

template <typename Value>
Value evaluate(Lazy<Value> lazy) {
 return lazy.get();
}

template <typename F, typename... Args>
auto lazy(F f, Args... args) -> Lazy<std::invoke_result_t<F, Args...>> {
 co_return std::invoke(f, args...);
}

template <typename Value, typename F>
auto transform(Lazy<Value> l, F f) -> Lazy<std::invoke_result_t<F, Value>> {
 co_return f(evaluate(l));
}

template <typename Value>
auto join(Lazy<Lazy<Value>> l) -> Lazy<Value> {
 co_return evaluate(l);
}

template <typename Value, typename Func>
auto bind(Lazy<Value> l, Func f) -> decltype(f(evaluate(l))) {
 co_return f(evaluate(l));

66

ANY QUESTIONS?
Or Comments?

68

THANK YOU!

70

