
Understanding and Mastering C++'s Complexity
Amir Kirsh

© All rights reserved

RAII

IILE
ODR

ADL RVO

IFNDR

UB

CTAD

CRTPCWG LTO

EBO

RTTI
SFINAETU

UDL

Before we .begin()

2Understanding and mastering C++'s complexity @ CppCon 2021

Before we .begin()
Does the code below compile? If so, how? If not, why?

(Wait… question is open only for C++ programmers with 0-3 years of experience)

3Understanding and mastering C++'s complexity @ CppCon 2021

Before we .begin()
Does the code below compile? If so, how? If not, why?

#include <utility>
#include <string>

int main() {
 std::string s1 = "hi", s2 = "bye";
 swap(s1, s2);

 int a = 3, b = 7;
 swap(a, b);
}

4Understanding and mastering C++'s complexity @ CppCon 2021

Complexity
What this talk is about (and what’s not)

5Understanding and mastering C++'s complexity @ CppCon 2021

Complexity
This talk is NOT about Algorithmic Complexity (no big ‘O’ in this talk!)

6Understanding and mastering C++'s complexity @ CppCon 2021

Complexity
This talk is NOT about Algorithmic Complexity (no big ‘O’ in this talk!)

But we do have a talk on
Algorithmic Complexity - on Friday!

7Understanding and mastering C++'s complexity @ CppCon 2021

Complexity
This talk is about C++ language complexity,
with a broad definition for complexity:

anything that makes it hard for you to use C++, or to understand it,
including things that irritate or annoy you, things that waste your time,
and language syntax that is bug prone, or broken in a way, or is done easier
in other languages.

8Understanding and mastering C++'s complexity @ CppCon 2021

About Me

9Understanding and mastering C++'s complexity @ CppCon 2021

Amir Kirsh

10Understanding and mastering C++'s complexity @ CppCon 2021

Lecturer
Academic College of Tel-Aviv-Yaffo
and Tel-Aviv University

Developer Advocate

Co-Organizer of the CoreCpp
conference and meetup group

Talk Origins

11Understanding and mastering C++'s complexity @ CppCon 2021

A graduated student of mine was interviewed for a C++ position and consulted me
whether C++ is a right choice (as “there are other less complex languages”).

Talk Origins

12Understanding and mastering C++'s complexity @ CppCon 2021

A graduated student of mine was interviewed for a C++ position and consulted me
whether C++ is a right choice (as “there are other less complex languages”).

I convinced her.

Talk Origins

13Understanding and mastering C++'s complexity @ CppCon 2021

A graduated student of mine was interviewed for a C++ position and consulted me
whether C++ is a right choice (as “there are other less complex languages”).

I convinced her.

She is now a C++ developer at Waves.com

Amit Barzilay

Talk Origins

14Understanding and mastering C++'s complexity @ CppCon 2021

A graduated student of mine was interviewed for a C++ position and consulted me
whether C++ is a right choice (as “there are other less complex languages”).

I convinced her.

She is now a C++ developer at Waves.com

We prepared this talk together for CoreCpp conference 2021 in Tel-Aviv.

And now you got me here :-)

Amit Barzilay

Complexity
Isn’t it the name of the game? (of being a programmer...)

15Understanding and mastering C++'s complexity @ CppCon 2021

The Perils of Java Schools

16Understanding and mastering C++'s complexity @ CppCon 2021

Joel Spolsky, 2005

Lazy kids.

Whatever happened to hard work?

...

in the last decade a large number of otherwise

perfectly good schools have gone 100% Java ...

The lucky kids of JavaSchools are never going to get

weird segfaults trying to implement pointer-based

hash tables. They’re never going to go stark, raving

mad trying to pack things into bits.

https://www.joelonsoftware.com/2005/12/29/the-perils-of-javaschools-2

https://www.joelonsoftware.com/2005/12/29/the-perils-of-javaschools-2

Complexity
Is C++ complex?

Why?

Can it be less complex?

17Understanding and mastering C++'s complexity @ CppCon 2021

What makes C++ complex - for you?

18Understanding and mastering C++'s complexity @ CppCon 2021

Please check only the things that bother

you in person, don’t check topics that you

are not familiar with or don’t use at all:

What makes C++ complex - for you?

19Understanding and mastering C++'s complexity @ CppCon 2021

Please check only the things that bother

you in person, don’t check topics that you

are not familiar with or don’t use at all:

What makes C++ complex - for you?

20Understanding and mastering C++'s complexity @ CppCon 2021

Let’s review the questionnaire results

https://docs.google.com/spreadsheets/d/1U9GMBenA5LvQGhdbViMuvMywDRpD8BAzRk5EZjoE5ZU/edit#gid=1096323129

Complexity

21Understanding and mastering C++'s complexity @ CppCon 2021

Complexity
Why programming is complex?

22Understanding and mastering C++'s complexity @ CppCon 2021

What makes a software language complex?

23Understanding and mastering C++'s complexity @ CppCon 2021

What makes a software language complex?
● Too many ways for doing the same thing (“too many options”)

24Understanding and mastering C++'s complexity @ CppCon 2021

What makes a software language complex?
● Too many ways for doing the same thing (“too many options”)
● Too few ways for doing things (“hard to express yourself fluently”)

25Understanding and mastering C++'s complexity @ CppCon 2021

What makes a software language complex?
● Too many ways for doing the same thing (“too many options”)
● Too few ways for doing things (“hard to express yourself fluently”)
● Lack of standard / documentation / proper examples / community

26Understanding and mastering C++'s complexity @ CppCon 2021

What makes a software language complex?
● Too many ways for doing the same thing (“too many options”)
● Too few ways for doing things (“hard to express yourself fluently”)
● Lack of standard / documentation / proper examples / community
● Complex model

○ Too low level
○ Too high-level, abstract
○ Contradicting paradigms or rules
○ Rules are not intuitive or too complicated

27Understanding and mastering C++'s complexity @ CppCon 2021

What makes a software language complex?
● Too many ways for doing the same thing (“too many options”)
● Too few ways for doing things (“hard to express yourself fluently”)
● Lack of standard / documentation / proper examples / community
● Complex model

○ Too low level
○ Too high-level, abstract
○ Contradicting paradigms or rules
○ Rules are not intuitive or too complicated

● Complex problems

28Understanding and mastering C++'s complexity @ CppCon 2021

What makes a software language complex?
● Too many ways for doing the same thing (“too many options”)
● Too few ways for doing things (“hard to express yourself fluently”)
● Lack of standard / documentation / proper examples / community
● Complex model

○ Too low level
○ Too high-level, abstract
○ Contradicting paradigms or rules
○ Rules are not intuitive or too complicated

● Complex problems
● New syntax, new stuff getting into the language

29Understanding and mastering C++'s complexity @ CppCon 2021

What makes a software language complex?
● Too many ways for doing the same thing (“too many options”)
● Too few ways for doing things (“hard to express yourself fluently”)
● Lack of standard / documentation / proper examples / community
● Complex model

○ Too low level
○ Too high-level, abstract
○ Contradicting paradigms or rules
○ Rules are not intuitive or too complicated

● Complex problems
● New syntax, new stuff getting into the language
● Backward compatibility issues between language versions

30Understanding and mastering C++'s complexity @ CppCon 2021

What makes a software language complex?
● Too many ways for doing the same thing (“too many options”)
● Too few ways for doing things (“hard to express yourself fluently”)
● Lack of standard / documentation / proper examples / community
● Complex model

○ Too low level
○ Too high-level, abstract
○ Contradicting paradigms or rules
○ Rules are not intuitive or too complicated

● Complex problems
● New syntax, new stuff getting into the language
● Backward compatibility issues between language versions
● Lack of proper tools

31Understanding and mastering C++'s complexity @ CppCon 2021

What makes a software language complex?
● Too many ways for doing the same thing (“too many options”)
● Too few ways for doing things (“hard to express yourself fluently”)
● Lack of standard / documentation / proper examples / community
● Complex model

○ Too low level
○ Too high-level, abstract
○ Contradicting paradigms or rules
○ Rules are not intuitive or too complicated

● Complex problems
● New syntax, new stuff getting into the language
● Backward compatibility issues between language versions
● Lack of proper tools

32Understanding and mastering C++'s complexity @ CppCon 2021

Complexity
Is C++ complex?

Why?

Can it be less complex?

33Understanding and mastering C++'s complexity @ CppCon 2021

What makes C++ complex?
● Too many ways for doing the same thing (“too many options”)
● Too few ways for doing things (“hard to express yourself fluently”)
● Lack of standard / documentation / proper examples / community
● Complex model

○ Too low level
○ Too high-level, abstract
○ Contradicting paradigms or rules
○ Rules are not intuitive or too complicated

● Complex problems
● New syntax, new stuff getting into the language
● Backward compatibility issues between language versions
● Lack of proper tools

34Understanding and mastering C++'s complexity @ CppCon 2021

What makes C++ complex?
● Too many ways for doing the same thing (“too many options”)?
● Too few ways for doing things (“hard to express yourself fluently”)?

35Understanding and mastering C++'s complexity @ CppCon 2021

What makes C++ complex?
● Too many ways for doing the same thing (“too many options”)
● Too few ways for doing things (“hard to express yourself fluently”)

36Understanding and mastering C++'s complexity @ CppCon 2021

What makes C++ complex?
● Too many ways for doing the same thing (“too many options”)
● Too few ways for doing things (“hard to express yourself fluently”)
● Lack of standard / documentation / proper examples / community?

37Understanding and mastering C++'s complexity @ CppCon 2021

What makes C++ complex?
● Too many ways for doing the same thing (“too many options”)
● Too few ways for doing things (“hard to express yourself fluently”)
● Lack of standard / documentation / proper examples / community

38Understanding and mastering C++'s complexity @ CppCon 2021

What makes C++ complex?
● Too many ways for doing the same thing (“too many options”)
● Too few ways for doing things (“hard to express yourself fluently”)
● Lack of standard / documentation / proper examples / community
● Complex model

○ Too low level
○ Too high-level, abstract
○ Contradicting paradigms or rules
○ Rules are not intuitive or too complicated

39Understanding and mastering C++'s complexity @ CppCon 2021

What makes C++ complex?
● Too many ways for doing the same thing (“too many options”)
● Too few ways for doing things (“hard to express yourself fluently”)
● Lack of standard / documentation / proper examples / community
● Complex model

○ Too Has quite a few low level features
○ Too Has quite a few high-level features
○ Has some contradicting paradigms or rules
○ Some rules are not intuitive or too complicated

40Understanding and mastering C++'s complexity @ CppCon 2021

What makes C++ complex?
● Too many ways for doing the same thing (“too many options”)
● Too few ways for doing things (“hard to express yourself fluently”)
● Lack of standard / documentation / proper examples / community
● Complex model

○ Too Has quite a few low level features
○ Too Has quite a few high-level features
○ Has some contradicting paradigms or rules
○ Some rules are not intuitive or too complicated

● Complex problems?

41Understanding and mastering C++'s complexity @ CppCon 2021

What makes C++ complex?
● Too many ways for doing the same thing (“too many options”)
● Too few ways for doing things (“hard to express yourself fluently”)
● Lack of standard / documentation / proper examples / community
● Complex model

○ Too Has quite a few low level features
○ Too Has quite a few high-level features
○ Has some contradicting paradigms or rules
○ Some rules are not intuitive or too complicated

● Deals frequently with complex problems

42Understanding and mastering C++'s complexity @ CppCon 2021

What makes C++ complex?
● Too many ways for doing the same thing (“too many options”)
● Too few ways for doing things (“hard to express yourself fluently”)
● Lack of standard / documentation / proper examples / community
● Complex model

○ Too Has quite a few low level features
○ Too Has quite a few high-level features
○ Has some contradicting paradigms or rules
○ Some rules are not intuitive or too complicated

● Deals frequently with complex problems
● New syntax, new stuff getting into the language?

43Understanding and mastering C++'s complexity @ CppCon 2021

What makes C++ complex?
● Too many ways for doing the same thing (“too many options”)
● Too few ways for doing things (“hard to express yourself fluently”)
● Lack of standard / documentation / proper examples / community
● Complex model

○ Too Has quite a few low level features
○ Too Has quite a few high-level features
○ Has some contradicting paradigms or rules
○ Some rules are not intuitive or too complicated

● Deals frequently with complex problems
● New syntax, new stuff getting into the language

44Understanding and mastering C++'s complexity @ CppCon 2021

What makes C++ complex?
● Too many ways for doing the same thing (“too many options”)
● Too few ways for doing things (“hard to express yourself fluently”)
● Lack of standard / documentation / proper examples / community
● Complex model

○ Too Has quite a few low level features
○ Too Has quite a few high-level features
○ Has some contradicting paradigms or rules
○ Some rules are not intuitive or too complicated

● Deals frequently with complex problems
● New syntax, new stuff getting into the language
● Backward compatibility issues between language versions?

45Understanding and mastering C++'s complexity @ CppCon 2021

What makes C++ complex?
● Too many ways for doing the same thing (“too many options”)
● Too few ways for doing things (“hard to express yourself fluently”)
● Lack of standard / documentation / proper examples / community
● Complex model

○ Too Has quite a few low level features
○ Too Has quite a few high-level features
○ Has some contradicting paradigms or rules
○ Some rules are not intuitive or too complicated

● Deals frequently with complex problems
● New syntax, new stuff getting into the language
● Backward compatibility issues between language versions

46Understanding and mastering C++'s complexity @ CppCon 2021

What makes C++ complex?
● Too many ways for doing the same thing (“too many options”)
● Too few ways for doing things (“hard to express yourself fluently”)
● Lack of standard / documentation / proper examples / community
● Complex model

○ Too Has quite a few low level features
○ Too Has quite a few high-level features
○ Has some contradicting paradigms or rules
○ Some rules are not intuitive or too complicated

● Deals frequently with complex problems
● New syntax, new stuff getting into the language
● Backward compatibility issues between language versions
● Lack of proper tools?

47Understanding and mastering C++'s complexity @ CppCon 2021

What makes C++ complex?
● Too many ways for doing the same thing (“too many options”)
● Too few ways for doing things (“hard to express yourself fluently”)
● Lack of standard / documentation / proper examples / community
● Complex model

○ Too Has quite a few low level features
○ Too Has quite a few high-level features
○ Has some contradicting paradigms or rules
○ Some rules are not intuitive or too complicated

● Deals frequently with complex problems
● New syntax, new stuff getting into the language
● Backward compatibility issues between language versions
● Lack of proper tools. But improving!

48Understanding and mastering C++'s complexity @ CppCon 2021

What makes C++ complex?
● Too many ways for doing the same thing (“too many options”)
● Too few ways for doing things (“hard to express yourself fluently”)
● Lack of standard / documentation / proper examples / community
● Complex model

○ Too Has quite a few low level features
○ Too Has quite a few high-level features
○ Has some contradicting paradigms or rules
○ Some rules are not intuitive or too complicated

● Deals frequently with complex problems
● New syntax, new stuff getting into the language
● Backward compatibility issues between language versions
● Lack of proper tools. But improving!

49Understanding and mastering C++'s complexity @ CppCon 2021

What makes C++ complex?
● Too many ways for doing the same thing (“too many options”)
● Too few ways for doing things (“hard to express yourself fluently”)
● Lack of standard / documentation / proper examples / community
● Complex model

○ Too Has quite a few low level features
○ Too Has quite a few high-level features
○ Has some contradicting paradigms or rules
○ Some rules are not intuitive or too complicated

● Deals frequently with complex problems
● New syntax, new stuff getting into the language
● Backward compatibility issues between language versions
● Lack of proper tools. But improving!

50Understanding and mastering C++'s complexity @ CppCon 2021

What makes C++ complex?
● Too many ways for doing the same thing (“too many options”)
● Too few ways for doing things (“hard to express yourself fluently”)
● Lack of standard / documentation / proper examples / community
● Complex model

○ Too Has quite a few low level features
○ Too Has quite a few high-level features
○ Has some contradicting paradigms or rules
○ Some rules are not intuitive or too complicated

● Deals frequently with complex problems
● New syntax, new stuff getting into the language
● Backward compatibility issues between language versions
● Lack of proper tools. But improving!

51Understanding and mastering C++'s complexity @ CppCon 2021

What makes C++ complex?
● Too many ways for doing the same thing (“too many options”)
● Too few ways for doing things (“hard to express yourself fluently”)
● Lack of standard / documentation / proper examples / community
● Complex model

○ Too Has quite a few low level features
○ Too Has quite a few high-level features
○ Has some contradicting paradigms or rules
○ Some rules are not intuitive or too complicated

● Deals frequently with complex problems
● New syntax, new stuff getting into the language
● Backward compatibility issues between language versions
● Lack of proper tools. But improving!

52Understanding and mastering C++'s complexity @ CppCon 2021

and that’s what you hold against a
language with >5M users and

billions lines of code??

There is no silver bullet

Picture: https://www.infoq.com/articles/No-Silver-Bullet-Summary -- OOPSLA 2005, Montreal

“No Silver Bullet - Essence and Accident in Software Engineering” by Fred Brooks, 1986

53

Essence or Accident?

54Understanding and mastering C++'s complexity @ CppCon 2021

https://www.infoq.com/articles/No-Silver-Bullet-Summary

Essence or Accident?

55Understanding and mastering C++'s complexity @ CppCon 2021

Let’s play...

Essence or Accident?

56Understanding and mastering C++'s complexity @ CppCon 2021

std::map<std::string, std::list<std::pair<Date, Price>>>::iterator quotesItr

= stocks.find(id);

Essence or Accident?

57Understanding and mastering C++'s complexity @ CppCon 2021

std::map<std::string, std::list<std::pair<Date, Price>>>::iterator quotesItr

= stocks.find(id);

auto quotesItr = stocks.find(id);

C++11

Essence or Accident?

58Understanding and mastering C++'s complexity @ CppCon 2021

Essence or Accident?

59Understanding and mastering C++'s complexity @ CppCon 2021

What’s the problem here:

class Shape {

 Color color;

public:

 virtual void draw() const = 0;

 virtual void move(int diffX, int diffY) = 0;

};

Can the compiler deduce that a class *needs*
a virtual destructor and provide one?

60Understanding and mastering C++'s complexity @ CppCon 2021

Can the compiler deduce that a class *needs*
a virtual destructor and provide one?

61Understanding and mastering C++'s complexity @ CppCon 2021

What are the actual rules for “you must have a virtual destructor”?

Can the compiler deduce that a class *needs*
a virtual destructor and provide one?

62Understanding and mastering C++'s complexity @ CppCon 2021

What are the actual rules for “you must have a virtual destructor”?

int main() {

 Rect r ({10, 10}, {20, 20});

 Shape* p = &r;

 p->draw();

}

class Shape {

 Color color;

public:

 virtual void draw() const = 0;

 virtual void move(int diffX, int diffY) = 0;

};

Essence or Accident?

63Understanding and mastering C++'s complexity @ CppCon 2021

Essence or Accident?

64Understanding and mastering C++'s complexity @ CppCon 2021

template<class K, class V, size_t SIZE, class FetchFunc>

class Cache {

 struct Holder {

 V val;

 mutable typename list<K>::iterator posInList;

 Holder(V v, Date exp, typename list<K>::iterator pos)

 : val(v), posInList(pos), expiry(exp), accessed(Date()) {}

 // ...

 private:

 Date expiry;

 mutable Date accessed;

 };

 // ...

};
C++17:
http://coliru.stacked-crooked.com/a/e8eddd01f177a572

http://coliru.stacked-crooked.com/a/e8eddd01f177a572

Essence or Accident? C++20

65Understanding and mastering C++'s complexity @ CppCon 2021

template<class K, class V, size_t SIZE, class FetchFunc>

class Cache {

 struct Holder {

 V val;

 mutable typename list<K>::iterator posInList;

 Holder(V v, Date exp, typename list<K>::iterator pos)

 : val(v), posInList(pos), expiry(exp), accessed(Date()) {}

 // ...

 private:

 Date expiry;

 mutable Date accessed;

 };

 // ...

};
C++20:
http://coliru.stacked-crooked.com/a/47ce82fa46ffe3ba

See: Why don't I need to specify "typename" before a dependent type in C++20?
And: Why is `typename` prefix still required in such a case in C++20?

Essence or Accident?

66Understanding and mastering C++'s complexity @ CppCon 2021

http://coliru.stacked-crooked.com/a/47ce82fa46ffe3ba
https://stackoverflow.com/questions/61990971/why-dont-i-need-to-specify-typename-before-a-dependent-type-in-c20
https://stackoverflow.com/questions/68874175/why-is-typename-prefix-still-required-in-such-a-case-in-c20

Essence or Accident?

67Understanding and mastering C++'s complexity @ CppCon 2021

int main() {

 int arr[] = {1, 2, 3, 3, 2, 1};

 std::set unique_values{std::begin(arr), std::end(arr)};

 for(auto val : unique_values) {

 std::cout << val << ' ';

 }

}

Essence or Accident?

68Understanding and mastering C++'s complexity @ CppCon 2021

int main() {

 int arr[] = {1, 2, 3, 3, 2, 1};

 std::set unique_values{std::begin(arr), std::end(arr)};

 for(auto val : unique_values) {

 std::cout << val << ' ';

 }

}

Someone = Andrei Zissu

Essence or Accident?

69Understanding and mastering C++'s complexity @ CppCon 2021

int main() {

 int arr[] = {1, 2, 3, 3, 2, 1};

 std::set unique_values{std::begin(arr), std::end(arr)};

 for(auto val : unique_values) {

 std::cout << val << ' ';

 }

}

Essence or Accident?

70Understanding and mastering C++'s complexity @ CppCon 2021

How to store a value obtained from a vector `pop_back()`?

Essence or Accident?

71Understanding and mastering C++'s complexity @ CppCon 2021

How to store a value obtained from a vector `pop_back()`?

auto val = vec.back();

vec.pop_back();

^ Maybe?

Essence or Accident?

72Understanding and mastering C++'s complexity @ CppCon 2021

How to store a value obtained from a vector `pop_back()`?

auto val = vec.back();

vec.pop_back();

^ Maybe? Not really...

Essence or Accident?

73Understanding and mastering C++'s complexity @ CppCon 2021

How to store a value obtained from a vector `pop_back()`?

auto val = std::move(vec.back());

vec.pop_back();

Essence or Accident?

74Understanding and mastering C++'s complexity @ CppCon 2021

Essence or Accident?

75Understanding and mastering C++'s complexity @ CppCon 2021

std::vector<bool> flags;

// ...

// need to toggle all flags

for(auto&&flag: flags) {
 flag = !flag;

}

Essence or Accident?

76Understanding and mastering C++'s complexity @ CppCon 2021

std::vector<bool> flags;

// ...

// need to toggle all flags

for(auto&& flag: flags) {
 flag = !flag;

}

Essence or Accident?

77Understanding and mastering C++'s complexity @ CppCon 2021

Essence or Accident?

78Understanding and mastering C++'s complexity @ CppCon 2021

struct A {

 int foo(int) { return 7; }

};

struct B: A {

 int foo(float) { return 8; }

};

int main() {

 return B().foo(0); // 8 or 7 ?

}

Essence or Accident?

79Understanding and mastering C++'s complexity @ CppCon 2021

Essence or Accident?

80Understanding and mastering C++'s complexity @ CppCon 2021

template<typename T>

std::enable_if_t<std::is_integral_v<T>> f(T t) {

 // integral version

}

template<typename T>

std::enable_if_t<std::is_floating_point_v<T>> f(T t) {

 // floating point version

}

Essence or Accident?

81Understanding and mastering C++'s complexity @ CppCon 2021

template<typename T>

std::enable_if_t<std::is_integral_v<T>> f(T t) {

 // integral version

}

template<typename T>

std::enable_if_t<std::is_floating_point_v<T>> f(T t) {

 // floating point version

}

C++20

void f(std::integral auto t) {

 //integral version

}

void f(std::floating_point auto t) {

 //floating point version

}

Essence or Accident?

82Understanding and mastering C++'s complexity @ CppCon 2021

Essence or Accident?

83Understanding and mastering C++'s complexity @ CppCon 2021

std::string s = "but I have heard it works even if you don’t believe in it";

s.replace(0, 4, "").replace(s.find("even"), 4, "only").replace(s.find(" don’t"), 6, "");

assert(s == "I have heard it works only if you believe in it");

Essence or Accident?

84Understanding and mastering C++'s complexity @ CppCon 2021

std::string s = "but I have heard it works even if you don’t believe in it";

s.replace(0, 4, "").replace(s.find("even"), 4, "only").replace(s.find(" don’t"), 6, "");

assert(s == "I have heard it works only if you believe in it");

Chaining is fixed, but only since C++17:

http://open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0145r3.pdf

Very relevant to the pipe | syntax used by ranges

http://open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0145r3.pdf

C++ Principles (Stroustrup, C++ Design and Evolution)

85Understanding and mastering C++'s complexity @ CppCon 2021

Static type system

- equal support for builtins and user

 defined types

- value and reference semantics

Resource and Memory management

- RAII - scoped based

- No garbage collector

Efficient Object Oriented Programming

Flexible and efficient generic

programming

Pay only for what you need

Direct access to OS and HW

Leave no room for a lower-level

language below C++

* except assembler

See:

The Design of C++, by Bjarne Stroustrup, 1994

The Acronyms

86Understanding and mastering C++'s complexity @ CppCon 2021

https://www.youtube.com/watch?v=69edOm889V4

The Acronyms - partial list

87Understanding and mastering C++'s complexity @ CppCon 2021

RAII

IILE

ODR

ADL
RVO

IFNDR

UB

CTAD

CRTPCWG LTO

EBO

RTTI

SFINAE
TU

UDL

The Acronyms - partial list

88Understanding and mastering C++'s complexity @ CppCon 2021

RAII

IILE

ODR

ADL
RVO

IFNDR

UB

CTAD

CRTPCWG LTO

EBO

RTTI

SFINAE
TU

UDL

It’s not complex… just go to the C++ acronym glossary by Arthur O'Dwyer

https://quuxplusone.github.io/blog/2019/08/02/the-tough-guide-to-cpp-acronyms

The Acronyms - partial list

89Understanding and mastering C++'s complexity @ CppCon 2021

RAII

IILE

ODR

ADL
RVO

IFNDR

UB

CTAD

CRTPCWG LTO

EBO

RTTI

SFINAE
TU

UDL

Or join Bob Steagall’s talk here at CppCon 2021 on Friday afternoon

The Acronyms - partial list

90Understanding and mastering C++'s complexity @ CppCon 2021

RAII

IILE

ODR

ADL
RVO

IFNDR

UB

CTAD

CRTPCWG LTO

EBO

RTTI

SFINAE
TU

UDL

Watch also Kate Gregory’s great talk “It’s Complicated” from Meeting C++17

https://www.youtube.com/watch?v=tTexD26jIN4&t=12m45s

The Pyramid of C++ Knowledge

91Understanding and mastering C++'s complexity @ CppCon 2021

Applicative C++ Developers

Internal framework and utility maintainers

Library and framework implementers

Language Lawyers

The bare minimum to be a C++ programmer

92Understanding and mastering C++'s complexity @ CppCon 2021

The bare minimum to be a C++ programmer

93Understanding and mastering C++'s complexity @ CppCon 2021

the basic syntax, implicit casting rules, const correctness, constexpr,

RAII, Rule of Zero, Rule of Three, operators overloading,

static variables and static members,

RValue and move semantics, Rule of Five,

inheritance, polymorphism, multiple inheritance, virtual inheritance,

exceptions, basic templates, variadic templates,

forwarding reference and perfect forwarding,

std containers, std algorithms, function objects, lambda,

use of smart pointers

The bare minimum to be a C++ programmer

94Understanding and mastering C++'s complexity @ CppCon 2021

the basic syntax, implicit casting rules, const correctness, constexpr,

RAII, Rule of Zero, Rule of Three, operators overloading,

static variables and static members,

RValue and move semantics, Rule of Five,

inheritance, polymorphism, multiple inheritance, virtual inheritance,

exceptions, basic templates, variadic templates,

forwarding reference and perfect forwarding,

std containers, std algorithms, function objects, lambda,

use of smart pointers

The bare minimum to be a C++ programmer

95Understanding and mastering C++'s complexity @ CppCon 2021

the basic syntax, implicit casting rules, const correctness, constexpr,

RAII, Rule of Zero, Rule of Three, operators overloading,

static variables and static members,

RValue and move semantics, Rule of Five,

inheritance, polymorphism, multiple inheritance, virtual inheritance,

exceptions, basic templates, variadic templates,

forwarding reference and perfect forwarding,

std containers, std algorithms, function objects, lambda,

use of smart pointers

reading code

browsing cppreference and stackoverflow

Being able to read is important, even crucial

96Understanding and mastering C++'s complexity @ CppCon 2021

Being able to read C++ code is even more important than writing

- know what you know

- know what you don’t know

- learn

Interviewing for a C++ junior position

97Understanding and mastering C++'s complexity @ CppCon 2021

Interviewing for a C++ junior position

98Understanding and mastering C++'s complexity @ CppCon 2021

Knows the bare minimum, or we are ready to train.

Interviewing for a C++ junior position

99Understanding and mastering C++'s complexity @ CppCon 2021

Knows the bare minimum, or we are ready to train.

Loves programming. Really, loves programming!

Interviewing for a C++ junior position

100Understanding and mastering C++'s complexity @ CppCon 2021

Knows the bare minimum, or we are ready to train.

Loves programming. Really, loves programming!

Smart and gets things done.

https://www.joelonsoftware.com/2007/06/05/smart-and-gets-things-done

Interviewing for a C++ junior position

101Understanding and mastering C++'s complexity @ CppCon 2021

Knows the bare minimum, or we are ready to train.

Loves programming. Really, loves programming!

Smart and gets things done.

Implications of innocent ignorance

102Understanding and mastering C++'s complexity @ CppCon 2021

Well, I didn’t know that…

https://www.joelonsoftware.com/2007/06/05/smart-and-gets-things-done

Implications of innocent ignorance

103Understanding and mastering C++'s complexity @ CppCon 2021

Well, I didn’t know that…

- Less elegant code (harder to maintain, harder to read)

- Less Generic code (could be written in a more generic way)

- Not being able to implement things

- Inefficient code

- Bug prone

- Actual bug!

Implications of innocent ignorance

104Understanding and mastering C++'s complexity @ CppCon 2021

Well, I didn’t know that…

- Less elegant code (harder to maintain, harder to read)

- Less Generic code (could be written in a more generic way)

- Not being able to implement things

- Inefficient code

- Bug prone

- Actual bug!

still
positive
value

negative
value

Improving your C++ level

105Understanding and mastering C++'s complexity @ CppCon 2021

Improving your C++ level

106Understanding and mastering C++'s complexity @ CppCon 2021

Curiosity - in C++ everything has a reason, try to figure it out

Improving your C++ level

107Understanding and mastering C++'s complexity @ CppCon 2021

Curiosity - in C++ everything has a reason, try to figure it out

Read, listen, watch

Improving your C++ level

108Understanding and mastering C++'s complexity @ CppCon 2021

Curiosity - in C++ everything has a reason, try to figure it out

Read, listen, watch

^ Read Q&A in Stackoverflow

Improving your C++ level

109Understanding and mastering C++'s complexity @ CppCon 2021

Curiosity - in C++ everything has a reason, try to figure it out

Read, listen, watch

^ Read Q&A in Stackoverflow

^ Ask in Stackoverflow

Improving your C++ level

110Understanding and mastering C++'s complexity @ CppCon 2021

Curiosity - in C++ everything has a reason, try to figure it out

Read, listen, watch

^ Read Q&A in Stackoverflow

^ Ask in Stackoverflow

^ Answer in Stackoverflow

Improving while answering in SO

111Understanding and mastering C++'s complexity @ CppCon 2021

112Understanding and mastering C++'s complexity @ CppCon 2021

113Understanding and mastering C++'s complexity @ CppCon 2021

114Understanding and mastering C++'s complexity @ CppCon 2021

115Understanding and mastering C++'s complexity @ CppCon 2021

116Understanding and mastering C++'s complexity @ CppCon 2021

117Understanding and mastering C++'s complexity @ CppCon 2021

118Understanding and mastering C++'s complexity @ CppCon 2021

119Understanding and mastering C++'s complexity @ CppCon 2021

120Understanding and mastering C++'s complexity @ CppCon 2021

Improving your C++ level

121Understanding and mastering C++'s complexity @ CppCon 2021

Remember, it’s a never ending mission

122Understanding and mastering C++'s complexity @ CppCon 2021

void conclude(auto greetings) {

while(still_time() && have_questions()) {

ask();

}

greetings();

}

conclude([]{ std::cout << "Thank you!"; });

Thank you!

Other Essence or Accident
out due to lack of time

123Understanding and mastering C++'s complexity @ CppCon 2021

Essence or Accident?

124Understanding and mastering C++'s complexity @ CppCon 2021

template<class T, long Numerator, long Denominator, long MultNum, long MultDenom>

auto constexpr operator*(Aggregator<T, Numerator, Denominator> a,

std::ratio<MultNum, MultDenom> n) {

 if constexpr(Numerator*MultNum != Denominator*MultDenom) {

 return Aggregator<T, Numerator * MultNum, Denominator * MultDenom> { a };

 } else {

 return a.unsafe_multiply(n);

 }

}

Source: The Point Challenge https://www.youtube.com/watch?v=wNGEtlBSCLY

https://www.youtube.com/watch?v=wNGEtlBSCLY

Essence or Accident?

125Understanding and mastering C++'s complexity @ CppCon 2021

Implement methods for rotating the x,y,z fields in Pixel struct below:

struct Pixel {

 int x;

 int y;

 int z;

};

Essence or Accident?

126Understanding and mastering C++'s complexity @ CppCon 2021

class Permutation {

 std::array<int Pixel::*, 3> permutation;

 constexpr Permutation(int Pixel::* a, int Pixel::* b, int Pixel::* c)

 : permutation{a, b, c} {}

public:

 static constexpr Permutation xzy() { return {&Pixel::x, &Pixel::z, &Pixel::y}; }

 constexpr Pixel permutate(Pixel p) const {

 Pixel permutated;

 permutated.x = p.*permutation[0];

 permutated.y = p.*permutation[1];

 permutated.z = p.*permutation[2];

 return permutated;

 }

};
http://coliru.stacked-crooked.com/a/298a6e5a89e10a28

http://coliru.stacked-crooked.com/a/298a6e5a89e10a28

