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Before we .begin()
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Before we .begin()
Does the code below compile? If so, how? If not, why?

(Wait… question is open only for C++ programmers with 0-3 years of experience)
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Before we .begin()
Does the code below compile? If so, how? If not, why?

#include <utility>
#include <string>

int main() {
    std::string s1 = "hi", s2 = "bye";
    swap(s1, s2);

    int a = 3, b = 7;
    swap(a, b);
}
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Complexity
What this talk is about (and what’s not)
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Complexity
This talk is NOT about Algorithmic Complexity (no big ‘O’ in this talk!)

6Understanding and mastering C++'s complexity @ CppCon 2021



Complexity
This talk is NOT about Algorithmic Complexity (no big ‘O’ in this talk!)

But we do have a talk on
Algorithmic Complexity - on Friday!
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Complexity
This talk is about C++ language complexity,
with a broad definition for complexity:

anything that makes it hard for you to use C++, or to understand it,
including things that irritate or annoy you, things that waste your time,
and language syntax that is bug prone, or broken in a way, or is done easier
in other languages.
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Talk Origins
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A graduated student of mine was interviewed for a C++ position and consulted me 
whether C++ is a right choice (as “there are other less complex languages”).
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A graduated student of mine was interviewed for a C++ position and consulted me 
whether C++ is a right choice (as “there are other less complex languages”).

I convinced her.

She is now a C++ developer at Waves.com

Amit Barzilay

Talk Origins
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A graduated student of mine was interviewed for a C++ position and consulted me 
whether C++ is a right choice (as “there are other less complex languages”).

I convinced her.

She is now a C++ developer at Waves.com

We prepared this talk together for CoreCpp conference 2021 in Tel-Aviv.

And now you got me here :-)

Amit Barzilay



Complexity
Isn’t it the name of the game? (of being a programmer...)
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The Perils of Java Schools
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Joel Spolsky, 2005

Lazy kids.

Whatever happened to hard work?

...

in the last decade a large number of otherwise 

perfectly good schools have gone 100% Java ...

The lucky kids of JavaSchools are never going to get 

weird segfaults trying to implement pointer-based 

hash tables. They’re never going to go stark, raving 

mad trying to pack things into bits.

https://www.joelonsoftware.com/2005/12/29/the-perils-of-javaschools-2 

https://www.joelonsoftware.com/2005/12/29/the-perils-of-javaschools-2


Complexity
Is C++ complex?

Why?

Can it be less complex?
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What makes C++ complex - for you?
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Please check only the things that bother 

you in person, don’t check topics that you 

are not familiar with or don’t use at all:



What makes C++ complex - for you?
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Please check only the things that bother 

you in person, don’t check topics that you 

are not familiar with or don’t use at all:

What makes C++ complex - for you?
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Let’s review the questionnaire results

https://docs.google.com/spreadsheets/d/1U9GMBenA5LvQGhdbViMuvMywDRpD8BAzRk5EZjoE5ZU/edit#gid=1096323129


Complexity
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Complexity
Why programming is complex?
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What makes a software language complex?
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What makes a software language complex?
● Too many ways for doing the same thing (“too many options”)
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What makes a software language complex?
● Too many ways for doing the same thing (“too many options”)
● Too few ways for doing things (“hard to express yourself fluently”)
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What makes a software language complex?
● Too many ways for doing the same thing (“too many options”)
● Too few ways for doing things (“hard to express yourself fluently”)
● Lack of standard / documentation / proper examples / community
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What makes a software language complex?
● Too many ways for doing the same thing (“too many options”)
● Too few ways for doing things (“hard to express yourself fluently”)
● Lack of standard / documentation / proper examples / community
● Complex model

○ Too low level
○ Too high-level, abstract
○ Contradicting paradigms or rules
○ Rules are not intuitive or too complicated
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Complexity
Is C++ complex?

Why?

Can it be less complex?
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What makes C++ complex?
● Too many ways for doing the same thing (“too many options”)
● Too few ways for doing things (“hard to express yourself fluently”)
● Lack of standard / documentation / proper examples / community
● Complex model

○ Too low level
○ Too high-level, abstract
○ Contradicting paradigms or rules
○ Rules are not intuitive or too complicated

● Complex problems
● New syntax, new stuff getting into the language
● Backward compatibility issues between language versions
● Lack of proper tools

34Understanding and mastering C++'s complexity @ CppCon 2021



What makes C++ complex?
● Too many ways for doing the same thing (“too many options”)?
● Too few ways for doing things (“hard to express yourself fluently”)?
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What makes C++ complex?
● Too many ways for doing the same thing (“too many options”)
● Too few ways for doing things (“hard to express yourself fluently”)
● Lack of standard / documentation / proper examples / community
● Complex model

○ Too Has quite a few low level features
○ Too Has quite a few high-level features
○ Has some contradicting paradigms or rules
○ Some rules are not intuitive or too complicated
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and that’s what you hold against a 
language with >5M users and 

billions lines of code??



There is no silver bullet

Picture: https://www.infoq.com/articles/No-Silver-Bullet-Summary -- OOPSLA 2005, Montreal

“No Silver Bullet - Essence and Accident in Software Engineering” by Fred Brooks, 1986

53

Essence or Accident?
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https://www.infoq.com/articles/No-Silver-Bullet-Summary


Essence or Accident?
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Let’s play...

Essence or Accident?
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std::map<std::string, std::list<std::pair<Date, Price>>>::iterator quotesItr

= stocks.find(id);



Essence or Accident?
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std::map<std::string, std::list<std::pair<Date, Price>>>::iterator quotesItr

= stocks.find(id);

auto quotesItr = stocks.find(id);

C++11

Essence or Accident?
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Essence or Accident?
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What’s the problem here:

class Shape {

    Color color;

public:

    virtual void draw() const = 0;

    virtual void move(int diffX, int diffY) = 0;

};

Can the compiler deduce that a class *needs*
a virtual destructor and provide one?
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a virtual destructor and provide one?
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What are the actual rules for “you must have a virtual destructor”?

Can the compiler deduce that a class *needs*
a virtual destructor and provide one?

62Understanding and mastering C++'s complexity @ CppCon 2021

What are the actual rules for “you must have a virtual destructor”?

int main() {

  Rect r ({10, 10}, {20, 20});

  Shape* p = &r;

  p->draw();

}

class Shape {

    Color color;

public:

    virtual void draw() const = 0;

    virtual void move(int diffX, int diffY) = 0;

};



Essence or Accident?
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Essence or Accident?
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template<class K, class V, size_t SIZE, class FetchFunc>

class Cache {

  struct Holder {

    V val;

    mutable typename list<K>::iterator posInList;

    Holder(V v, Date exp, typename list<K>::iterator pos)

    : val(v), posInList(pos), expiry(exp), accessed(Date()) {}

    // ...

  private:

    Date expiry;

    mutable Date accessed;

  };

  // ...

};
C++17:
http://coliru.stacked-crooked.com/a/e8eddd01f177a572 

http://coliru.stacked-crooked.com/a/e8eddd01f177a572


Essence or Accident? C++20
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template<class K, class V, size_t SIZE, class FetchFunc>

class Cache {

  struct Holder {

    V val;

    mutable typename list<K>::iterator posInList;

    Holder(V v, Date exp, typename list<K>::iterator pos)

    : val(v), posInList(pos), expiry(exp), accessed(Date()) {}

    // ...

  private:

    Date expiry;

    mutable Date accessed;

  };

  // ...

};
C++20:
http://coliru.stacked-crooked.com/a/47ce82fa46ffe3ba 

See: Why don't I need to specify "typename" before a dependent type in C++20? 
And: Why is `typename` prefix still required in such a case in C++20? 

Essence or Accident?
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http://coliru.stacked-crooked.com/a/47ce82fa46ffe3ba
https://stackoverflow.com/questions/61990971/why-dont-i-need-to-specify-typename-before-a-dependent-type-in-c20
https://stackoverflow.com/questions/68874175/why-is-typename-prefix-still-required-in-such-a-case-in-c20


Essence or Accident?
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int main() {

  int arr[] = {1, 2, 3, 3, 2, 1};

  std::set unique_values{std::begin(arr), std::end(arr)};

  for(auto val : unique_values) {

    std::cout << val << ' ';

  }

}

Essence or Accident?
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int main() {

  int arr[] = {1, 2, 3, 3, 2, 1};

  std::set unique_values{std::begin(arr), std::end(arr)};

  for(auto val : unique_values) {

    std::cout << val << ' ';

  }

}

Someone = Andrei Zissu



Essence or Accident?
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int main() {

  int arr[] = {1, 2, 3, 3, 2, 1};
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  for(auto val : unique_values) {

    std::cout << val << ' ';
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How to store a value obtained from a vector `pop_back()`?
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How to store a value obtained from a vector `pop_back()`?

auto val = vec.back();

vec.pop_back();

^ Maybe?

Essence or Accident?
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How to store a value obtained from a vector `pop_back()`?

auto val = vec.back();

vec.pop_back();

^ Maybe? Not really...



Essence or Accident?
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How to store a value obtained from a vector `pop_back()`?

auto val = std::move(vec.back());

vec.pop_back();

Essence or Accident?
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Essence or Accident?
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std::vector<bool> flags;

// ...

    

// need to toggle all flags 

for(auto&&flag: flags) {
  flag = !flag;

}

Essence or Accident?
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std::vector<bool> flags;

// ...

    

// need to toggle all flags 

for(auto&& flag: flags) {
  flag = !flag;

}
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Essence or Accident?
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struct A {

  int foo(int) { return 7; }

};

struct B: A {

  int foo(float) { return 8; }

};

int main() {

  return B().foo(0); // 8 or 7 ?

}



Essence or Accident?
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Essence or Accident?
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template<typename T>

std::enable_if_t<std::is_integral_v<T>> f(T t) {

   // integral version

}

template<typename T>

std::enable_if_t<std::is_floating_point_v<T>> f(T t) {

   // floating point version

}



Essence or Accident?
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template<typename T>

std::enable_if_t<std::is_integral_v<T>> f(T t) {

   // integral version

}

template<typename T>

std::enable_if_t<std::is_floating_point_v<T>> f(T t) {

   // floating point version

}

C++20

void f(std::integral auto t) {

   //integral version

}

void f(std::floating_point auto t) {

   //floating point version

}

Essence or Accident?
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Essence or Accident?
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std::string s = "but I have heard it works even if you don’t believe in it";

s.replace(0, 4, "").replace(s.find("even"), 4, "only").replace(s.find(" don’t"), 6, "");

assert(s == "I have heard it works only if you believe in it");

Essence or Accident?
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std::string s = "but I have heard it works even if you don’t believe in it";

s.replace(0, 4, "").replace(s.find("even"), 4, "only").replace(s.find(" don’t"), 6, "");

assert(s == "I have heard it works only if you believe in it");

Chaining is fixed, but only since C++17: 

http://open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0145r3.pdf 

Very relevant to the pipe | syntax used by ranges

http://open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0145r3.pdf


C++ Principles (Stroustrup, C++ Design and Evolution)
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Static type system

- equal support for builtins and user 

  defined types

- value and reference semantics

Resource and Memory management

- RAII - scoped based

- No garbage collector

Efficient Object Oriented Programming

Flexible and efficient generic 

programming

Pay only for what you need

Direct access to OS and HW

Leave no room for a lower-level 

language below C++

* except assembler

See:

The Design of C++, by Bjarne Stroustrup, 1994 

The Acronyms
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https://www.youtube.com/watch?v=69edOm889V4


The Acronyms - partial list
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RAII

IILE

ODR

ADL
RVO

IFNDR

UB

CTAD

CRTPCWG LTO

EBO

RTTI

SFINAE
TU

UDL

The Acronyms - partial list
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It’s not complex… just go to the C++ acronym glossary by Arthur O'Dwyer

https://quuxplusone.github.io/blog/2019/08/02/the-tough-guide-to-cpp-acronyms


The Acronyms - partial list
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Or join Bob Steagall’s talk here at CppCon 2021 on Friday afternoon
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Watch also Kate Gregory’s great talk “It’s Complicated” from Meeting C++17 

https://www.youtube.com/watch?v=tTexD26jIN4&t=12m45s


The Pyramid of C++ Knowledge
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Applicative C++ Developers

Internal framework and utility maintainers

Library and framework implementers

Language Lawyers

The bare minimum to be a C++ programmer
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the basic syntax, implicit casting rules, const correctness, constexpr,

RAII, Rule of Zero, Rule of Three, operators overloading,

static variables and static members,

RValue and move semantics, Rule of Five,

inheritance, polymorphism, multiple inheritance, virtual inheritance,

exceptions, basic templates, variadic templates,

forwarding reference and perfect forwarding,

std containers, std algorithms, function objects, lambda,

use of smart pointers
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the basic syntax, implicit casting rules, const correctness, constexpr,

RAII, Rule of Zero, Rule of Three, operators overloading,

static variables and static members,

RValue and move semantics, Rule of Five,

inheritance, polymorphism, multiple inheritance, virtual inheritance,

exceptions, basic templates, variadic templates,

forwarding reference and perfect forwarding,

std containers, std algorithms, function objects, lambda,

use of smart pointers

reading code

browsing cppreference and stackoverflow

Being able to read is important, even crucial
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Being able to read C++ code is even more important than writing

- know what you know

- know what you don’t know

- learn



Interviewing for a C++ junior position
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Interviewing for a C++ junior position

98Understanding and mastering C++'s complexity @ CppCon 2021

Knows the bare minimum, or we are ready to train.
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Knows the bare minimum, or we are ready to train.

Loves programming. Really, loves programming!

Smart and gets things done.

https://www.joelonsoftware.com/2007/06/05/smart-and-gets-things-done
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Knows the bare minimum, or we are ready to train.

Loves programming. Really, loves programming!

Smart and gets things done.

Implications of innocent ignorance
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Well, I didn’t know that…

https://www.joelonsoftware.com/2007/06/05/smart-and-gets-things-done
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Well, I didn’t know that…

- Less elegant code (harder to maintain, harder to read)

- Less Generic code (could be written in a more generic way)

- Not being able to implement things

- Inefficient code

- Bug prone

- Actual bug!
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Well, I didn’t know that…

- Less elegant code (harder to maintain, harder to read)

- Less Generic code (could be written in a more generic way)

- Not being able to implement things

- Inefficient code

- Bug prone

- Actual bug!

still 
positive 
value

negative 
value
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Improving your C++ level
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Curiosity - in C++ everything has a reason, try to figure it out
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Read, listen, watch

^ Read Q&A in Stackoverflow

^ Ask in Stackoverflow
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Curiosity - in C++ everything has a reason, try to figure it out

Read, listen, watch

^ Read Q&A in Stackoverflow

^ Ask in Stackoverflow

^ Answer in Stackoverflow



Improving while answering in SO
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Improving your C++ level
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Remember, it’s a never ending mission
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void conclude(auto greetings) {

while(still_time() && have_questions()) {

ask();

}

greetings();

}

conclude([]{ std::cout << "Thank you!"; });

Thank you!



Other Essence or Accident
out due to lack of time
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Essence or Accident?
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template<class T, long Numerator, long Denominator, long MultNum, long MultDenom>

auto constexpr operator*(Aggregator<T, Numerator, Denominator> a,

std::ratio<MultNum, MultDenom> n) {

  if constexpr(Numerator*MultNum != Denominator*MultDenom) {

    return Aggregator<T, Numerator * MultNum, Denominator * MultDenom> { a };

  } else {

    return a.unsafe_multiply(n);

  }

}

Source: The Point Challenge https://www.youtube.com/watch?v=wNGEtlBSCLY 

https://www.youtube.com/watch?v=wNGEtlBSCLY
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Implement methods for rotating the x,y,z fields in Pixel struct below:

struct Pixel {

   int x;

   int y;

   int z;

};

Essence or Accident?
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class Permutation {

   std::array<int Pixel::*, 3> permutation;

   constexpr Permutation(int Pixel::* a, int Pixel::* b, int Pixel::* c)

       : permutation{a, b, c} {}

public:

   static constexpr Permutation xzy() { return {&Pixel::x, &Pixel::z, &Pixel::y}; }

   constexpr Pixel permutate(Pixel p) const {

       Pixel permutated;

       permutated.x = p.*permutation[0];

       permutated.y = p.*permutation[1];

       permutated.z = p.*permutation[2];

       return permutated;

   }

};
http://coliru.stacked-crooked.com/a/298a6e5a89e10a28 

http://coliru.stacked-crooked.com/a/298a6e5a89e10a28

