
Correctly Calculating min, max, and More... 2021-10-29

Copyright © 2020-2021 by Walter E. Brown.
All rights reserved. 1

Welcome!

1

Sound check [London Fanfare Trumpets: Flourish 3]

C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

2

Correctly Calculating

min, max, and More

Walter E. Brown, Ph.D.

< webrown.cpp @ gmail.com >

Edition: 2021-10-29. Copyright © 2020-2021 by Walter E. Brown. All rights reserved.

What Can Go Wrong?

3

A little about me
• B.A. (math’s); M.S., Ph.D. (computer science).
• Professional programmer for over 50 years,

programming in C++ since 1982.
• Experienced in industry, academia, consulting,

and research:
! Founded a Computer Science Dept.; served as Professor

and Dept. Head; taught and mentored at all levels.
! Managed and mentored the programming staff for a reseller.
! Lectured internationally as a software consultant and

commercial trainer.
! Retired from the Scientific Computing Division at Fermilab,

specializing in C++ programming and in-house consulting.
• Not dead — still doing training & consulting. (Email me!)

5C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

5

Emeritus participant in C++ standardization
• Written ∼170 papers for WG21, proposing such

now-standard C++ library features as gcd/lcm,
cbegin/cend, common type, and void t, as well
as all of headers <random> and <ratio>.

• Influenced such core language features as alias templates,
contextual conversions, and variable templates; recently
worked on requires-expressions, operator<=>, and more!

• Conceived and served as Project Editor for Int’l Standard
on Mathematical Special Functions in C++ (ISO/IEC 29124),
now incorporated into <cmath>.

• Be forewarned: Based on my training and experience,
I hold some rather strong opinions about computer software
and programming methodology — these opinions are not
shared by all programmers, but they should be! "

6C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

6

C o p y rig h t © 2 0 2 0 -2 0 2 1 b y W a lte r E . B ro w n . A ll r ig h ts re se rv e d .

Introduction

The study of error …
serves as a stimulating introduction
to the study of truth.

— Walter Lippmann

7

Correctly Calculating min, max, and More... 2021-10-29

Copyright © 2020-2021 by Walter E. Brown.
All rights reserved. 2

Today’s Talk

8C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

• The C++ standard library long ago selected operator <
as its ordering primitive, and even spells it in several
different ways (e.g., std::less).

• This talk will explain why operator < (and its aliases)
must be used with care, in even seemingly simple
algorithms such as max and min.

• We will also discuss the use of operator < in other
order-related algorithms, showing how easy it is to
make mistakes when using the operator < primitive
directly, no matter how it’s spelled.

• (Of course, we will also present a straightforward
technique to avoid such mistakes.)

8

9C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

“One of the amazing things which we …
discover is that ordering is very important.
Things which we could do with ordering
cannot be effecLvely done just with equality.”

— Alexander Stepanov
(né Алекса́ндр Степа́нов)

9

C o p y rig h t © 2 0 2 0 -2 0 2 1 b y W a lte r E . B ro w n . A ll r ig h ts re se rv e d .

First Attempts

Life is trying things to see if they work.
— Ray Bradbury

10

The intuitive approach ➀
• As C-style macros:
! #define MIN (a, b) (((a) < (b)) ? (a) : (b))

! #define MAX (a, b) (((b) < (a)) ? (a) : (b))

• Repackaged, now as simple functions:
! int min (int a, int b) { return a < b ? a : b; }

! int max (int a, int b) { return b < a ? a : b; }

• Lifted, now as simple (C++20) function templates:
! auto min (auto a, auto b) { return a < b ? a : b; }
! auto max (auto a, auto b) { return b < a ? a : b; }

11C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

11

The intuitive approach ➁
• But those C++ templates …

! auto min (auto a, auto b) { return a < b ? a : b; }

! auto max (auto a, auto b) { return b < a ? a : b; }

… have a few issues:
✘ The by-value parameter passage can be expensive

(e.g., for large string arg’s).

✘ When the arguments have distinct types, it’s unclear
what the return type should be. (It’s even nonobvious how
to compare them generically — e.g., consider signed vs. unsigned!)

✘Major concern: are the algorithms correct for all values?

12C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

12

The cures are mostly straightforward

#Enforce consistent types via a named parameter type.

#Avoid expensive copies via call/return by ref-to-const.

• After these adjustments we have:
! template< class T >

T const &
min(T const & a, T const & b) { return a < b ? a : b; }

! template< class T >
T const &

max(T const & a, T const & b) { return b < a ? a : b; }

13C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

13

Correctly CalculaEng min, max, and More... 2021-10-29

Copyright © 2020-2021 by Walter E. Brown.
All rights reserved. 3

C o p y rig h t © 2 0 2 0 -2 0 2 1 b y W a lte r E . B ro w n . A ll r ig h ts re se rv e d .

So What’s Wrong?

[N]ever feel badly about making mistakes ...
as long as you … learn from them.

― Norton Juster

14

Alas, none of the code I’ve shown so far is right!
• Can you idenLfy the misbehaviors?
! template< class T >

T const &
min (T const & a, T const & b) { return a < b ? a : b; }

! template< class T >
T const &

max(T const & a, T const & b) { return b < a ? a : b; }

• Did you noLce that each returns b when a == b?
! Why should max and min of the same two arguments

ever give the same result?

! (“It took Stepanov 15 years to get min and max right.”)

15C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

15

To be specific, …
• … these algorithms mishandle the case of a == b!
! “[At] CppCon 2014, Committee member Walter Brown

mentioned that max returns the wrong value [when]
both arguments have an equal value. …

! “Why should it matter which value is returned?”

• Many programmers have made similar observations:
1. That equal values are indistinguishable, so …
2. It ought not matter which is returned, so ...
3. This is an uninteresting case, not worth discussing.

• Alas, for min and max (and related) algorithms, such
opinions are superficial and incorrect!

16C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

16

Alex Stepanov speaks of his mistake

17C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

“How stupid
could one be?

I mean, one
spends decades
working on all

these orderings,
and writing min

in the most
generic way,
and then he

writes max and
he screws it up!

And that person
is me.

And you will say,
‘Well, but

nobody will
remember that.’

Oh, no. People
will remember
for centuries

because that’s
the max in the

standard library!

So for as long as
C++ stands, my
shame will be

publicly visible.”

17

• Bare-bones example:
! struct student {

string name; int id;
inline static int registrar = 0;
S(string n) : name{ n }, id{ registrar++ } { } // c’tor
friend bool // “hidden friend”

operator < (student s1, student s2)
{ return s1.name < s2.name; } // id is not salient

};
• Since each student variable has a unique id number:
! Even equal values are distinguishable, so …
! It can matter greatly which one is returned by min/max!

Many types do distinguish equal values

18C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

18

C o p y rig h t © 2 0 2 0 -2 0 2 1 b y W a lte r E . B ro w n . A ll r ig h ts re se rv e d .

How Do We Address This?

[O]nly wise men learn from their mistakes.
― Winston Churchill

19

Correctly Calculating min, max, and More... 2021-10-29

Copyright © 2020-2021 by Walter E. Brown.
All rights reserved. 4

The mathematics perspective
• A monotonically increasing sequence is sorted:

! But not conversely!

! Counterexample: a sequence of identical values is
sorted, but is certainly not monotonically increasing.

! I.e., not all sorted sequences are monotonically
increasing.

• Instead, we must say:
! That a sequence is sorted iff it is non-decreasing.

! This allows us to have equal items in a sorted sequence.

20C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

20

An important insight
• Given two values a and b, in that order:

! Unless we find a reason to the contrary, …

! min should prefer to return a, and …

! max should prefer to return b.

• I.e., never should max and min return the same item:

! When values a and b are in order,
min should return a / max should return b; …

! When values a and b are out of order,
min should return b / max should return a.

21C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

21

• We should always prefer algorithmic stability …
! … especially when it costs nothing to provide it!

• Recall what we mean by stability:
! An algorithm dealing with items’ order is stable …
! If it keeps the original order of equal items.

• I.e., a stable algorithm ensures that:
! For all pairs of equal items a and b, …
! a will precede b in its output …
! Whenever a preceded b in its input.

Even more succinctly stated

22C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

22

Therefore, I recommend …
• For min:
! ⋯ { return out of order(a, b) ? b : a; } // in order ? a : b

• For max:
! ⋯ { return out of order(a, b) ? a : b; } // in order ? b : a

• Where:
! inline bool

out of order(⋯ x, ⋯ y) { return y < x; } // !!!

! inline bool
in order(⋯ x, ⋯ y) { return not out of order(x, y); }

23C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

23

C o p y rig h t © 2 0 2 0 -2 0 2 1 b y W a lte r E . B ro w n . A ll r ig h ts re se r ve d .

These Ideas Are Broadly Applicable

[The] principle, by which each slight
variation, if useful, is preserved,
[I have termed] Natural Selection.

― Charles Darwin

24

25C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

Analogous logic also applies elsewhere ➀

“Prefer the 1st range.
Must have a reason

to take from the 2nd.”

• template< input iterator In, output iterator<In> Out >
Out merge(In b1, In e1 // 1st sorted input range

, In b2, In e2 // 2nd sorted input range
, Out to) { // merged destination

while(true)
if (b2 == e2) return copy(b1, e1, to);
else if (b1 == e1) return copy(b2, e2, to);
else // assert: neither range is empty
∗to++ = out of order(∗b1, ∗b2) ? ∗b2++

: ∗b1++;
}

25

Correctly CalculaEng min, max, and More... 2021-10-29

Copyright © 2020-2021 by Walter E. Brown.
All rights reserved. 5

Analogous logic also applies elsewhere ➁
• template< class T >

void sort2(T & a, T & b) {
if(out of order(a, b))

swap(a, b);
} // postcondition: in order(a, b)

• template< class T > // C++20
void sort3(T & a, T & b, T & c) {

if(sort2(a, b); in order(b, c)) return;
if(swap(b, c); in order(a, b)) return;
swap(a, b);

}

• (Did you recognize bubble sort?)

26C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

if(in order(a, b)) return;
swap(a, b);

26

Algorithm logic from stackoverflow — is this correct?
• template< class T >

void sort3(T & a, T & b, T & c) {
if(a < b) {

if(b < c) return;
else if(a < c) swap(b, c);
else { /∗ rotate right into order c, a, b ∗/ }

}
else {

if(a < c) swap(a, b);
else if(c < b) swap(a, c);
else { /∗ rotate left into order b, c, a ∗/ }

}
}

27C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

Algorithm does more
work than necessary:

operator < is no
substitute for in order!

Algorithm isn’t stable:
operator < is no

substitute for in order!

27

Our main takeaways so far

28C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

By itself, operator < is not sufficient
to tell us whether

its operands are in order.

By itself, operator < is sufficient
to tell us only whether

its reversed operands are out of order.

28

C o p y rig h t © 2 0 2 0 -2 0 2 1 b y W a lte r E . B ro w n . A ll r ig h ts re se rv e d .

operator < Is Spelled Other Ways, Too

Sameness is tiresome; variety is pleasing.
― Mark Twain

29

Many algorithms don’t use operator < per se

• Standard library algorithms usually specify an overload
with an extra parameter, comp, such that:
! comp(x, y) is called to decide ordering in lieu of x < y.

• Example:
! template< class Fwd >

constexpr Fwd
is sorted untl(Fwd first, Fwd last); // uses operator <

! template< class Fwd, class Compare >
constexpr Fwd

is sorted untl(Fwd first, Fwd last, Compare comp);
// calls comp in place of operator <

30C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

30

About the is sorted until algorithm
• “Returns: The last iterator i in [first, last] for which the

range [first, i) is sorted…. Complexity: Linear.”
! I.e., i induces adj. partitions [first, i) and [i, last) where …
! The former is known to be sorted and of maximal length.

• Equivalently (but better for algorithmic thinkers), without i :
! Treat [⋯, first) as a partition that’s known to be sorted,

with an adjoining partition [first, last) in unknown order.
! Iteratively advance first so long as ∗first is in sorted order

with respect to its immediate predecessor (say, ∗prev).

! By construction, sorted partition [⋯, first) has maximal
length, so we simply return first (for even empty cases).

31C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

31

Correctly Calculating min, max, and More... 2021-10-29

Copyright © 2020-2021 by Walter E. Brown.
All rights reserved. 6

My earliest implementation
• Using operator < :
! template< class Fwd > // forward iterator

constexpr Fwd
is sorted until(Fwd first, Fwd last)

{
if(first != last) // init/reinit loop as if by prev = first++

for(Fwd prev = first; ++first != last; prev = first)
if(∗first < ∗prev) // in order? out of order?

break;
return first;

}

32C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

32

But, as before, I prefer and recommend …

33C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

• … to use a named order predicate:
! template< class Fwd >

constexpr Fwd
is sorted until(Fwd first, Fwd last)

{
auto out of order = [] (⋯ x, ⋯ y) { return ∗y < ∗x; };
if(first != last)

for(Fwd prev = first; ++first != last; prev = first)
if(out of order(prev, first))

break;
return first;

}

#define out of order(x, y) (∗(y) < ∗(x))

Tip: Pass the iterators (typically cheap to
copy) rather than the dereferenced values

(which may be not even copyable)!

33

[alg.sorting.general]/2-3 [rearranged]

• “[The declaration] Compare comp is used throughout
[as a parameter that denotes] an ordering relation.”
! “Compare is a function object type [whose] call

operation … yields true if the first argument of the call
is less than the second, and false otherwise.”

! “… comp [induces] a strict weak ordering on the values.”

! “For all algorithms that take Compare, there is a version
that uses operator < instead.”

• (IMO, the names comp and Compare are too general.
E.g., I’d prefer s/comp/less than/ or s/comp/lt/ or
s/comp/precedes/.)

34C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

34

Even when an explicit less-than predicate is supplied …
• ... I still recommend adapting it via an order predicate:
! template< class Fwd, class Compare >

constexpr Fwd
is sorted until(Fwd first, Fwd last, Compare lt)

{
auto out of order = [=] (⋯ x, ⋯ y) { return lt(∗y, ∗x); };
if(first != last)

for(Fwd prev = first; ++first != last; prev = first)
if(out of order(prev, first))

break;
return first;

}

35C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

35

Or we can avoid overloading
• … via a single template that has judicious default arg’s:
! template< class Fwd, class Compare = std::ranges::less >

constexpr Fwd
is sorted until(Fwd first, Fwd last, Compare lt = { })

{
⡆ // unchanged

}

• Q1: What, exactly, is std::ranges::less?

• Q2: Do we need both a default function argument and
a default template argument?

36C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

36

Q1: What’s std::ranges::less?
• It’s a class declared in <functional>:
! struct less { // simplified for exposition

template< class T, class U >
constexpr bool

operator () (T && t, U && u) const
{ return t < u; } // heterogeneous comparison

};

! A variable of type less is a function object, as it’s callable
via its operator () member template.

• (There’s also std::less, a template whose operator ()
is strictly homogeneous — more later. Many/most
today seem to prefer the design of std::ranges::less.)

37C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

37

Correctly Calculating min, max, and More... 2021-10-29

Copyright © 2020-2021 by Walter E. Brown.
All rights reserved. 7

Q2: Do algorithms need both default argument kinds?
• Review the algorithm declaration, then consider a call:
! template< class Fwd, class Compare = std::ranges::less >

constexpr Fwd
is sorted until(Fwd first, Fwd last, Compare lt = { }) ;

! int a[N] = { ⋯ };
⋯ is sorted until(a+0, a+N) ⋯ // what type is Fwd?

! Fwd is deduced as int ∗. Now: what type is Compare?

• It’s std::ranges::less, per the default template arg:
! (A type is never deduced from any default function arg.)

! Enables calling code to default-construct a 3rd argument,
namely std::ranges::less{ } .

38C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

38

Q3: Why doesn’t my std library use such default arg’s?
• Short answer: because it’s not allowed to:
! “An implementation shall not declare a non-member

function signature with additional default arguments.”
(See [global.functions]/3.)

• Longer answer: because doing so is problematic:
! “The difference between two overloaded functions and

one function with a default argument can be observed
by taking a pointer to function.” (See N1070, 1997.)

! Also, suppose the caller provides a type but not a value:
template< class T = int > void g(T x = { }) { ⋯ }

⋮
g<MyType>(); // what if MyType isn’t default-constructible?

39C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

39

C o p y rig h t © 2 0 2 0 -2 0 2 1 b y W a lte r E . B ro w n . A ll r ig h ts re se rv e d .

std Disguises for operator <

Everybody's wearing a disguise….
― Bob Dylan

40

How many ways can std design and disguise spell operator < ?

Name Where found Since Taking

class template
less <functional> C++98 T, T

specialization
less<void> <functional> C++14 T, U

class
ranges::less <functional> C++20 T, U

function template
cmp₋less <utility> (why?) C++20 integer I, J

overload set
isless <cmath> C++11 arith A, B

specification
totalOrder

IEEE 754; in spec of
<compare>’s
strong₋order

2008;
C++20

flt-pt F, F

41C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

41

My version of std::ranges::less [edited for exposition]

• struct less {
template< class L, class R >
constexpr bool operator() (L && lew, R && right) const
{

if constexpr(are std integer types<L, R>)
return cmp less(lew, right); // forthcoming

else if constexpr(are std arithmetc types<L, R>)
return isless(lew, right); // forthcoming

else
return forward<L>(lew) < forward<R>(right);

}
};

42C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

42

My version of std::cmp less [edited for exposition]

• template< std integer type L, std integer type R >
constexpr bool

cmp less(L left, R right) noexcept
{

if constexpr(signed type<L> == signed type<R>)
return left < right;

else if constexpr(signed type<L>) // and unsigned type<R>
return left < 0 ? true : as unsigned(left) < right;

else // signed type<R> and unsigned type<L>
return right < 0 ? false : left < as unsigned(right);

}

43C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

43

Correctly Calculating min, max, and More... 2021-10-29

Copyright © 2020-2021 by Walter E. Brown.
All rights reserved. 8

My version of std::isless [edited for exposition]

• template< std arithmetic type L, std arithmetic type R >
constexpr bool

isless(L left, R right) noexcept
{

using fl t = common floating point t<L, R>;
fl t x = left

, y = right;
return isunordered(x, y) ? false // avoid FE_INVALID

: x < y;
}

44C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

44

My version of IEEE’s totalOrder [restricted for exposition]

• template< floatng point type F > // assumes IEEE
constexpr bool totalOrder(F lew, F right) {

if(signbit(lew) != signbit(right)) // opposite sign bits
return signbit(lew);

else {
using int t = big enough type< sizeof(F)

, int, long, long long >;
statc assert(sizeof(F) == sizeof(int t)); // assumpjon
int t x = bit cast< int t >(lew)

, y = bit cast< int t >(right);
return signbit(x) ? y <= x // both have sign bit set

: x <= y; // neither has sign bit set
}

}

45C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

45

C o p y rig h t © 2 0 2 0 -2 0 2 1 b y W a lte r E . B ro w n . A ll r ig h ts re se rv e d .

Bonus Algorithm

“I Xeroxed a mirror.
Now I have an extra Xerox machine.”

― Steven Wright

46

Suppose you need both extrema
• We could reuse min and max:
! template< class T >

pair<T const &, T const & >
minmax(T const & a, T const & b)

{
return { min(a, b), max(a, b) };

}

• But it’s cheaper to make one call to operator < than
the two made within separate calls to min and to max:
! if(out of order(a, b)) return { b, a };

else return { a, b } ;

47C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

47

Finally, a modest programming challenge
• If you’ve never considered the generalized minmax:
! template< forward iterator F >

pair<F, F>
minmax(F from, F upto); // let N = distance(from, upto)

! It returns m and M, iterators in [from, upto), such that
m is the first iterator whose ∗m is smallest, and
M is the last iterator whose ∗M is largest.

• Separate calls to min then max functions would lead
to O(N + N = 2N) calls to out of order:
! But Pohl’s minmax needs only 3N/2 calls to out of order.

! (This is std::minmax element in <algorithm>.)

48C opyrigh t © 2020-2021 by W a lte r E . B row n . A ll righ ts rese rved .

48

Correctly Calculating

min, max, and More

Walter E. Brown, Ph.D.

< webrown.cpp @ gmail.com >

Copyright © 2020-2021 by Walter E. Brown. All rights reserved.

FIN

49

