
The Unit Tests Strike Back

Dave Steffen, Ph.D.
Principal Software Engineer

dsteffen@scitec.com

https://scitec.com/

1



Properties of Good Tests

Science:

1. Precise
2. Accurate
3. Reproducible

Software Engineering:

Complete
Maintainable
Robust
Reliable
Readable
Hermetic

2



How we Get There

The Good Advice!

1. Use TDD Development
2. Use BDD Principles
3. Use only the public interface to test
4. Design for testability
5. Techniques for handling Legacy Code

This is the plan for generating good unit tests

Also see Brian Ruth's talk earlier this week

3



"No plan survives contact with the enemy."
- Helmuth von Molkte (1800 - 1891), translated by Correlli Barnett

https://www.schlockmercenary.com/2015-09-01

If plan A is
"Follow the good advice",

what's plan B?

4



Good Advice is plan A

Plan A:

1. Use TDD Development
2. Use BDD Principles
3. Use only the public interface to test
4. Design for testability

https://www.schlockmercenary.com/2017-05-30

Any test is better than no test.

If your backup plan is "we can't test that"
you need a better plan

5



Part 1: The code is hard to test

Part 2: The code is hard to test

Two kinds of hard tests:

6



Part 1:
The code is hard to test

The problem lies in the nature of what the tests are
testing

1. Buggy nondeterministic code
2. Code with environmental dependencies

"Tests should fail because the code under test fails, and
for no other reason" -- Titus Winters

Flaky Tests: tests that fail occasionally for no
apparent reason

7



Fundamental Flakyness

Fundamentally Flaky tests stem from buggy nondeterminism
(undefined behavior)

Unit tests that fail occasionally for no apparent reason

A Fix code

Plan A: Fix your code

Plan A Failure Modes

UB is hard to track down
Unit tests for "known-to-be-good" code have low
return on investment
Not annoying enough to justify the time

A
8



Fundamental Flakyness

Fix A IgnoreB

Accept occasional false failures

Many of us live with flaky test anyway; maybe it's not
worth the effort
Incorporate into process (officially or otherwise)

May interfere with development process
(at inopportune times)
"Boy who cried wolf" syndrome
Developers become habituated to ignoring test failures

Plan B: Ignore the problem

B

Plan B Failure Modes

9



Fundamental Flakyness

Fix code

Plan C: Manage the Flake

A

1. Gather failure statistics
2. Define "pass" as no change to statistical behavior

Rig testing framework to check for correct statistics, not
individual results

IgnoreB Flake-aware testsC

Habituate your testing harness to flaky tests,
not your developers

Plan C Failure Modes

Lack of resources

C
10



Fundamental Flakyness

Fix code

Plan D: Abandon Unit Testing

A IgnoreB Flake-aware testsC D

This is Plan Ω

we will come back to this

Plan Ω

11



External / Environmental Dependencies

Arguably, this is no longer unit testing
but we still need to do it somehow

Testing non-hermetic code

Sends data through communication interface
Hits a database
Writes to the filesystem
Accesses custom hardware

12



Nonhermeticity is hard to deal with

Flaky / nonreproducible failures due to external
causes, not the code under test
Ties dev/build/CI environment to the external system

Might be limited by available hardware
Might be hard to arrange for unique instances

Practically speaking, non-hermetic tests are just difficult,
annoying, or flaky.

13



Non-hermetic tests

Plan A: Restore hermiticity with Mocks

A Mocks

Doubles  / fakes considered useful:

real objects are nondeterministic
real objects are hard to set up
real objects are hard to trigger behavior
real objects are slow
real objects have a user interface
real objects don't exist (yet)
test objects need to ask other real objects for information
real objects are hardware or something not available

14



Plan A Failure Modes

Mocks are expensive to make
Mocks need independent testing
Mocks are hard to hook in
Mocks are unrealistic
Mocks can mask problems

CppCon 2017: Peter Sommerlad “Mocking Frameworks
considered harmful”

C++Now 2019: Kris Jusiak “Dependency Injection - a 25-
dollar term for a 5-cent concept”

A Mocks

Non-hermetic tests

15

https://www.youtube.com/embed/uhuHZXTRfH4?enablejsapi=1
https://www.youtube.com/embed/yVogS4NbL6U?enablejsapi=1


Non-hermetic tests

Plan B: Abandon hermeticity, embrace locality:
 make the external system ubiquitous, local, and reliable.

1. Fold dependency into all build environs
2. Invest in dedicated resources

A Mocks B Locality

Plan B Failure Modes
Resource is limited
Only available at certain locations
... see previous slide

B

Assumption: if the external resource is reliable, the
dependent unit tests are too

16



Non-hermetic tests

A Mocks CLocalityB Ignore

Plan C:  Accept and ignore occasional  failures

Many of us live with flaky test anyway; maybe it's not
worth the effort
Incorporate into process (officially or otherwise)

Plan C Failure Modes

May interfere with development process
(at inopportune times)
"Boy who cried wolf" syndrome
Developers become habituated to ignoring test failures

C
17



Managing unreliable test resources

Plan D: Build independent sensors to detect outage

Queue tests to run when the resource is back
Flag tests as incomplete
Habituate test framework to occasional failures,
not your developers

A Mocks LocalityB AcceptC D Detect outage

Plan D Failure Modes
Sensors must be highly reliable

Or represent an additional point of flaky
Disruption to dev cycle

D
18



Fundamental Flakyness

Fix code

Plan D: Abandon Unit Testing

A IgnoreB Flake-aware testsC D

This is Plan Ω

we will come back to this

Plan Ω

19



Part 1 Summary

Nondeterministic Code:

Plan A: Fix the code
Plan B: Accept flaky behavior
Plan C: Rig to test for statistical success

20



Part 1 Summary

Plan A: Mock / simulate external resources
Plan B: Abandon hermeticity, retain locality; external
resource is ubiquitous

 
Abandon hermeticity and locality; rely on external,

possibly unreliable, resources

Plan C: Accept false positives
Plan D: Instrument to detect when tests can't run

Either way, adjust processes to cope

External and unreliable dependencies:

Plans C and D provide data for requests to
management for increased testing resources

21



Part 2:
The code is hard to test

Mostly but not always means legacy code.

The difficulty in testing lies in the stucture
or layout of the code itself.

22



The Simplest Example Ever:

class vector {
 
  // no capacity access 
 
  private:
  
    size_t capacity_;
}

1
2
3
4
5
6
7
8

You have designed std::vector
but you left out capacity()

Plan A Failure Modes

Legacy Code
Someone else designed this.
Added in a hurry during maintenance
It's bad design: don't expose an internal detail

You can't test resizing via
the public interface

A The Good Advice (TDD, BDD, etc)A

Plan A: TDD prevents this.

23



Plan B: Add Public Interface

Plan B Failure Modes

"But that's hard to do"
probably symptomatic of other design problems

"But that's a bad design"
you're probably wrong; good design is testable
is it worse than the alternatives?

class vector {
 
  size_t capacity() const;
 
  private:
  
    size_t capacity_;
};

1
2
3
4
5
6
7
8

B Add public interfaceThe Good AdviceA

Just add the member function

B 24



Plan C: Refactor Untestable Behavior

class vector {
 
  // still no capacity access 
 
private:
  // but this has been tested
  array_storage data_;
};

1
2
3
4
5
6
7
8

class array_storage {
public:
 
  size_t capacity() const;
  size_t resize(); 
  ...
private:
  size_t capacity_;
  int*     data_;
};

1
2
3
4
5
6
7
8
9
10

B Add public interfaceA C Refactor

Plan C Failure Modes

"But that's really hard to do"
More work, Riskier, More Intrusive

C

Plan C: Refactor the behavior into another class

Possibly better than plan B?

25



Plan D: White Box (option 1)

Plan D1: Change from private to protected, derive to test

class vector {
 
  // no capacity access 
 
  protected:
  
    size_t capacity_;
};

1
2
3
4
5
6
7
8

  protected:

class vector {1
 2
  // no capacity access 3
 4

5
  6
    size_t capacity_;7
};8

struct VecTester: public vector {
  auto capacity() { return capacity_; }
};
 
TEST_CASE("Reserve increases capacity") {
   VecTester v; 
   v.reserve(1000);
   REQUIRE (v.capacity() >= 1000);
}

1
2
3
4
5
6
7
8
9

D1 White Box (inheritance)BA RefactorC

Plan D1 Failure Modes

Weakens encapsulation
Changes source code
Usual white-box testing issues

D1 26



Plan D2: Give access to a trusted friend
If we are going to break encapsulation, do it correctly.

Doesn't affect the design
Breaks encapsulation but not in a way that matters ?

Plan D2: White Box (better)

class vector {
 
  // no capacity access 
 
  private:
  
    size_t capacity_;
    
    friend class VecTester;
};

1
2
3
4
5
6
7
8
9
10

struct VecTester { 
  VecTester (vector& v); 
  auto capacity() { 
    return v.capacity_; 
  } 
}; 
 
TEST_CASE("Reserve increases capacity") { 
   vector v; 
   VecTester tester(v);  
   v.reserve(1000); 
   REQUIRE (tester.capacity() >= 1000); 
}

White Box (inheritance)BA C D1 White Box (friendship)D2 27



White Box Failure Modes

Maybe you can't change the source code

Legal or regulatory issues
Company or customer policy

Maybe you don't have the source code

headers + precompiled library

White Box (inheritance)
BA C

D1
White Box (friendship)D2

Plan D2 Failure Modes

28



#define class struct

Plan E: White Box In Anger

class vector {
 
  // no capacity access 
 
  private:
  
    size_t capacity_;
};

1
2
3
4
5
6
7
8

#include "vector.h" 
 
TEST_CASE("Reserve increases capacity") { 
   vector<int> v;  
   v.reserve(1000); 
   REQUIRE (v.capacity_ >= 1000);  
}

#define private public

This is an act of desperation

Plan E: Invoke undefined behavior

No changes to source code
Almost certainly works reliably in many compilers

... might change an available overload set

This is an even worse act of desperation

White Box (inheritance)
BA C

D1
White Box (friendship)D2

define private publicE
29



Part 1 Summary
Code is hard to test because of its

interface and general non-testable-ness

Plan A: Avoid this situation.  (Use TDD, BDD, etc)
Plan B: Redesign for testability: change the interface
Plan C: Refactor that behavior out into another class
Plan D1: Change access to protected, inherit and test
Plan D2: Add a friend tester class
Plan E: #define private public and damn the torpedoes{

Plan : abandon unit tests.Ω

w
hi

te
 b

ox

30



Abandon unit testing

Plan Ω

Software Testing is "Defence in Depth"
Unit Tests are just the first line

Acceptance Testing
System / Component testing
(with sanitizers!)

31



Plan Ω

"We can't test this" is the path to failure.

But it's almost never true

Make your plans.  Lots of them  

https://www.schlockmercenary.com/2015-02-22

A The Good Advice

Ω Abandon unit testing

∅ No Tests

...

32



T. Winters and H. Wright, All Your Tests Are Terrible...
CppCon 2015 

Fedor Pikus, Back to Basics: Test-driven Development
CppCon 2019 

Phil Nash, Modern C++ Testing with Catch2 
CppCon 2018 (And see any number of other talks by Phil on the subject)

Kevlin Henney: Structure and Interpretation of Test Cases
NDC Conferences 2019 

Kevlin Henney:  Test Smells and Fragrances
DevWeek 2014 

https://youtu.be/u5senBJUkPc

https://youtu.be/RoYljVOj2H8

https://youtu.be/Ob5_XZrFQH0 

https://youtu.be/tWn8RA_DEic

https://youtu.be/wCx_6kOo99M

References

All talks available on YouTube

33

https://youtu.be/u5senBJUkPc
https://youtu.be/RoYljVOj2H8
https://youtu.be/Ob5_XZrFQH0
https://youtu.be/tWn8RA_DEic
https://youtu.be/wCx_6kOo99M


References

Phil Nash "Test Driven C++ With Catch"
Phil Nash "Modern C++ Testing with Catch 2"
[Boost].μt 1

34

https://www.youtube.com/watch?v=u5senBJUkPc
https://www.youtube.com/watch?v=u5senBJUkPc
https://github.com/boost-experimental/ut

