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PLAN

● Efficiency and performance
● Understanding the hardware

and using it efficiently
– Computing resources of a CPU

– Pipelining

– Branch prediction and 
hardware loop unrolling

● Conditional code vs efficiency
● Optimizing conditional code
● Branchless programming



WHAT CAN BRANCHLESS OPTIMIZATIONS DO?

f(bool b, unsigned long x, unsigned long& s) {if (b) s +=x;}
● 130M calls/second
● Optimized: 

400M calls/second

if (x[i] || y[i]) { … }
● 150M evaluations/second
● Optimized: 

570M evaluations/second
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USE ALL OF THE CPU HARDWARE ALL THE TIME

● What determines performance?

● Optimal algorithm:
– get the result with minimal work

● Efficient use of language:
– do not do any unnecessary work

● Efficient use of hardware
– use all available resources
– at the same time
– all the time



Branchless Computing6

GLOSSARY OF HARDWARE
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COMPUTING RESOURCES OF A CPU

unsigned long v1[N], v2[N];
unsigned long a = 0;
for (size_t i = 0; i < N; ++i)
{
  a += v1[i]*v2[i];
}
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COMPUTING RESOURCES OF A CPU

unsigned long v1[N], v2[N];
unsigned long a = 0;
for (size_t i = 0; i < N; ++i)
{
  a += v1[i]*v2[i];
}
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COMPUTING RESOURCES OF A CPU

register: i

memory: v1[i]

memory: v2[i]

CPU Memory
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COMPUTING RESOURCES OF A CPU

register: a1

register: i

memory: v1[i]

memory: v2[i]

register: v1

register: v2

CPU Memory

read: v1[i]
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COMPUTING RESOURCES OF A CPU

register: a1

register: i

memory: v1[i]

memory: v2[i]

register: v1

register: v2

CPU Memory

read: v2[i]
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COMPUTING RESOURCES OF A CPU

register: a1

register: i

memory: v1[i]

memory: v2[i]

register: v1

register: v2

multiply

CPU Memory
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COMPUTING RESOURCES OF A CPU:
USE ALL OF THE HARDWARE

register: a

register: i

memory: v1[i]

memory: v2[i]

register: v1

register: v2

multiply

CPU Memory
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A LOT OF CPU AREA IS DEDICATED TO COMPUTING. HAS 
TO BE GOOD FOR SOMETHING?

unsigned long v1[N], v2[N];
unsigned long a1 = 0, a2 = 0;
for (size_t i = 0; i < N; ++i)
{
  a1 += v1[i]*v2[i];
  a2 += v1[i]+v2[i];
}
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PROCESSORS CAN DO MULTIPLE OPERATIONS ON 
MULTIPLE REGISTERS AT ONCE

register: a1

register: v1 register: v2

... operations ...

register: a2 register: ...

register: ...
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A LOT OF CPU AREA IS DEDICATED TO COMPUTING. HAS 
TO BE GOOD FOR SOMETHING?

unsigned long v1[N], v2[N];
unsigned long a1 = 0, a2 = 0;
for (size_t i = 0; i < N; ++i)
{
  a1 += v1[i]*v2[i];
  a2 += v1[i]+v2[i];
  ...
}
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USE MORE OF THE HARDWARE

● Using multiple compute units is easy when we have multiple independent 
computations
– Life is rarely that good

● Usually results of one operation affect another operation
● Data dependency: a = (v1 + v2)*(v1 – v2)
● Conditions, or branches: if (v > a) a = v;

– Data-dependent code
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PIPELINING: ANTIDOTE TO DATA DEPENDENCY

● Pipelining is the extension of the ability to execute multiple operations at 
once:
a1 += (v1[i]+v2[i])*(v1[i]-v2[i])

s[i]:v1[i]+v2[i] d[i]:v1[i]-v2[i]

s[i]*d[i]

Data
dependency
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PIPELINING: ANTIDOTE TO DATA DEPENDENCY

● Pipelining is the extension of the ability to execute operations at once:
a += (v1[i]+v2[i])*(v1[i]-v2[i])

s[i-1]:v1[i-1]+v2[i-1] d[i-1]:v1[i-1]-v2[i-1] s1[i-2]*d2[i-2]

s[i]:v1[i]+v2[i] d[i]:v1[i]-v2[i] s1[i-1]*d2[i-1]

s[i+1]:v1[i+1]+v2[i+1] d[i+1]:v1[i+1]-v2[i+1] s1[i]*d2[i]
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● Using multiple compute units is easy when we have multiple independent 
computations
– Usually results of one operation affect another operation

● Data dependency: a = (v1 + v2)*(v1 – v2)
● Pipeline increases CPU utilization
● Multiple instruction streams run in parallel

– Dependencies within each stream
– No data dependencies between streams

USE MORE OF THE HARDWARE
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BRANCHES: BANE OF THE PIPELINES

● Hard to pipeline code: a+=(v1[i]>v2[i])?v1[i]:v2[i]
● Pipelining relies on a continuous stream 

of instructions
● Instructions are fetched, decoded, and 

executed
● Conditional jumps (branches) disrupt 

that order
● CPU must wait until it knows which 

instruction to fetch next

load:v1[i]

load:v2[i]

cmp[i]:v1[i]>v2[i]

jump if true

a[i]:a+=v2[i]

jump

a[i]:a+=v1[i]

...
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BRANCHES: BANE OF THE PIPELINES

● Not hard to pipeline code: a+=(v1[i]>v2[i])?v1[i]:v2[i]

Performance and Efficiency

load:v1[i]

load:v2[i]

cmp[i]:v1[i]>v2[i]

v2[i]=v1[i] if true ...

load:v2[i+1]

load:v1[i+1]

...a[i]:a+=v2[i] ...

...

...

......

conditional move
x86 cmove

conditional move
x86 cmove
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BRANCHES: BANE OF THE PIPELINES

● Well-pipelined code: a += v1[i] + v2[i]

● Cannot run the pipeline for i+2 before checking that i+2<N!

load:v1[i]

load:v2[i]

s[i]:v1[i]+v2[i]

a[i]:a+=s[i] s[i+1]:v1[i+1]+v2[i+1]

load:v2[i+1]

load:v1[i+1]

a[i+1]:a+=s[i+1]load:v1[i+w] s[i+2]:

v2[i+2]:

v1[i+2]:

a[i+2]:
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BRANCH PREDICTION: ANTIDOTE TO BRANCHES

● Well-pipelined code: a += v1[i] + v2[i]
● CPUs have branch predictors
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LOOP UNROLLING

for (size_t i = 0; i < N; ++i) {
    a += v1[i]+v2[i];
}
● CPU immediately goes to the next iteration without waiting for i<N
a += v1[1]+v2[1];
a += v1[2]+v2[2];
a += v1[3]+v2[3];
...
● Successive iterations are pipelined
● Hardware loop unrolling
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LOOP UNROLLING – HOW?

● Machine code does not show any unrolling
for (size_t i = 0; i < N; ++i) {
    a += v1[i]+v2[i];
}
● How can next stage of the pipeline run if registers are still in use?
● Register renaming: “rcx” does not mean “rcx”, CPUs have a lot more 

physical registers that are aliased to architecture register names like 
“eax” or “rcx”

● Result is hardware loop unrolling
– Also out of order execution (data hazard)
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BRANCHES: BANE OF THE PIPELINES

● Hard to pipeline code: a += (v3[i]) ? (v1[i]+v2[i]) : (v1[i]*v2[i])

● Pipelining relies on a continuous stream 
of instructions

● Instructions are fetched, decoded, and 
executed

● Conditional jumps (branches) disrupt 
that order

● CPU must wait until it knows which 
instruction to fetch next

load:v1[i]...v3[i]

cmp[i]:v3[i]==0

jump if true

a[i]:a+=v1[i]+v2[i]

jump

a[i]:a+=v1[i]*v2[i]

...
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BRANCH PREDICTION: ANTIDOTE TO BRANCHES

● Speculatively pipelined code: a += (v3[i]) ? (v1[i]+v2[i]) : (v1[i]*v2[i])

load:v1[i]...v3[i]

cmp[i]:v3[i]==0

jump if true

a[i]:a+=v1[i]+v2[i]

jump

a[i]:a+=v1[i]*v2[i]

...

cmp[i+1]:v3[i+1]==0

load:v1[i+1]...v3[i+1]

jump if true

a[i+1]:a+=v1[i+1]*v2[i+1]
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BRANCH PREDICTION: ANTIDOTE TO BRANCHES

● Speculatively pipelined code: a += (v3[i]) ? (v1[i]+v2[i]) : (v1[i]*v2[i])

● Performance critically depends on how 
effective the predictor isload:v1[i]...v3[i]

cmp[i]:v3[i]==0

jump if true

a[i]:a+=v1[i]+v2[i]

jump

a[i]:a+=v1[i]*v2[i]

...



Branchless Computing30

● Well-pipelined code: a += v1[i] + v2[i]
● CPUs have branch predictors
● Branch predictors are associative caches, they remember the outcome of the conditional for 

the same place in the code
● CPU assumes that the same branch will be taken (i<N) and proceeds to pipeline and evaluate 

instructions
● Actual result of the conditional becomes known several cycles later
● If the prediction was correct, nothing else needs to happen
● If the prediction was wrong…

BRANCH PREDICTION: ANTIDOTE TO BRANCHES
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BRANCH MISPREDICTIONS

● If branch prediction was wrong, several things need to happen:
● All predicted computations are 

discarded or aborted
– Pipeline flush

● New computations have
to be started

● Any results of mispredicted
computations have to be undone
– Anything that cannot be undone

cannot be done speculatively
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BRANCH MISPREDICTIONS AND ERRORS

if (p != NULL) *p = 1;  // p is rarely NULL
int v[N];
for (size_t i=0; i<N; ++i) {
    v[i]=i; // Usually i<N
}
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BRANCH MISPREDICTIONS AND ERRORS

if (p != NULL) *p = 1;  // p is rarely NULL
int v[N];
for (size_t i=0; i<N; ++i) {
    v[i]=i; // Usually i<N
}
● Any errors are held until branch is evaluated
● Errors that do not actually happen must not be reported
● Memory writes must be held (destination may not be accessible)
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BRANCH PREDICTION: ANTIDOTE TO BRANCHES

● Well-pipelined code: a += v1[i] + v2[i]

● Branch misprediction and pipeline flush at the end of the loop
● Branch predictor is effective – pipelining works – CPU utilization is good

load:v1[i]

load:v2[i]

s[i]:v1[i]+v2[i]

a[i]:a+=s[i] s[i+1]:v1[i+1]+v2[i+1]

load:v2[i+1]

load:v1[i+1]

a[i+1]:a+=s[i+1]load:v1[i+w] s[i+2]:

v2[i+2]:

v1[i+2]:

a[i+2]:
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CODE

v1 = ... some data ...;
v2 = ... some data ...;
v3[i] = 0;
//v3[i] = 1;
//v3[i] = rand();
for (size_t i = 0; i < N; ++i) {
    if (v3[i]) a1 += v1[i]+v2[i];
    else a2 += v1[i]*v2[i];
}
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RESOURCES

● Google Benchmark:
– https://github.com/google/benchmark 

● Perf:
– Usually part of Linux distribution

– https://perf.wiki.kernel.org/index.php/Main_Page 

– Manual install involves compiling the kernel

https://github.com/google/benchmark
https://perf.wiki.kernel.org/index.php/Main_Page
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BENCHMARK

● 01a
● 01b
● with perf
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BRANCH MISPREDICTION IS VERY EXPENSIVE

● v3[i] = 0:
perf stat ./branch_predictions
0.05% branch misses

● v3[i] = rand():
perf stat ./branch_predictions
10% branch misses

● Optimizations to eliminate conditionals are usually invasive and may use 
more memory

● Branch predictors are quite complex
● Do not optimize until misprediction is confirmed by a profiler

5x slower5x slower
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BENCHMARK

● 01c
● with perf
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BRANCH MISPREDICTION IS VERY EXPENSIVE

● Optimizations to eliminate conditionals
usually are invasive and may use more memory

● Branch predictors are quite complex
– Patterns in branch conditions are recognized

– Differences in call stacks are detected

● Do not optimize until misprediction
is confirmed by a profiler
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WHAT IS A BRANCH?

if (x || y) do_it(); else dont_do_it();
● Programmer’s view: 

– if we always do it, branch is predictable
● Processor’s view: 

– if x is always true (or false), first branch is predictable
– if y is always true (or false) whenever x is false, second branch is predictable
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WHAT IS A BRANCH?

if (x || y) do_it(); else dont_do_it();
● Programmer’s view: 

– if we always do it, branch is predictable
● Processor’s view: 

– if x is always true (or false), first branch is predictable
– if y is always true (or false) whenever x is false, second branch is predictable

● Root of the difference: Boolean expression evaluation is short-circuited
– Evaluation must stop when the result is known
– Important: if (*a || *b) … - b may be null whenever *a is true

● May be very expensive if the Boolean expression is complex, terms vary, 
but the overall result is predictable
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BENCHMARK

● 02a
● with perf
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OPTIMIZING FALSE BRANCH

if (x || y) do_it(); else dont_do_it();
● x may be true or false
● y may be true or false
● x || y is usually true
● Temporary variable:

bool cond = x || y; if (cond) ...
– Does not work at all:

– compiler will get rid of it

– it’s still two branches 
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OPTIMIZING FALSE BRANCH

if (x || y) do_it(); else dont_do_it();
● x may be true or false
● y may be true or false
● x || y is usually true
● Integer or bitwise arithmetic on bool:

if (bool(x) + bool(y)) ... or if (bool(x) | bool(y)) ...
– Works great unless the compiler “optimizes” operator + to ||
– Some compilers do this (often for + or | but not both), some don’t

– Profiling and/or examining assembly output is necessary 
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BENCHMARK

● 02b, 02c
● with perf
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BRANCHES ARE THERE TO AVOID UNNECESSARY WORK

● Optimizing away branches almost always results in doing more work!
if (x + y) ...

● Always evaluates x and y
● Always evaluates the sum
if (x || y) ...

● Always evaluates x, maybe y
● Does not evaluate || if x is true
● || is less work
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BRANCHES ARE THERE TO AVOID UNNECESSARY WORK

● Optimizing away branches almost always results in doing more work!
● CPU usually has idle compute resources – can handle a bit of extra work
● Branch misprediction is very expensive

– Predicted branch is just another instruction

● Tradeoff between the extra work vs the cost of the branch is usually 
impossible to predict – it must be measured
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IF ONE BRANCH IS BETTER THAN TWO, THEN ZERO 
BRANCHES IS BETTER THAN ONE

● Branchless computing – eliminate branches completely, but how?
sum += cond ? expr1 : expr2;

● Branchless implementation uses Booleans as integers
term[2] = { expr2, expr1 };
sum += term[bool(cond)];

● Both expressions are evaluated
● Improves performance if:

– extra computations are small
– branch is poorly predicted
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BENCHMARK

● 03a, b – branch is not predicted, optimization works
● 03c, d – branch is well-predicted, no optimization



Branchless Computing51

ADVANCED OPTIMIZATION – ALWAYS MEASURE

● Sometimes the compiler will do a branchless transformation for you
– Often using “conditional move” instructions (they are not branches)

● Compiler’s branchless optimization is usually better than yours
● In particular, this is almost always branchless in reality:
return cond ? x : y;

● Never optimize such code preemptively
● Optimize only if the profiler shows high misprediction rate
● Optimizations depend on the compiler!
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BENCHMARK

● 04c, d – optimization does not work with GCC
● with perf – no branch
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ADVANCED OPTIMIZATION – ALWAYS MEASURE

● Sometimes the compiler will not do a branchless transformation for you
● This is almost always branchless in reality:
return cond ? x : y;

● But very similar code may not be
● Never optimize such code preemptively
● Optimize only if the profiler shows

high misprediction rate
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BENCHMARK

● 05a, b – optimization does work
● with perf – bad branch
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ADVANCED OPTIMIZATION – ALWAYS MEASURE

● Sometimes branchless code is not really branchless

● Indirect function calls are similar to branches

if (cond) f1(); else f2();
● Can be converted to branchless:

funcptr f[2] = { &f2, &f1 };
(f[cond])();

● This “optimization” almost never works
– If f1() and/or f2() were inlined, it’s a spectacular pessimization

● Be careful – always measure
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BENCHMARK

● 06a, b – optimization does not work
● with perf – bad branch either way
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SUMMARY

● For best performance, use the hardware efficiently
● Use all of the hardware all the time (ideal goal)
● Processors can do many computations at once every cycle
● Limiting factor is usually availability of data
● Workaround is pipelining – running multiple instruction streams at once
● Limiting factor is conditional code – next instruction is data-dependent
● Workaround is branch prediction – guess the next instruction and go on
● Limiting factor is the ability to guess the future
● Workaround is writing unconditional code with data dependencies
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LESSONS LEARNED

● Predicted branches are cheap

● Mispredicted branches are very expensive – pipeline flush

● Optimization – use fewer (or zero!) branches

● Always use profiler to detect and validate optimization locations

● Don’t fight with the compiler – sometimes it does the job for you



Illustrations by
Evgenia Golant



PC Sharing by



Questions?

 https://www.amazon.com/gp/mpc/A9QOPWSBTBFK4
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