
Branchless
Programming in C++

Fedor G Pikus

Chief Scientist

Branchless Computing3

PLAN

● Efficiency and performance
● Understanding the hardware

and using it efficiently
– Computing resources of a CPU

– Pipelining

– Branch prediction and
hardware loop unrolling

● Conditional code vs efficiency
● Optimizing conditional code
● Branchless programming

WHAT CAN BRANCHLESS OPTIMIZATIONS DO?

f(bool b, unsigned long x, unsigned long& s) {if (b) s +=x;}
● 130M calls/second
● Optimized:

400M calls/second

if (x[i] || y[i]) { … }
● 150M evaluations/second
● Optimized:

570M evaluations/second

Branchless Computing5

USE ALL OF THE CPU HARDWARE ALL THE TIME

● What determines performance?

● Optimal algorithm:
– get the result with minimal work

● Efficient use of language:
– do not do any unnecessary work

● Efficient use of hardware
– use all available resources
– at the same time
– all the time

Branchless Computing6

GLOSSARY OF HARDWARE

Branchless Computing7

COMPUTING RESOURCES OF A CPU

unsigned long v1[N], v2[N];
unsigned long a = 0;
for (size_t i = 0; i < N; ++i)
{
 a += v1[i]*v2[i];
}

Branchless Computing8

COMPUTING RESOURCES OF A CPU

unsigned long v1[N], v2[N];
unsigned long a = 0;
for (size_t i = 0; i < N; ++i)
{
 a += v1[i]*v2[i];
}

Branchless Computing9

COMPUTING RESOURCES OF A CPU

register: i

memory: v1[i]

memory: v2[i]

CPU Memory

Branchless Computing10

COMPUTING RESOURCES OF A CPU

register: a1

register: i

memory: v1[i]

memory: v2[i]

register: v1

register: v2

CPU Memory

read: v1[i]

Branchless Computing11

COMPUTING RESOURCES OF A CPU

register: a1

register: i

memory: v1[i]

memory: v2[i]

register: v1

register: v2

CPU Memory

read: v2[i]

Branchless Computing12

COMPUTING RESOURCES OF A CPU

register: a1

register: i

memory: v1[i]

memory: v2[i]

register: v1

register: v2

multiply

CPU Memory

Branchless Computing13

COMPUTING RESOURCES OF A CPU:
USE ALL OF THE HARDWARE

register: a

register: i

memory: v1[i]

memory: v2[i]

register: v1

register: v2

multiply

CPU Memory

Branchless Computing14

A LOT OF CPU AREA IS DEDICATED TO COMPUTING. HAS
TO BE GOOD FOR SOMETHING?

unsigned long v1[N], v2[N];
unsigned long a1 = 0, a2 = 0;
for (size_t i = 0; i < N; ++i)
{
 a1 += v1[i]*v2[i];
 a2 += v1[i]+v2[i];
}

Branchless Computing15

PROCESSORS CAN DO MULTIPLE OPERATIONS ON
MULTIPLE REGISTERS AT ONCE

register: a1

register: v1 register: v2

... operations ...

register: a2 register: ...

register: ...

Branchless Computing16

A LOT OF CPU AREA IS DEDICATED TO COMPUTING. HAS
TO BE GOOD FOR SOMETHING?

unsigned long v1[N], v2[N];
unsigned long a1 = 0, a2 = 0;
for (size_t i = 0; i < N; ++i)
{
 a1 += v1[i]*v2[i];
 a2 += v1[i]+v2[i];
 ...
}

Branchless Computing17

USE MORE OF THE HARDWARE

● Using multiple compute units is easy when we have multiple independent
computations
– Life is rarely that good

● Usually results of one operation affect another operation
● Data dependency: a = (v1 + v2)*(v1 – v2)
● Conditions, or branches: if (v > a) a = v;

– Data-dependent code

Branchless Computing18

PIPELINING: ANTIDOTE TO DATA DEPENDENCY

● Pipelining is the extension of the ability to execute multiple operations at
once:
a1 += (v1[i]+v2[i])*(v1[i]-v2[i])

s[i]:v1[i]+v2[i] d[i]:v1[i]-v2[i]

s[i]*d[i]

Data
dependency

Branchless Computing19

PIPELINING: ANTIDOTE TO DATA DEPENDENCY

● Pipelining is the extension of the ability to execute operations at once:
a += (v1[i]+v2[i])*(v1[i]-v2[i])

s[i-1]:v1[i-1]+v2[i-1] d[i-1]:v1[i-1]-v2[i-1] s1[i-2]*d2[i-2]

s[i]:v1[i]+v2[i] d[i]:v1[i]-v2[i] s1[i-1]*d2[i-1]

s[i+1]:v1[i+1]+v2[i+1] d[i+1]:v1[i+1]-v2[i+1] s1[i]*d2[i]

Branchless Computing20

● Using multiple compute units is easy when we have multiple independent
computations
– Usually results of one operation affect another operation

● Data dependency: a = (v1 + v2)*(v1 – v2)
● Pipeline increases CPU utilization
● Multiple instruction streams run in parallel

– Dependencies within each stream
– No data dependencies between streams

USE MORE OF THE HARDWARE

Branchless Computing21

BRANCHES: BANE OF THE PIPELINES

● Hard to pipeline code: a+=(v1[i]>v2[i])?v1[i]:v2[i]
● Pipelining relies on a continuous stream

of instructions
● Instructions are fetched, decoded, and

executed
● Conditional jumps (branches) disrupt

that order
● CPU must wait until it knows which

instruction to fetch next

load:v1[i]

load:v2[i]

cmp[i]:v1[i]>v2[i]

jump if true

a[i]:a+=v2[i]

jump

a[i]:a+=v1[i]

...

Branchless Computing22

BRANCHES: BANE OF THE PIPELINES

● Not hard to pipeline code: a+=(v1[i]>v2[i])?v1[i]:v2[i]

Performance and Efficiency

load:v1[i]

load:v2[i]

cmp[i]:v1[i]>v2[i]

v2[i]=v1[i] if true ...

load:v2[i+1]

load:v1[i+1]

...a[i]:a+=v2[i] ...

...

...

......

conditional move
x86 cmove

conditional move
x86 cmove

Branchless Computing23

BRANCHES: BANE OF THE PIPELINES

● Well-pipelined code: a += v1[i] + v2[i]

● Cannot run the pipeline for i+2 before checking that i+2<N!

load:v1[i]

load:v2[i]

s[i]:v1[i]+v2[i]

a[i]:a+=s[i] s[i+1]:v1[i+1]+v2[i+1]

load:v2[i+1]

load:v1[i+1]

a[i+1]:a+=s[i+1]load:v1[i+w] s[i+2]:

v2[i+2]:

v1[i+2]:

a[i+2]:

Branchless Computing24

BRANCH PREDICTION: ANTIDOTE TO BRANCHES

● Well-pipelined code: a += v1[i] + v2[i]
● CPUs have branch predictors

Branchless Computing25

LOOP UNROLLING

for (size_t i = 0; i < N; ++i) {
 a += v1[i]+v2[i];
}
● CPU immediately goes to the next iteration without waiting for i<N
a += v1[1]+v2[1];
a += v1[2]+v2[2];
a += v1[3]+v2[3];
...
● Successive iterations are pipelined
● Hardware loop unrolling

Branchless Computing26

LOOP UNROLLING – HOW?

● Machine code does not show any unrolling
for (size_t i = 0; i < N; ++i) {
 a += v1[i]+v2[i];
}
● How can next stage of the pipeline run if registers are still in use?
● Register renaming: “rcx” does not mean “rcx”, CPUs have a lot more

physical registers that are aliased to architecture register names like
“eax” or “rcx”

● Result is hardware loop unrolling
– Also out of order execution (data hazard)

Branchless Computing27

BRANCHES: BANE OF THE PIPELINES

● Hard to pipeline code: a += (v3[i]) ? (v1[i]+v2[i]) : (v1[i]*v2[i])

● Pipelining relies on a continuous stream
of instructions

● Instructions are fetched, decoded, and
executed

● Conditional jumps (branches) disrupt
that order

● CPU must wait until it knows which
instruction to fetch next

load:v1[i]...v3[i]

cmp[i]:v3[i]==0

jump if true

a[i]:a+=v1[i]+v2[i]

jump

a[i]:a+=v1[i]*v2[i]

...

Branchless Computing28

BRANCH PREDICTION: ANTIDOTE TO BRANCHES

● Speculatively pipelined code: a += (v3[i]) ? (v1[i]+v2[i]) : (v1[i]*v2[i])

load:v1[i]...v3[i]

cmp[i]:v3[i]==0

jump if true

a[i]:a+=v1[i]+v2[i]

jump

a[i]:a+=v1[i]*v2[i]

...

cmp[i+1]:v3[i+1]==0

load:v1[i+1]...v3[i+1]

jump if true

a[i+1]:a+=v1[i+1]*v2[i+1]

Branchless Computing29

BRANCH PREDICTION: ANTIDOTE TO BRANCHES

● Speculatively pipelined code: a += (v3[i]) ? (v1[i]+v2[i]) : (v1[i]*v2[i])

● Performance critically depends on how
effective the predictor isload:v1[i]...v3[i]

cmp[i]:v3[i]==0

jump if true

a[i]:a+=v1[i]+v2[i]

jump

a[i]:a+=v1[i]*v2[i]

...

Branchless Computing30

● Well-pipelined code: a += v1[i] + v2[i]
● CPUs have branch predictors
● Branch predictors are associative caches, they remember the outcome of the conditional for

the same place in the code
● CPU assumes that the same branch will be taken (i<N) and proceeds to pipeline and evaluate

instructions
● Actual result of the conditional becomes known several cycles later
● If the prediction was correct, nothing else needs to happen
● If the prediction was wrong…

BRANCH PREDICTION: ANTIDOTE TO BRANCHES

Branchless Computing31

BRANCH MISPREDICTIONS

● If branch prediction was wrong, several things need to happen:
● All predicted computations are

discarded or aborted
– Pipeline flush

● New computations have
to be started

● Any results of mispredicted
computations have to be undone
– Anything that cannot be undone

cannot be done speculatively

Branchless Computing32

BRANCH MISPREDICTIONS AND ERRORS

if (p != NULL) *p = 1; // p is rarely NULL
int v[N];
for (size_t i=0; i<N; ++i) {
 v[i]=i; // Usually i<N
}

Branchless Computing33

BRANCH MISPREDICTIONS AND ERRORS

if (p != NULL) *p = 1; // p is rarely NULL
int v[N];
for (size_t i=0; i<N; ++i) {
 v[i]=i; // Usually i<N
}
● Any errors are held until branch is evaluated
● Errors that do not actually happen must not be reported
● Memory writes must be held (destination may not be accessible)

Branchless Computing34

BRANCH PREDICTION: ANTIDOTE TO BRANCHES

● Well-pipelined code: a += v1[i] + v2[i]

● Branch misprediction and pipeline flush at the end of the loop
● Branch predictor is effective – pipelining works – CPU utilization is good

load:v1[i]

load:v2[i]

s[i]:v1[i]+v2[i]

a[i]:a+=s[i] s[i+1]:v1[i+1]+v2[i+1]

load:v2[i+1]

load:v1[i+1]

a[i+1]:a+=s[i+1]load:v1[i+w] s[i+2]:

v2[i+2]:

v1[i+2]:

a[i+2]:

Branchless Computing35

CODE

v1 = ... some data ...;
v2 = ... some data ...;
v3[i] = 0;
//v3[i] = 1;
//v3[i] = rand();
for (size_t i = 0; i < N; ++i) {
 if (v3[i]) a1 += v1[i]+v2[i];
 else a2 += v1[i]*v2[i];
}

Branchless Computing36

RESOURCES

● Google Benchmark:
– https://github.com/google/benchmark

● Perf:
– Usually part of Linux distribution

– https://perf.wiki.kernel.org/index.php/Main_Page

– Manual install involves compiling the kernel

https://github.com/google/benchmark
https://perf.wiki.kernel.org/index.php/Main_Page

Branchless Computing37

BENCHMARK

● 01a
● 01b
● with perf

Branchless Computing38

BRANCH MISPREDICTION IS VERY EXPENSIVE

● v3[i] = 0:
perf stat ./branch_predictions
0.05% branch misses

● v3[i] = rand():
perf stat ./branch_predictions
10% branch misses

● Optimizations to eliminate conditionals are usually invasive and may use
more memory

● Branch predictors are quite complex
● Do not optimize until misprediction is confirmed by a profiler

5x slower5x slower

Branchless Computing39

BENCHMARK

● 01c
● with perf

Branchless Computing40

BRANCH MISPREDICTION IS VERY EXPENSIVE

● Optimizations to eliminate conditionals
usually are invasive and may use more memory

● Branch predictors are quite complex
– Patterns in branch conditions are recognized

– Differences in call stacks are detected

● Do not optimize until misprediction
is confirmed by a profiler

Branchless Computing41

WHAT IS A BRANCH?

if (x || y) do_it(); else dont_do_it();
● Programmer’s view:

– if we always do it, branch is predictable
● Processor’s view:

– if x is always true (or false), first branch is predictable
– if y is always true (or false) whenever x is false, second branch is predictable

Branchless Computing42

WHAT IS A BRANCH?

if (x || y) do_it(); else dont_do_it();
● Programmer’s view:

– if we always do it, branch is predictable
● Processor’s view:

– if x is always true (or false), first branch is predictable
– if y is always true (or false) whenever x is false, second branch is predictable

● Root of the difference: Boolean expression evaluation is short-circuited
– Evaluation must stop when the result is known
– Important: if (*a || *b) … - b may be null whenever *a is true

● May be very expensive if the Boolean expression is complex, terms vary,
but the overall result is predictable

Branchless Computing43

BENCHMARK

● 02a
● with perf

Branchless Computing44

OPTIMIZING FALSE BRANCH

if (x || y) do_it(); else dont_do_it();
● x may be true or false
● y may be true or false
● x || y is usually true
● Temporary variable:

bool cond = x || y; if (cond) ...
– Does not work at all:

– compiler will get rid of it

– it’s still two branches

Branchless Computing45

OPTIMIZING FALSE BRANCH

if (x || y) do_it(); else dont_do_it();
● x may be true or false
● y may be true or false
● x || y is usually true
● Integer or bitwise arithmetic on bool:

if (bool(x) + bool(y)) ... or if (bool(x) | bool(y)) ...
– Works great unless the compiler “optimizes” operator + to ||
– Some compilers do this (often for + or | but not both), some don’t

– Profiling and/or examining assembly output is necessary

Branchless Computing46

BENCHMARK

● 02b, 02c
● with perf

Branchless Computing47

BRANCHES ARE THERE TO AVOID UNNECESSARY WORK

● Optimizing away branches almost always results in doing more work!
if (x + y) ...

● Always evaluates x and y
● Always evaluates the sum
if (x || y) ...

● Always evaluates x, maybe y
● Does not evaluate || if x is true
● || is less work

Branchless Computing48

BRANCHES ARE THERE TO AVOID UNNECESSARY WORK

● Optimizing away branches almost always results in doing more work!
● CPU usually has idle compute resources – can handle a bit of extra work
● Branch misprediction is very expensive

– Predicted branch is just another instruction

● Tradeoff between the extra work vs the cost of the branch is usually
impossible to predict – it must be measured

Branchless Computing49

IF ONE BRANCH IS BETTER THAN TWO, THEN ZERO
BRANCHES IS BETTER THAN ONE

● Branchless computing – eliminate branches completely, but how?
sum += cond ? expr1 : expr2;

● Branchless implementation uses Booleans as integers
term[2] = { expr2, expr1 };
sum += term[bool(cond)];

● Both expressions are evaluated
● Improves performance if:

– extra computations are small
– branch is poorly predicted

Branchless Computing50

BENCHMARK

● 03a, b – branch is not predicted, optimization works
● 03c, d – branch is well-predicted, no optimization

Branchless Computing51

ADVANCED OPTIMIZATION – ALWAYS MEASURE

● Sometimes the compiler will do a branchless transformation for you
– Often using “conditional move” instructions (they are not branches)

● Compiler’s branchless optimization is usually better than yours
● In particular, this is almost always branchless in reality:
return cond ? x : y;

● Never optimize such code preemptively
● Optimize only if the profiler shows high misprediction rate
● Optimizations depend on the compiler!

Branchless Computing52

BENCHMARK

● 04c, d – optimization does not work with GCC
● with perf – no branch

Branchless Computing53

ADVANCED OPTIMIZATION – ALWAYS MEASURE

● Sometimes the compiler will not do a branchless transformation for you
● This is almost always branchless in reality:
return cond ? x : y;

● But very similar code may not be
● Never optimize such code preemptively
● Optimize only if the profiler shows

high misprediction rate

Branchless Computing54

BENCHMARK

● 05a, b – optimization does work
● with perf – bad branch

Branchless Computing55

ADVANCED OPTIMIZATION – ALWAYS MEASURE

● Sometimes branchless code is not really branchless

● Indirect function calls are similar to branches

if (cond) f1(); else f2();
● Can be converted to branchless:

funcptr f[2] = { &f2, &f1 };
(f[cond])();

● This “optimization” almost never works
– If f1() and/or f2() were inlined, it’s a spectacular pessimization

● Be careful – always measure

Branchless Computing56

BENCHMARK

● 06a, b – optimization does not work
● with perf – bad branch either way

Branchless Computing57

SUMMARY

● For best performance, use the hardware efficiently
● Use all of the hardware all the time (ideal goal)
● Processors can do many computations at once every cycle
● Limiting factor is usually availability of data
● Workaround is pipelining – running multiple instruction streams at once
● Limiting factor is conditional code – next instruction is data-dependent
● Workaround is branch prediction – guess the next instruction and go on
● Limiting factor is the ability to guess the future
● Workaround is writing unconditional code with data dependencies

Branchless Computing58

LESSONS LEARNED

● Predicted branches are cheap

● Mispredicted branches are very expensive – pipeline flush

● Optimization – use fewer (or zero!) branches

● Always use profiler to detect and validate optimization locations

● Don’t fight with the compiler – sometimes it does the job for you

Illustrations by
Evgenia Golant

PC Sharing by

Questions?

 https://www.amazon.com/gp/mpc/A9QOPWSBTBFK4

	Branchless Computing
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

