

Welcome to CppCon 2021!

Join #visual_studio channel on CppCon Discord
https://aka.ms/cppcon/discord
• Meet the Microsoft C++ team

• Ask any questions

• Discuss the latest announcements

Take our survey
https://aka.ms/cppcon

https://aka.ms/cppcon/discord
https://aka.ms/cppcon

Visual Studio Code

#1 most-used code editor

Source: Stack Overflow Developer Survey 2021

https://insights.stackoverflow.com/survey/2021?_ga=2.60554666.645142945.1634165254-1385277067.1634165254#technology-most-popular-technologies

Visual Studio Code

- Free

- Cross-platform

- Lightweight

#1 most-used code editor

Source: Stack Overflow Developer Survey 2021

https://insights.stackoverflow.com/survey/2021?_ga=2.60554666.645142945.1634165254-1385277067.1634165254#technology-most-popular-technologies

- Free

- Cross-platform

- Lightweight

Source: Stack Overflow Developer Survey 2021

Visual Studio Code

#1 most-used code editor

https://insights.stackoverflow.com/survey/2021?_ga=2.60554666.645142945.1634165254-1385277067.1634165254#technology-most-popular-technologies

Visual Studio Code

- Free

- Cross-platform

- Lightweight

#1 most-used code editor

Source: Stack Overflow Developer Survey 2021

https://insights.stackoverflow.com/survey/2021?_ga=2.60554666.645142945.1634165254-1385277067.1634165254#technology-most-popular-technologies

Visual Studio Code

- WSL

- SSH

- Containers

- Free

- Cross-platform

- Lightweight

#1 most-used code editor

Source: Stack Overflow Developer Survey 2021

https://insights.stackoverflow.com/survey/2021?_ga=2.60554666.645142945.1634165254-1385277067.1634165254#technology-most-popular-technologies

Visual Studio Code

- IntelliSense

- Debugging

- CMake

- Make

- WSL

- SSH

- Containers

- Free

- Cross-platform

- Lightweight

#1 most-used code editor

Source: Stack Overflow Developer Survey 2021

https://insights.stackoverflow.com/survey/2021?_ga=2.60554666.645142945.1634165254-1385277067.1634165254#technology-most-popular-technologies

Visual Studio Code

What’s new?

Visual Studio Code

What’s new?

1. GitHub Codespaces (coding from your browser!)

Visual Studio Code

What’s new?

1. GitHub Codespaces (coding from your browser!)

Visual Studio Code

What’s new?

1. GitHub Codespaces (coding from your browser!)

Visual Studio Code

What’s new?

1. GitHub Codespaces (coding from your browser!)

Visual Studio Code

What’s new?

1. GitHub Codespaces (coding from your browser!)

2. CMake Presets support

Visual Studio Code

What’s new?

1. GitHub Codespaces (coding from your browser!)

2. CMake Presets support

3. ARM and ARM64 support (Raspberry Pi, Surface Pro X, Apple Silicon)

Visual Studio Code

What’s new?

1. GitHub Codespaces (coding from your browser!)

2. CMake Presets support

3. ARM and ARM64 support (Raspberry Pi, Surface Pro X, Apple Silicon)

4. CUDA IntelliSense and GPU debugging

Visual Studio Code

What’s new?

1. GitHub Codespaces (coding from your browser!)

2. CMake Presets support

3. ARM and ARM64 support (Raspberry Pi, Surface Pro X, Apple Silicon)

4. CUDA IntelliSense and GPU debugging

5. Disassembly View while debugging Preview!

Visual Studio Code

What’s new?

1. GitHub Codespaces (coding from your browser!)

2. CMake Presets support

3. ARM and ARM64 support (Raspberry Pi, Surface Pro X, Apple Silicon)

4. CUDA IntelliSense and GPU debugging

5. Disassembly View while debugging Preview!

Visual Studio Code

What’s new?

1. GitHub Codespaces (coding from your browser!)

2. CMake Presets support

3. ARM and ARM64 support (Raspberry Pi, Surface Pro X, Apple Silicon)

4. CUDA IntelliSense and GPU debugging

5. Disassembly View while debugging Preview!

Visual Studio Code

What’s new?

1. GitHub Codespaces (coding from your browser!)

2. CMake Presets support

3. ARM and ARM64 support (Raspberry Pi, Surface Pro X, Apple Silicon)

4. CUDA IntelliSense and GPU debugging

5. Disassembly View while debugging

6. The Makefile Tools extension

Preview!

Preview!

Visual Studio Code + GitHub

Visual Studio Code + GitHub

Code

Build and

debug

TestIntegrate

Maintain

Visual Studio Code + GitHub

Code

Build and

debug

TestIntegrate

Maintain

Visual Studio Code + GitHub

Code

Build and

debug

TestIntegrate

Maintain

Visual Studio Code + GitHub

Code

Build and

debug

TestIntegrate

Maintain

Visual Studio Code + GitHub

Code

Build and

debug

TestIntegrate

Maintain

Continuous Integration (CI)

What is Continuous Integration (CI)?

• “The process of automating the build and testing of code every time a team

member commits changes to version control” [What is Continuous Integration? - Azure DevOps |

Microsoft Docs]

https://docs.microsoft.com/en-us/devops/develop/what-is-continuous-integration

Continuous Integration (CI)

What is Continuous Integration (CI)?

• “The process of automating the build and testing of code every time a team

member commits changes to version control” [What is Continuous Integration? - Azure DevOps |

Microsoft Docs]

What are the benefits?

• Reduces risk – detect and locate errors more quickly

• Ensures quality – shipped product is always tested

• Efficient – spend more time coding, less time manually testing and waiting

https://docs.microsoft.com/en-us/devops/develop/what-is-continuous-integration

GitHub Actions for Continuous Integration (CI)

• What: GitHub Actions offers

workflows that build and test

your code

GitHub Actions for Continuous Integration (CI)

• What: GitHub Actions offers

workflows that build and test

your code

• When: Workflows run when a

specified GitHub event occurs

GitHub Actions for Continuous Integration (CI)

• What: GitHub Actions offers

workflows that build and test

your code

• When: Workflows run when a

specified GitHub event occurs

• Where: Workflows run on

GitHub-hosted virtual machines

or self-hosted machines

GitHub Actions for Continuous Integration (CI)

• What: GitHub Actions offers

workflows that build and test

your code

• When: Workflows run when a

specified GitHub event occurs

• Where: Workflows run on

GitHub-hosted virtual machines

or self-hosted machines

• How: Workflows are defined in

.yml files in your project’s

.github/workflows folder

GitHub Actions for Continuous Integration (CI)

GitHub Actions for Continuous Integration (CI)

Demo #1
Achieving efficient CI workflows for Raspberry Pi development with GitHub Actions
& GitHub Codespaces (VS Code in the browser!)

Demo #1 set up

Extensions for VS Code:
• github.vscode-pull-request-github

• ms-vscode.cpptools

• github.codespaces

Demo #1 key takeaways

1. GitHub.dev and GitHub Codespaces enable you to write and commit code directly

from your web browser on any device

Demo #1 key takeaways

1. GitHub.dev and GitHub Codespaces enable you to write and commit code directly

from your web browser on any device

✓ No need to install an editor or clone the repo!

Demo #1 key takeaways

1. GitHub.dev and GitHub Codespaces enable you to write and commit code directly

from your web browser on any device

✓ No need to install an editor or clone the repo!

2. GitHub Actions makes it easy to build and test your code in CI/CD workflows

Demo #1 key takeaways

1. GitHub.dev and GitHub Codespaces enable you to write and commit code directly

from your web browser on any device

✓ No need to install an editor or clone the repo!

2. GitHub Actions makes it easy to build and test your code in CI/CD workflows

✓ GitHub-hosted runners for automatic machine upgrades and zero maintenance

✓ Self-hosted runners for more control over hardware and OS

CMakePresets.json

1. Released by Kitware in CMake 3.19

✓ 3.21 or higher required for CMakePresets.json v3

CMakePresets.json

1. Released by Kitware in CMake 3.19

✓ 3.21 or higher required for CMakePresets.json v3

2. Allows users to specify common configure, build, and test options and share them with

others

CMakePresets.json

1. Released by Kitware in CMake 3.19

✓ 3.21 or higher required for CMakePresets.json v3

2. Allows users to specify common configure, build, and test options and share them with

others

3. Lives at the root of the project, intended to be checked in to source control

✓ CMakeUserPresets.json intended for developers to save their own local builds

Example configurePreset

{

"name": “raspi-debug",

"displayName": “Raspberry Pi Debug",

"description": "Sets debug build type",

"inherits": "base",

"cacheVariables": {

"CMAKE_BUILD_TYPE": "Debug"

}

}

Example configurePreset

{

"name": “raspi-debug",

"displayName": “Raspberry Pi Debug",

"description": "Sets debug build type",

"inherits": "base",

"cacheVariables": {

"CMAKE_BUILD_TYPE": "Debug"

}

}

Example configurePreset

{

"name": “raspi-debug",

"displayName": “Raspberry Pi Debug",

"description": "Sets debug build type",

"inherits": "base",

"cacheVariables": {

"CMAKE_BUILD_TYPE": "Debug"

}

}

Example base configurePreset
{

"name": "base",

"description": "For more information: http://aka.ms/cmakepresetsvs",

"hidden": true,

"generator": "Ninja",

"binaryDir": "${sourceDir}/out/build/${presetName}",

"installDir": "${sourceDir}/out/install/${presetName}",

"cacheVariables": {

"CMAKE_C_COMPILER": "gcc",

"CMAKE_CXX_COMPILER": “g++"

},

"environment": {

"VCPKG_FEATURE_FLAGS": "manifests,versions,binarycaching,registries"

},

"condition": {

"type": "equals",

"lhs": "${hostSystemName}",

"rhs": “Linux"

}

}

Example buildPreset

{

"name": "verbose-build-raspi",

"displayName": "Verbose Build",

"description": "Passes -v to Ninja",

"configurePreset": “raspi-debug",

"nativeToolOptions": ["-v"]

}

Demo #2
Build and debug on a Raspberry Pi in VS Code Desktop with CMakePresets.json

Demo #2
Build and debug on a Raspberry Pi in VS Code Desktop with CMakePresets.json

Demo #2 set up

Extensions for VS Code:
• ms-vscode.cmake-tools

• ms-vscode-remote.vscode-remote-extensionpack

• ms-vscode.cpptools

Demo #2 key takeaways

1. VS Code provides full C++ IntelliSense and debug support for Raspberry Pi

1. Disassembly View to debug assembly language

Demo #2 key takeaways

1. VS Code provides full C++ IntelliSense and debug support for Raspberry Pi

1. Disassembly View to debug assembly language

2. Develop on and for Raspberry Pi with VS Code by either:

1. Installing VS Code on the Raspberry Pi

2. Installing VS Code on a laptop and using the Remote-SSH extension

Demo #2 key takeaways

1. VS Code provides full C++ IntelliSense and debug support for Raspberry Pi

1. Disassembly View to debug assembly language

2. Develop on and for Raspberry Pi with VS Code by either:

1. Installing VS Code on the Raspberry Pi

2. Installing VS Code on a laptop and using the Remote-SSH extension

3. CMakePresets.json enables consistent builds from the command line, in CI/CD pipelines,

from Visual Studio, and VS Code

Visual Studio Code + GitHub

Visual Studio Code + GitHub

Visual Studio Code + GitHub

Visual Studio Code + GitHub

Visual Studio Code + GitHub

Code

Build and

debug

TestIntegrate

Maintain

Demo #3
Build and debug CUDA C/C++ programs with Nsight Visual Studio Code Edition

Demo #3 set up

Extensions for VS Code:
• nvidia.nsight-vscode-edition

• ms-vscode-remote.vscode-remote-extensionpack

• ms-vscode.cpptools

Demo #3 key takeaways

1. The C++ extension provides IntelliSense for CUDA C/C++ programs

2. Nsight Visual Studio Code Edition provides build and debug support for

CUDA C/C++ programs, including GPU debugging

Demo #3 key takeaways

1. The C++ extension provides IntelliSense for CUDA C/C++ programs

2. Nsight Visual Studio Code Edition provides build and debug support for

CUDA C/C++ programs, including GPU debugging

3. Target a machine with a CUDA-capable GPU with the Remote-SSH

extension

Visual Studio Code

What else?

Visual Studio Code

What else?

1. The Makefile Tools extension Preview!

Visual Studio Code

What else?

1. The Makefile Tools extension

2. Clang-tidy integration

Preview!

Coming soon!

Visual Studio Code

What else?

1. The Makefile Tools extension

2. Clang-tidy integration

3. Create definition from declaration (and vice-a-versa)

Preview!

Coming soon!

Coming soon!

Helpful resources

- C++ extension pack: C/C++ Extension Pack - Visual Studio Marketplace

- C++ extension (ms-vscode.cpptools)

- CMake Tools (ms-vscode.cmake-tools)

- Remote Development extension pack (ms-vscode-remote.vscode-remote-extensionpack)

- And more!

• C++ Team blog: C++ Team Blog (microsoft.com)

• Getting Started with C++ in VS Code: Introductory Videos for C++ in Visual Studio Code

• CUDA support in VS Code:

• Nsight Visual Studio Code Edition Homepage

• Nsight Visual Studio Code Edition Spotlight Video

• It’s Alive: CUDA in Visual Studio Code! – GTC 2021 Presentation

• CMake Presets: Cross-Platform Pitfalls and How to Avoid Them - Erika Sweet - [ACCU 2021] - YouTube

https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools-extension-pack
https://devblogs.microsoft.com/cppblog/
https://code.visualstudio.com/docs/cpp/introvideos-cpp
https://nam06.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdeveloper.nvidia.com%2Fnsight-visual-studio-code-edition&data=04%7C01%7CJulia.Reid%40microsoft.com%7C8709fd3e71ac4a96594c08d997daa25f%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C637707787596435129%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=pmWKcXJyq%2FnataJ8DiopBGrifISEu8k91AT27YHXf20%3D&reserved=0
https://nam06.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DgN3XeFwZ4ng&data=04%7C01%7CJulia.Reid%40microsoft.com%7C8709fd3e71ac4a96594c08d997daa25f%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C637707787596435129%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=t26nrR5Bd6OBiOVFiHHBIbrGflzBf%2BCvJifwrIOo31s%3D&reserved=0
https://nam06.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgtc21.event.nvidia.com%2Fmedia%2FIt%25E2%2580%2599s%2520Alive%253A%2520CUDA%2520in%2520Visual%2520Studio%2520Code!%2520%255BS31884%255D%2F1_geie6h11&data=04%7C01%7CJulia.Reid%40microsoft.com%7C8709fd3e71ac4a96594c08d997daa25f%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C637707787596445100%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=7FNnRC%2BVwlfYAjDoJae5WTe5MVFqOOcEZq72kellNGM%3D&reserved=0
https://www.youtube.com/watch?v=-NhaPNq16Qk&t=1s

Enjoy the rest of the conference!

Join #visual_studio channel on CppCon Discord
https://aka.ms/cppcon/discord
• Meet the Microsoft C++ team

• Ask any questions

• Discuss the latest announcements

Take our survey
https://aka.ms/cppcon

https://aka.ms/cppcon/discord
https://aka.ms/cppcon

Our Sessions
Monday 25th

• Implementing C++ Modules: Lessons Learned,

Lessons Abandoned – Cameron DaCamara &

Gabriel Dos Reis

Tuesday 26th

• Documentation in The Era of Concepts and

Ranges – Sy Brand & Christopher Di Bella

(Google)

• Static Analysis and Program Safety in C++:

Making it Real – Sunny Chatterjee

• In-memory and Persistent Representations of

C++ – Gabriel Dos Reis (online 27th)

• Extending and Simplifying C++: Thoughts on

pattern Matching using ̀ is` and ̀ as – Herb Sutter

Wednesday 27th

• What's New in Visual Studio: 64-bit IDE, C++20, WSL 2,

and more – Sy Brand & Marian Luparu

Thursday 28th

• C++20’s <chrono> Calendars and Time Zones in

MSVC – Miya Natsuhara

• An Editor Can Do That? Debugging Assembly

Language and GPU Kernels in Visual Studio Code –

Julia Reid

• Why does std::format do that? – Charlie Barto

• Finding bugs using path-sensitive static analysis –

Gabor Horvath (online 29th)

Happy Coding!
Thank you

Twitter: @jureid22

