m
Misra Parallelism Safety-critical

Guidelines for C++11, 17,
Then C++20, 23

ANDREAS WEIS, MICHAEL WONG &
ILYA BURYLOV

@ Cppcon 20| ASA
The C++ Conference 2] October 24-29

Staff Engineer
at Woven Planet

= /) ComicSansMS
© @DerGhulbus

/M Co-organizer of the Munich C++ User
Group (MUC++)

Member of WG21 (ISO C++) and MISRA C++

Working on the Runtime framework for the
Arene platform at Woven Planet

| woven
’) planet

Andreas Weis (he/him)

Principle Engineer
at Intel

An architect of C++ software solutions for autonomous
driving market in Intel

Contribution into functional safety MISRA standard

Contribution into WG21 in threading, vectorization and
numerics.

Contribution into SYCL

llya Burylov

Dlstmgmshed Engineer

Chair of SYCL Heterogeneous Programming
Language

ISO C++ Directions Group past Chair

Past CEO OpenMP

ISOCPP.org Director, VP
http://isocpp.org/wiki/faq/wg21#michael-wong
michael@codeplay.com
fraggamuffin@gmail.com

Head of Delegation for C++ Standard for Canada
Chair of Programming Languages for Standards
Council of Canada

Chair of WG21 SG19 Machine Learning

Chair of WG21 SG14 Games Dev/Low
Latency/Financial Trading/Embedded

Editor: C++ SG5 Transactional Memory Technical
Specification

Editor: C++ SG1 Concurrency Technical Specification
MISRA C++ and AUTOSAR

Chair of Standards Council Canada TC22/SC32
Electrical and electronic components (SOTIF)
Chair of UL4600 Object Tracking

RISC-V Datacenter/Cloud Computing Chair
http://wongmichael.com/about

C++11 book in Chinese:
https://www.amazon.cn/dp/BOOETOV20Q

Michael Wong

Argonne and Oak Ridge National Laboratories Award
Codeplay® Software to Further Strengthen SYCL™
Support Extending the Open Standard Software for

NSITEXE, Kyoto Microcomputer and Codeplay
AMD GPUs Software are bringing open standards programming to
17-9une2021 RISC-V Vector processor for HPC and Al systems

29 October 2020

Argonne &« @codeplay’ %OAKRInGE N KNG © codeplay’

LEMONT, IL, and OAK RIDGE, TN, and EDINBURGH, UK, June 17, 2021 - Argonne National Laboratory (ANL) in collaboration with Oak

Ridge National Laboratory (ORNL), has awarded Codeplay a contract implementing the oneAP| DPC++ compiler, an implementation of Implementing OpenCL™ and SYCL™ for the popular RISC-V processors will make it easier to
artar AP e N be v

port existing HPC and Al software for embedded systems

NERSC, ALCF, Codeplay Partner on SYCL for Next-

generation Supercomputers
02 February 2021

The National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory (Berkeley Lab), in
collaboration with the Argonne Leadership Computing Facility (ALCF) at Argonne National Laboratory, has signed a contract with
Codeplay Software to enhance the LLVM SYCL™ GPU compiler capabilities for NVIDIA® A100 GPUs,

We build GPU compilers for some of the most powerful
supercomputers in the world

http://isocpp.org/wiki/faq/wg21
mailto:michael@codeplay.com
mailto:fraggamuffin@gmail.com
http://wongmichael.com/about

®

wa.
O
Z

O

KHROS

Acknowledgement and Disclaimer

THIS WORK REPRESENTS THE OTHER COMPANY, PRODUCT, AND
VIEW OF THE AUTHOR AND DOES SERVICE NAMES MAY BE
NOT NECESSARILY REPRESENT TRADEMARKS OR SERVICE MARKS
THE VIEW OF CODEPLAY. OF OTHERS.

This work is licensed under a Creative Commons Attribution 4.0 International License

Numerous people internal and external
to the original C++/Khronos group, in
industry and academia, have made
contributions, influenced ideas, written
part of this presentations, and offered
feedbacks to form part of this talk.

Images belong to their respective
copyrights.

But | claim all credit for errors, and stupid mistakes. These
are mine, all mine! You can’t have them.

© The Khronos® Group Inc. 2020 - Page 5

Agenda

1. Current status of C++ safety: MISRA and C++ CG
2. Parallel Safety rules
3. Automotive Safety case

Safety Crltlcal API Evolutlon

™ = Va) /e;\‘ -

New Generation Safety
Critical APIs for Graphics, 4 A
Compute and Display

minimize API surface area , reduce
ambiguity. UB, increase determlmsm

Industry Need e \“"'i : l £
for CPU/GPU Acceleration APIs designed T E
\ to ease system safety certification

|

Rendermg Compute D1splay

<

International
Organization for
Standardization

UNECE WP.29 ISO 26262

N
2 ‘ SYCL. 1SO/PAs 21448 %

UL 4600 NNNNNNNNNNNNNN

JTC1/SC42
elligence

Many Safety Crltlcal APls

Misra: checkable rules only

Autosar C++ Guidelines: a mix of meta guidelines and
checkable rules

High Integrity C++: for static checkers

WG23 Programming Vulnerabilities: for team leads

C++ Core Guidelines: a mix

C++ Study Group 12 Vulnerabilities: for standards

C Safe and Secure Study Group: for standards

Carnegie Mellon Cert C and C++: a mix

Joint Strike Fighter ++: checkable rules

Common Weakness Enumeration: a mix

Khronos Safety Critical Advisory
Forum

OpenCL/SYCL Safety Critical
Vulkan Safety Critical

JTC1/SC42 Machine Learning WG3
Trustworthiness

ITC22/SC32 SOTIF WGS8 SOTIF,
WG13, WG14

SAE ORAD

UL4600
RISC-V Safety/Security

Which one to choose and what is the difference?
e Safe but not C++11/14/17/20

Joint Strike Fighter Air Vehicle C++
Coding Standards for the System
Development and Demonstration
Program, 2005

i With the help of Bjarne Stroustrup

MISRA C++:2008 Guidelines for the
use of the C++ language in critical
systems, The Motor Industry Software
Reliability Association, 2008

i Continues to be the reference despite its age
i For automated static analysis tools
[}

Aimed for embedded domains

C++11/14/17/20 but not safe

High Integrity C++ Coding Standard Version 4.0, Programming
Research Ltd, 2013

¢ Some parallelism

Software Engineering Institute CERT C/C++ Coding Standard,
Software Engineering Institute Division at Carnegie Mellon
University, 2016

® Most recent effort based on C 11 and C++ 14

C++ Core Guidelines,
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuideline
s, 2017

® Most recent effort based on C++17 + 20

An excellent style guide for greater elegance, and
safety/performance

No specific domains, also for static analysis and guidance
WG23 Vulnerabilities ISO for C, C++, Ada, Fortran, ...
.

Guidelines for teamleads

Reviewed with each ISO C, C++, Ada, Fortran help

Comparing coding standards

Coding Standard
Autosar

Misra

High Integrity CPP
JSF

C++ CG

CERT C++

C++ Versions

C++14

C++03 ()
C++11

C++03
C++11/14/17/20/1atest
C++14

/

These are the 2
most important
guidelines today

N

Coding
Standard

Misra C++
High

Integrity
C++

JSF ++
C++ CG
CERT C++

Number
of Rules

229

155

226
412

156

Pedigree

Number of rules in common with

Autosar

Identical Small Diff

138 38
0 99
0 143
0 174
0 75

Big Diff

32

25

28
49
33

% of rules
in
common

91%
80%

76%
54%
69%

Follow Bjarne’s talk on
type+resource Safety on C++ CG
Aim for bug free code with high
perlformance and elegant coding
style

Meta rules + checkable rules
« USe GSL, CLion,

Use a carefully crafted set of
programming techniques

* supported by library facilities

* enforced by static analysis.
Available on GitHub

e https://github.com/isocpp/CppC

oreGuidelines/blob/master/Cpp
CoreGuidelines.md

C++ CG: Meta + automated checkable rule

Ph1losophy

o O

@)

0 O O O

Express ideas directly in code
Write in ISO Standard C++
Express intent

Ideally, a program should be
statically type safe

Prefer compile-time checking to
run-time checking

What cannot be checked at compile
time should be checkable at run
time

Catch run-time errors early
Don't leak any resources
Don't waste time or space

Prefer immutable data to mutable
data

Encapsulate messy constructs,
rat(:ler than spreading through the
code

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md

IVIISRA and Automated checkable rules with some meta

JU‘/ MISRA — Motor Industry Software Reliability Association : ::
| + 1 ! ,
MISRA C fiest Do |

t
1998 - Guidelines for the use of the C language in vehicle based software ‘ No HA?M
MISRA C:1998 (MISRA C1) |

il 2004 - MISRA C:2004 Guidelines for the use of the C language in critical systems
MISRA C:2004 (MISRA C2)

2013 - MISRA C:2012 Guidelines for the use of the C language in critical systems
MISRA C:2012 (MISRA C3)

159 rules of which 138 are statically enforceable

MISRA C++

2008 - Guidelines for the use of the C++ language in critical systems

l Hérpaara,{}c,g !

228 rules of which 219 are statically enforceable

e Code will always have bug, but they must do no harm

So far most only
deal with
Sequential code

What is still missing?

Very few deal with
Parallel code

There is always going to be:
* Dirty data, faulty HW, integrity problems

Even fewer deal
with Concurrent,
event driven code

J

None deal with

dispatch code

* NEED Freedom from interference, which is much harder in

multithread system

e Heterogeneous-> Al/ML safety

¢ @

Landlor & sig & Sig £ Sig

O a https://docs.google.com/document/d/14E0BYqsH_d7fMKvXvaZWoNWtIC65cYBw0aZp4dlevOQ/edit

MISRAC ++ParallelConcurrencyHeteroRulesOverview 3

File Edit View Insert Format Tools Add-ons Help

~ o~ A B 100% -

A

w Outline

0.1 Language Independent Issues

© 0.2 General

0.2.1 [1] Think in terms of tasks, ...

0.2.2 [2] Do not use platform sp...
0.3 Thread
0.3.1 0.3.x [82] Make std::thread...
0.3.2
0.3.3
- 0.3.4 [3] A thread shall not acce..

0.3.5 [4] Thread callable object ...

0.3.6 [5] Do not use std::thread ...

10

0.3.7 [6] Use high_integrity::thre...

0.3.8 [7] Do not call std::thread::...

Normal text

Last edit was made seconds ago by Michael Wong

>0 -+ .. B

v 279 ~

v |12 | o

B I UA >

v 1 2 3 4 5 6 v

Note: this is an early draft WIP. It's known to be incomplet and incorrekt, and it has lots of
badformatting.

Table of Content

0.1 Language Independent Issues 5

0.2 General 5
0.2.1 [1] Think in terms of tasks, rather than threads 5
0.2.2 [2] Do not use platform specific multi-threading facilities 5

0.3 Thread 6
0.3.1 [3] Join std::thread before going out of scope of all locally declared objects passed to
thread callable object via pointer or reference Think of a joining thread as a scoped
container 6
0.3.2 [4] Thread callable object may receive only global and static objects via pointer or
reference, if std::thread will be detached Think of a thread as a global container I
0.3.3 [5] Do not use std::thread Prefer gsl::joining_thread over std::thread 8
0.3.4 [6] Use high_integrity::thread in place of std::thread 9
0.3.5 [7] Do not call std::thread::detach() function Don't detach() a thread 9

0.3.6 [8] Verify resource management assumptions of std::thread with the implementation of
standard library of choice 10

CrownePlaza is an open Wi-Fi. Use Bitdefender VPN
to secure your connection and to protect your
nrivacy

B

X

2

7

~

33 e O ¥ INn @ O

OO

Heading numbers format 1.23 = m

Display until level 6 —

0.1 Language Independent Issues
0.2 General
0.2.1 [1] Think in terms of tasks, rather thar
0.2.2 [2] Do not use platform specific multi-
0.3 Thread
0.3.1 0.3.x [82] Make std::threads unjoinabl
0.3.2
0.3.3
0.3.4 [3] A thread shall not access objects v
0.3.5 [4] Thread callable object may receive
0.3.6 [5] Do not use std::thread Prefer gsl:;j
0.3.7 [6] Use high_integrity::thread in place
0.3.8 [7] Do not call std::thread::detach() fui
0.3.9 [8] Verify resource management assu
0.4 Mutex
0.4.1 [9] Do not call member functions of st
0.4.2 [10] Do not access the members of st
0.4.3 [11] Use std::lock(), std::try_lock() or <
0.4.4 [12] Do not destroy objects of the follc
0.4.5 [13] Mutexes locked with std::lock or ¢
0.4.6 [14] Do not call virtual functions and c
0.4.7 [15] Avoid deadlock by locking in a pr
0.4.8 [16] Objects of std::lock_guards, std:x
0.4.9 [17] Define a mutex together with the
0.4.10 [18] Do not speculatively lock a non-
0.4.11 [19] There shall be no code path whi
0.4.12 [20] The order of nested locks unlocl

0.4.13 [21] std::recursive_mutex and std:re

Always open for this document

Powered by Josué MOENS @ LumApps

v A Table of contents X
¢)

Stage 1: extensive deep analysis of 81 rules

e Started in 2019 at a MISRA meeting
* Why are there no rules for parallelism in MISRA?
* 2019-2021: Phase 1 complete
* Reviewed 81 rules pulled from
e C++CG
* HIC++
* REphrase H2020 project
* CERTC++
* JSF++ (no parallel rules)
* WG23 (no parallel rules)
 Added some from our own contributions
* Many joined, average 5-8 per meeting
* Also consulted outside concurrency and safety experts
e Shared Drive of Phase 1 analysis:
* https://docs.google.com/document/d/14E0BYgsH_d7fMKvXvaZWoNW1tIC65c
YBwO0aZp4dlev0Q /edit#theading=h.ytOhxah53p9e

https://docs.google.com/document/d/14E0BYqsH_d7fMKvXvaZWoNWtIC65cYBw0aZp4dlev0Q/edit#heading=h.yt0hxah53p9e
https://docs.google.com/document/d/14E0BYqsH_d7fMKvXvaZWoNWtIC65cYBw0aZp4dlev0Q/edit#heading=h.yt0hxah53p9e

&

A6

1

als|w|n

ol u|o

10°C Cloudy A~ &I 10:45PM

SIEHI ! [EYUCN T ERTE T ell=dE 4 EE S Nl ol - g4 P [= == - 1 == 1= = = = = = = = S H = H R vy = =
> C 8 docs.google.com/spreadsheets/d/1f-NX2z6axlyv5POmh4aeNfKO7KLSVSTZrTwS2YO02M/edit#gid=0 % o PR .B [C IR =] o » @ H
Apps Google Calendar ¥ Bookmarks W alwaysvpn - Search.. M Gmail - Inbox (2948.. B Notes from 12/04/0... [j Discussions - Open... FiyerTalk - The worl.. & Cruise Reviews, Crui.. (B} Hulu Outside US - T.. HD ADSlgeek:Dsimod... » | [[] Other bookmarks Reading list
MISRAC ++ParallelConcurrencyHeteroRulesStatusPhasel % & & 8 (@- @
File Edit View Insert Format Data Tools Add-ons Help Lastedit was 3 days ago
o o~ o\ P O00% v p % .0 .00 123v Arial -~ 12 'BI%A * H c Evdv|p-Yy o @B MW Y- Py- A
A2 0.3.6 [5] Do not use std::thread
7 7 A l B i c D | E ‘ I G | n
Rule Category decidable via human review decidable via tools status Destination: Tools vs C++ Core guideline Reason for keeping and |
0.2.2 [2] Do not use platform specific multi-threading facilities partially consider later only partially detectable, e.¢
10.3.10.3.x [82] Make std::threads unjoinable on all paths yes, on system level consider later use [7] instead @
034 [3] A thread shall not access objects whose lifetime has expired partially _ it may exclude certain techr
035 [4] Thread callable object may receive only global or static objects via pointer or . partially consider later complex behavior of detach
|0.3.6 [5] Do not use std::thread | straightforward and decidat =)
0.3.8 [7] Do not call std::thread::di h() fi ion? Join on all Available exit paths required better than [82] in decidabili
0.3.9 [8] Verify resource g pi of std::thread with the implementai directive 0 consider later directive - keep directive for
0.4.1 [9] Do not call member functions of std::mutex, std::timed_mutex, std::recursive_ required straightforward and decidat *
04.3 [11] Use std::lock(), std::try_lock() or std::scoped_lock to acquire multiple mutex: required straightforward and decidat
1044 [12] Do not destroy objects of the following types std::mutex, std::timed_mutex, : d clear UB related
045 [13] Mutexes locked with std::lock or std::try_lock shall be wrapped with std::/oc: required straightforward and decidat
‘0.4.6 [14] Do not call virtual fi i and callable obj P d by argument of the i e yes, on system level consider later
048 [16] Objects of std::lock_guards, std. ique_locks, std::shared_lock and std::sc required straightforward and decidat
0.4.9 [17] Define a mutex together with the data it guards. Use synchronized_value<T> directive : consider later related APl is not yet confin
0.4.11 [19] There shall be no code path which results in locking of the non-recursive m clear UB related
0.4.12 [20] The order of nested locks unlock shall form a DAG required : yes, on system level should enspire tools detecti
10.4.13 [21] std::recursive_mutex and std::recursive_timed_mutex should not be used a sign of too complex soluti
0.4.14 [22] There should be a code path, where at least one member functions is callea yes, on system level drop not a safety concern
0.5.1 [23] std::condition_variable::wait, std::condjtion_variable::wait_for, std::conditio required straightforward and decidat
053 [25] std::conditional_variable::notify_one() can be used if all threads must perforim the same set of oper? ? consider later
054 [26] Do not use std::condition_variable_any on a std::mutex straightforward and decidat
061 [27]Use only std::memory_order_seq_cst for atomic operations required straightforward and decidat
0.7.1 [28] Use a future to return a value from a concurrent task ? ? drop hardly formalizable
0.7.2 [29] Use an async() to sp a rent task ? ? drop to be replace with [5]
0.8.1 [30] Don't try to use volatile for synchronization ? ? drop to be replace with [32]
082 [31] Use volatile only to talk to non-C++ memory ? ? drop should not be in scope of p:
083 [32] Volatile variables shall not be accessed from different threads. required may be, on system level should enspire tools detecti
0.9.1 [33] Bit-fields of the same object, which are not separated by not-bit-field or zero required may be, on system level consider later very small use case B
'0 9 2 1341 Sunchronize to dara shared hetween threads nsing a sinale lock AR ISTANET - ncidac ator nat narfacthy farmalizabla X
+ = Nuetl ~ Wind %

Rule decidability

« Human review
* Generally simple rules
* Code snippets
* Basic syntax matches intention

« Automated tool
» Static scope: can be convoluted but doable and simple for this generation of tools
* Dynamic scope: much more complex, hard even for tools of this generation, may be
doable with whole program analysis

* |ntention is hidden
« Both Human and Automated tools

* Generally simple cases
* Intention is shown in syntax

« Neither are good

* Very hard cases, dynamic scope, whole program analysis

* Intention is not clear
* Inthese cases we wonder if an [[intention:]] attribute might help

Where should parallel/concurrency/hetero rules go?

Human decidable
Easy

Easy

Hard

Hard

Tool decidable
Easy

Hard

Easy

Hard

Suitable tools in order of preference
C++CG, MISRA tools

C++CG, Tools will be meta or undecidable,
lots of false positive
May be bad rule for tools

MISRA tools, CG Meta

Neither, META directive; Code guidelines
Obvious rules, but hard to verify

Might not be a good rule anyway

Need a new [[intention::] attribute

Stage 2: collate

» Category
 Mandatory: 8
* Required: 12
e Advisory: 12
* Directive: 5
* Decidable by humans
* Easy: 27
e Medium: 1
e Complex: 20
* Unknownyet: 9
e Decidable via automated
tools
* Yes, on alocal level: 20
* Yes, on asystem level: 6
* Maybe, on a system
level: 7
* No:8
* Unknown yet: 11

Category Lo
Ignore rows - 1 +
1 Count 1l Distribution

»” Most W Least
VALUE FREQUENCY
required 12
advisory 12
mandatory 8
directive 5

decidable via human review < >

Ignore rows - 1 +

i Count i Distribution

30

10

? complex easy medium

»* Most Wy Least
VALUE FREQUENCY
easy 27
complex 20
? 9
medium 1

decidable via tools

3 2

Ignore rows - 1 +

il Count

1h Distribution

»* Most

VALUE
yes, on local level
?

no

may be, on syst...

yes, on system |...

W Least

FREQUENCY

20

11

8

CG, Misra, both or neither
e Accepted: for initial entry 24

e CG+tools: 12
* Tools+CG: 5
* Modifies CG: 4
* Same as CG: 3
* Deferred for future: 26
* Rejected: 18
* Shared drive of Status from
Phase 1:
* https://docs.google.com/sp
readsheets/d/1f-NX2z6axly
v5PO0Mmh4aeNfKO7KLSVSTtZr

TwS2YO002M/edit#gid=0

status < >

Ignore rows - 1 +

il Count i Distribution

10
0
accept for consider drop
initia later
revision

»* Most s Least
VALUE FREQUENCY
consider later 26
accept for initial... 24
drop 18

Destination: Toolsvs C++C... < >

Ignore rows | — 1 +

i Count il Distribution

0
3¢ & ¢
.;p‘& & o £

»~* Most “ Least
VALUE FREQUENCY
CG+Tools 2
Tools+CG 5
Modifies CG 4
Same as CG 3

https://docs.google.com/spreadsheets/d/1f-NX2z6axIyv5P0mh4aeNfKO7KLSVSTtZrTwS2YO02M/edit#gid=0
https://docs.google.com/spreadsheets/d/1f-NX2z6axIyv5P0mh4aeNfKO7KLSVSTtZrTwS2YO02M/edit#gid=0
https://docs.google.com/spreadsheets/d/1f-NX2z6axIyv5P0mh4aeNfKO7KLSVSTtZrTwS2YO02M/edit#gid=0
https://docs.google.com/spreadsheets/d/1f-NX2z6axIyv5P0mh4aeNfKO7KLSVSTtZrTwS2YO02M/edit#gid=0

Agenda

1. Current status of C++ safety: MISRA and C++ CG
2. Parallel Safety rules
3. Automotive Safety case

For humans and tools -> C++CG and MISRA

Rule 13 Mutexes locked with std:lock or std::try_lock shall be wrapped

with std::lock_guard, std::unique_lock or std::shared_lock with adopt_lock
tag within the same scope

The rule intention is to employing RAIl for controlling the state of
mutexes in exceptional conditions

1 i i ? ;
s it easy to detect via review: :> Good for C++CG
 just check std::lock arguments

s it easy to detect by tool?
« tool can check std::lock arguments :> Good for MISRA

For humans and tools -> C++CG and MISRA

« Rule 13 Mutexes locked with std::lock or std::try_lock shall be wrapped
with std::lock_guard, std::unique_lock or std::shared_lock with adopt_lock
tag within the same scope

C++CG has these rules:

CP.20: Use RAIl, never plain lock() /unlock() CP.21:Use std::lock() or std::scoped_lock to acquire multiple
mutex es

Reason Avoids nasty errors from unreleased locks.
Reason To avoid deadlocks on multiple mutex es.

Rule 13 is intentionally friendlier for tools, if compared with CP.21

For humans not tools -> C++CG

Rule 39 Use std::call_once to ensure a function is called exactly once
(rather than the Double-Checked Locking pattern)

The rule intention is to avoid common errors, which might be

introduced if common concurrency task is being reproduced with less
care

. . S .
Is it easy to detect via review: :> Good for C++CG
via careful understanding of the coder intention

s it easy to detect by tool?

Not so good for
It is difficult to detect incorrectly written :> tools
Double-Checked Locking pattern

For humans not tools -> C++CG

« Rule 39 Use std::call_once to ensure a function is called exactly once
(rather than the Double-Checked Locking pattern)

C++CG has these rules:

CP.110: Do not write your own double-checked locking for
initialization ¢

Reason Since C++11, static local variables are now initialized in a thread-safe way. When
combined with the RAIl pattern, static local variables can replace the need for writing
your own double-checked locking for initialization. std::call_once can also achieve the
same purpose. Use either static local variables of C++11 or std::call_once instead of
writing your own double-checked locking for initialization.

For tools not humans -> MISRA

« Rule 19 The order of nested locks/unlock shall form a DAG

The rule intention is to avoid deadlocks via careful tracing of locking
and unlocking order.

s it easy to detect via review?

Starting from the moderately complex code, it
becomes very difficult to trace the order of locks

P4 :> Harder for C++CG

s it easy to detect by tool?

Better for Tools
It is theoretically possible, if all the code :>
underneath the specified block is visible

For humans only -> meta rules

« Rule 8 Verify resource management assumptions of std::thread with the
implementation of standard library of choice

Safety implies careful analysis of assumption introduced by
dependencies, this one should be reviewed with especial care

Is it easy to detect via review?
Y % —>

It is not visible in code and should be applied on
higher review levels

Too high level for
C++CG?

s it easy to detect by tool?

_ bl in code and bl f % :> Directive for
It is notV|5|_ e in code and is not visible for tOO|S/|V||SRA
code analysis tools

Agenda

1. Current status of C++ safety: MISRA and C++ CG
2. Parallel Safety rules
3. Automotive Safety case

Why Concurrency guidelines for automotive?

® 1S026262 lists concurrency aspects as one topic to be covered by “Modeling and
coding guidelines”
® But should a safety-critical system contain concurrent control-flow at all?

e Typical embedded systems are small and follow static execution patterns
® Even a multi-core automotive chip may have parallel execution but no concurrency if
components scheduled on different cores do not interact

The Old World vs. The New

Traditionally, automotive systems rely on static scheduling
Each task is given a predetermined time slice in the schedule for execution
The complete schedule is configured upfront as part of the system design

Temporal execution of tasks is completely deterministic

= Tasks not scheduled to run in parallel will not overlap. Synchronization between cores
is handled by a thin basic software module layer.

= Component interaction across cores is minimized

The Old World vs. The New

e Static scheduling works well only if the number of components is small or the
interaction between components is minimal

e With compute-intensive applications like highly automated driving, parallel
computation is needed to process data in time

Old: Many small independent applications sharing compute resources of a single CPU.
Simple basic software layer at the bottom.

New: One single application requiring all compute resources of a powerful multi-core CPU
and possibly a number of auxiliary hardware accelerators. Fully fledged OS at the bottom.

= Lots of concurrency, asynchronous APIs as the default

Asynchronous APIls in Adaptive Autosar

ara::com::FindServiceHandle find_service_handle = RadarServiceProxy::StartFindService(

[1(ara::com::ServiceHandleContainer<RadarServiceProxy: :HandleType> handles, ara::com::FindServiceHandle) {

})s
/] ...

RadarServiceProxy::StopFindService(find_service_handle);

Asynchronous APIls in Adaptive Autosar

ara::com::FindServiceHandle find_service_handle = RadarServiceProxy::StartFindService(
[1(ara::com::ServiceHandleContainer<RadarServiceProxy: :HandleType> handles, ara::com::FindServiceHandle) {
if (handles.empty()) { return; }

RadarServiceProxy service(handles.front());

ara::core::Future<uint32 t> fut = service.UpdateRate.Get();

/] ...
})s
/] ...

RadarServiceProxy::StopFindService(find_service_handle);

Asynchronous APIls in Adaptive Autosar

ara::com::FindServiceHandle find_service_handle = RadarServiceProxy::StartFindService(
[1(ara::com::ServiceHandleContainer<RadarServiceProxy: :HandleType> handles, ara::com::FindServiceHandle) {
if (handles.empty()) { return; }

RadarServiceProxy service(handles.front());

ara::core::Future<uint32 t> fut = service.UpdateRate.Get();

auto fut2 = fut.then([](ara::core::Future<uint32_t> f) -> auto {
uint32_t update_rate = f.get();
/] ...

})s

/] ...

})s
/] ...

RadarServiceProxy::StopFindService(find_service_handle);

Bug Example

struct SharedData {

uint32_t update_rate;
} shared_data;

fut.then([&shared_data](ara::core::Future<uint32_t> f) -> auto {

shared_data.update_rate = f.get();

})s

Bug Example

struct SharedData {
std::mutex mtx;
uint32_t update_rate;
} shared_data;

fut.then([&shared_data](ara::core::Future<uint32_t> f) -> auto {
shared_data.mtx.lock();
shared_data.update_rate = f.get();

})s

Bug Example

struct SharedData {
std::mutex mtx;
uint32_t update_rate;
} shared_data;

fut.then([&shared_data](ara::core::Future<uint32_t> f) -> auto {
shared_data.mtx.lock();
shared_data.update_rate = f.get();

// WARNING: Do not destroy objects of type std::mutex

// if object is in locked state

})s

Bug Example

struct SharedData {
std::mutex mtx;
uint32_t update_rate;
} shared_data;

fut.then([&shared_data](ara::core::Future<uint32_t> f) -> auto {
shared_data.mtx.lock();
shared_data.update_rate = f.get();

shared_data.mtx.unlock();

})s

Bug Example

struct SharedData {
std::mutex mtx;
uint32_t update_rate;
} shared_data;

fut.then([&shared_data](ara::core::Future<uint32_t> f) -> auto {
shared_data.mtx.lock();
shared_data.update_rate = f.get(); // get() may throw!

shared_data.mtx.unlock();

})s

Bug Example

struct SharedData {
std::mutex mtx;
uint32_t update_rate;
} shared_data;

fut.then([&shared_data](ara::core::Future<uint32_t> f) -> auto {
shared_data.mtx.lock(); // WARNING: Do not call member functions of std::mutex
shared_data.update_rate = f.get(); // get() may throw!

shared_data.mtx.unlock();

})s

Bug Example

struct SharedData {
std::mutex mtx;
uint32_t update_rate;
} shared_data;

fut.then([&shared_data](ara::core::Future<uint32_t> f) -> auto {
std::scoped_lock{ shared_data.mtx };
shared_data.update_rate = f.get();

})s

Bug Example

struct SharedData {
std::mutex mtx;
uint32_t update_rate;
} shared_data;

fut.then([&shared_data](ara::core::Future<uint32_t> f) -> auto {
std::scoped_lock{ shared_data.mtx }; // WARNING: Objects of type std::scoped_lock shall always be named
shared_data.update_rate = f.get();

})s

Bug Example

struct SharedData {
std::mutex mtx;
uint32_t update_rate;
} shared_data;

fut.then([&shared_data](ara::core::Future<uint32_t> f) -> auto {
std::scoped_lock 1k{ shared_data.mtx };
shared_data.update_rate = f.get();

})s

Does this mean concurrency is now fine for
safety-critical software?

Rules only attempt to catch common pitfalls in using concurrency facilities.

They are only one building block in a larger safety strategy.

Safety implications of use of concurrency must be carefully evaluated in the context of the

overall safety strategy

Final Words

More safety:Parallel/concurrency for C++11, 14, 17, C++20

Asynchronous Agents

abstractions from C++11: thread,lambda
C++11,14,17,20 function, TLS, async

C++ 20: Jthreads
+interrupt _token,
coroutines

Parallel collections

C++11: packaged tasks,
promises, futures,

C++ 17: ParallelSTL,
control false sharing

C++20 : Vec execution
policy, Algorithm
un-sequenced policy

Mutable shared state Heterogeneous/Distributed

C++11: locks, memory model, C++11: lambda
mutex, condition variable, atomics,
static init/term, C++14: generic lambda
C++ 14:
shared_lock/shared_timed_mutex,
OOTA, atomic_signal_fence,

C++ 17: scoped _lock,
shared_mutex, ordering of
memory models, progress
guarantees, TOE, execution
policies

C++20: atomic_ref, Latches and
barriers, atomic<shared_ptr>
Atomics & padding bits

Simplified atomic init

Atomic C/C++ compatibility
Semaphores and waiting

Fixed gaps in memory model ,
Improved atomic flags, Repair
memory model

C++17: , progress
guarantees, TOE,
execution policies

C++20: atomic_ref

Future safety rules for C++ 20/23 parallelism

« Not inventing, just documenting common wisdom which takes
time
« MISRA NEXT is really MISRA 2008 + AUTOSAR

* Need more manpower
* Need more experience on the safety of new features
* Will not cover C++20 and might even miss a few C++17 features

« MISRA parallel will also be in stages

C++11 atomics, async .mm

C++14 shared lock

C++17 parallel algo, futures, (still need more deep dive) unseq,
C++20 latches barriers, coroutine, atomic ref,

C++23 senders and receivers?

C++26 executors networking?, concurrency TS2?

Conclusion and Future plan

e 2021: plan to integrate with MISRA 202X NEXT release
e 17 rules to MISRA C++ NEXT
e 17 rules to C++CG
e 4 CG rules to be modified
* Reset Deferred to next phase
e 2022-?
 Work on Deferred rules
e Add new rules covering
* Coroutines, parallel algorithm, executors,
* Aim for next release of MISRA NEXT+ CG NEXT

« Continue with more phases and more releases

C++ Will need to integrate safety with ML

From sequential->concurrency

« 26262
« Adaptive autosar

From concurrency->heterogeneous

« ML /Al trustworthiness, safety
o« 21448 SOTIF

« UL4600

« SAE ORAD

CG, Misra, both or neither
e Accepted: for initial entry 24

e CG+tools: 12
* Tools+CG: 5
* Modifies CG: 4
* Same as CG: 3
* Deferred for future: 26
* Rejected: 18
* Shared drive of Status from
Phase 1:
* https://docs.google.com/sp
readsheets/d/1f-NX2z6axly
v5PO0Mmh4aeNfKO7KLSVSTtZr

TwS2YO002M/edit#gid=0

status < >

Ignore rows - 1 +

il Count i Distribution

10
0
accept for consider drop
initia later
revision

»* Most s Least
VALUE FREQUENCY
consider later 26
accept for initial... 24
drop 18

Destination: Toolsvs C++C... < >

Ignore rows | — 1 +

i Count il Distribution

0
3¢ & ¢
.;p‘& & o £

»~* Most “ Least
VALUE FREQUENCY
CG+Tools 2
Tools+CG 5
Modifies CG 4
Same as CG 3

https://docs.google.com/spreadsheets/d/1f-NX2z6axIyv5P0mh4aeNfKO7KLSVSTtZrTwS2YO02M/edit#gid=0
https://docs.google.com/spreadsheets/d/1f-NX2z6axIyv5P0mh4aeNfKO7KLSVSTtZrTwS2YO02M/edit#gid=0
https://docs.google.com/spreadsheets/d/1f-NX2z6axIyv5P0mh4aeNfKO7KLSVSTtZrTwS2YO02M/edit#gid=0
https://docs.google.com/spreadsheets/d/1f-NX2z6axIyv5P0mh4aeNfKO7KLSVSTtZrTwS2YO02M/edit#gid=0

Safety Crltlcal API Evolutlon

™ = Va) /e;\‘ -

New Generation Safety
Critical APIs for Graphics, 4 A
Compute and Display

minimize API surface area , reduce
ambiguity. UB, increase determlmsm

Industry Need e \“"'i : l £
for CPU/GPU Acceleration APIs designed T E
\ to ease system safety certification

|

Rendermg Compute D1splay

<

International
Organization for
Standardization

UNECE WP.29 ISO 26262

N
2 ‘ SYCL. 1SO/PAs 21448 %

UL 4600 NNNNNNNNNNNNNN

JTC1/SC42
elligence

