

Andreas Weis (he/him)
Staff Engineer
at Woven Planet

 / ComicSansMS

 @DerGhulbus

 Co-organizer of the Munich C++ User
Group (MUC++)

Member of WG21 (ISO C++) and MISRA C++

Working on the Runtime framework for the
Arene platform at Woven Planet

Ilya BurylovPrinciple Engineer
at Intel
An architect of C++ software solutions for autonomous
driving market in Intel

Contribution into functional safety MISRA standard

Contribution into WG21 in threading, vectorization and
numerics.

Contribution into SYCL

Michael WongDistinguished Engineer
● Chair of SYCL Heterogeneous Programming

Language
● ISO C++ Directions Group past Chair
● Past CEO OpenMP
● ISOCPP.org Director, VP

http://isocpp.org/wiki/faq/wg21#michael-wong
● michael@codeplay.com
● fraggamuffin@gmail.com
● Head of Delegation for C++ Standard for Canada
● Chair of Programming Languages for Standards

Council of Canada
Chair of WG21 SG19 Machine Learning
Chair of WG21 SG14 Games Dev/Low
Latency/Financial Trading/Embedded

● Editor: C++ SG5 Transactional Memory Technical
Specification

● Editor: C++ SG1 Concurrency Technical Specification
● MISRA C++ and AUTOSAR
● Chair of Standards Council Canada TC22/SC32

Electrical and electronic components (SOTIF)
● Chair of UL4600 Object Tracking
● RISC-V Datacenter/Cloud Computing Chair
● http://wongmichael.com/about
● C++11 book in Chinese:

https://www.amazon.cn/dp/B00ETOV2OQ

We build GPU compilers for some of the most powerful
supercomputers in the world

4

http://isocpp.org/wiki/faq/wg21
mailto:michael@codeplay.com
mailto:fraggamuffin@gmail.com
http://wongmichael.com/about

© The Khronos® Group Inc. 2020 - Page 5This work is licensed under a Creative Commons Attribution 4.0 International License

Acknowledgement and Disclaimer
Numerous people internal and external
to the original C++/Khronos group, in
industry and academia, have made
contributions, influenced ideas, written
part of this presentations, and offered
feedbacks to form part of this talk.

Images belong to their respective
copyrights.

But I claim all credit for errors, and stupid mistakes. These
are mine, all mine! You can’t have them.

Agenda
1. Current status of C++ safety: MISRA and C++ CG
2. Parallel Safety rules
3. Automotive Safety case

Safety Critical API Evolution

minimize API surface area , reduce
ambiguity, UB, increase determinism

New Generation Safety
Critical APIs for Graphics,

Compute and Display

Industry Need
for CPU/GPU Acceleration APIs designed

to ease system safety certification

Rendering Compute Display

• Khronos Safety Critical Advisory
Forum

• OpenCL/SYCL Safety Critical

• Vulkan Safety Critical

• JTC1/SC42 Machine Learning WG3
Trustworthiness

• ITC22/SC32 SOTIF WG8 SOTIF,
WG13, WG14

• SAE ORAD

• UL4600

• RISC-V Safety/Security

• Misra: checkable rules only

• Autosar C++ Guidelines: a mix of meta guidelines and
checkable rules

• High Integrity C++: for static checkers

• WG23 Programming Vulnerabilities: for team leads

• C++ Core Guidelines: a mix

• C++ Study Group 12 Vulnerabilities: for standards

• C Safe and Secure Study Group: for standards

• Carnegie Mellon Cert C and C++: a mix

• Joint Strike Fighter ++: checkable rules

• Common Weakness Enumeration: a mix

Many Safety Critical APIs

• Safe but not C++11/14/17/20

• Joint Strike Fighter Air Vehicle C++
Coding Standards for the System
Development and Demonstration
Program, 2005

• With the help of Bjarne Stroustrup

• MISRA C++:2008 Guidelines for the
use of the C++ language in critical
systems, The Motor Industry Software
Reliability Association, 2008

• Continues to be the reference despite its age

• For automated static analysis tools

• Aimed for embedded domains

• C++11/14/17/20 but not safe
• High Integrity C++ Coding Standard Version 4.0, Programming

Research Ltd, 2013

• Some parallelism

• Software Engineering Institute CERT C/C++ Coding Standard,
Software Engineering Institute Division at Carnegie Mellon
University, 2016

• Most recent effort based on C 11 and C++ 14

• C++ Core Guidelines,
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuideline
s, 2017

• Most recent effort based on C++17 + 20

• An excellent style guide for greater elegance, and
safety/performance

• No specific domains, also for static analysis and guidance

• WG23 Vulnerabilities ISO for C, C++, Ada, Fortran, …

• Guidelines for teamleads

• Reviewed with each ISO C, C++, Ada, Fortran help

Which one to choose and what is the difference?

Comparing coding standards

Coding Standard C++ Versions

Autosar C++14

Misra C++03 (working to C++17)

High Integrity CPP C++11

JSF C++03

C++ CG C++11/14/17/20/latest

CERT C++ C++14

Pedigree

Coding
Standard

Number
of Rules

Number of rules in common with
Autosar

% of rules
in
common Identical Small Diff Big Diff

Misra C++ 229 138 38 32 91%

High
Integrity
C++

155 0 99 25 80%

JSF ++ 226 0 143 28 76%

C++ CG 412 0 174 49 54%

CERT C++ 156 0 75 33 69%

These are the 2
most important
guidelines today

C++ CG: Meta + automated checkable rule
• Follow Bjarne’s talk on

type+resource Safety on C++ CG
• Aim for bug free code with high

performance and elegant coding
style

• Meta rules + checkable rules
• USe GSL, CLion,

• Use a carefully crafted set of
programming techniques
• supported by library facilities
• enforced by static analysis.

• Available on GitHub
• https://github.com/isocpp/CppC

oreGuidelines/blob/master/Cpp
CoreGuidelines.md

● Philosophy
○ Express ideas directly in code

○ Write in ISO Standard C++

○ Express intent

○ Ideally, a program should be
statically type safe

○ Prefer compile-time checking to
run-time checking

○ What cannot be checked at compile
time should be checkable at run
time

○ Catch run-time errors early

○ Don't leak any resources

○ Don't waste time or space

○ Prefer immutable data to mutable
data

○ Encapsulate messy constructs,
rather than spreading through the
code

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md

MISRA and Automated checkable rules with some meta

● Code will always have bug, but they must do no harm

What is still missing?

So far most only
deal with

Sequential code

Very few deal with
Parallel code

Even fewer deal
with Concurrent,
event driven code

None deal with
Heterogeneous
dispatch code

There is always going to be:

• Dirty data, faulty HW, integrity problems
• NEED Freedom from interference, which is much harder in

multithread system
• Heterogeneous-> AI/ML safety

Stage 1: extensive deep analysis of 81 rules

• Started in 2019 at a MISRA meeting
• Why are there no rules for parallelism in MISRA?

• 2019-2021: Phase 1 complete
• Reviewed 81 rules pulled from

• C++CG
• HIC++
• REphrase H2020 project
• CERT C++
• JSF++ (no parallel rules)
• WG23 (no parallel rules)
• Added some from our own contributions

• Many joined, average 5-8 per meeting
• Also consulted outside concurrency and safety experts

• Shared Drive of Phase 1 analysis:
• https://docs.google.com/document/d/14E0BYqsH_d7fMKvXvaZWoNWtIC65c

YBw0aZp4dlev0Q/edit#heading=h.yt0hxah53p9e

https://docs.google.com/document/d/14E0BYqsH_d7fMKvXvaZWoNWtIC65cYBw0aZp4dlev0Q/edit#heading=h.yt0hxah53p9e
https://docs.google.com/document/d/14E0BYqsH_d7fMKvXvaZWoNWtIC65cYBw0aZp4dlev0Q/edit#heading=h.yt0hxah53p9e

Rule decidability
• Human review

• Generally simple rules
• Code snippets
• Basic syntax matches intention

• Automated tool
• Static scope: can be convoluted but doable and simple for this generation of tools
• Dynamic scope: much more complex, hard even for tools of this generation, may be

doable with whole program analysis
• Intention is hidden

• Both Human and Automated tools
• Generally simple cases
• Intention is shown in syntax

• Neither are good
• Very hard cases, dynamic scope, whole program analysis
• Intention is not clear

• In these cases we wonder if an [[intention:]] attribute might help

Where should parallel/concurrency/hetero rules go?
Human decidable Tool decidable Suitable tools in order of preference

Easy Easy C++CG, MISRA tools

Easy Hard C++CG, Tools will be meta or undecidable,
lots of false positive
May be bad rule for tools

Hard Easy MISRA tools, CG Meta

Hard Hard Neither, META directive; Code guidelines
Obvious rules, but hard to verify
Might not be a good rule anyway
Need a new [[intention::] attribute

Stage 2: collate
• Category

• Mandatory: 8
• Required: 12
• Advisory: 12
• Directive: 5

• Decidable by humans
• Easy: 27
• Medium: 1
• Complex: 20
• Unknown yet: 9

• Decidable via automated
tools

• Yes, on a local level: 20
• Yes, on a system level: 6
• Maybe, on a system

level: 7
• No: 8
• Unknown yet: 11

CG, Misra, both or neither
• Accepted: for initial entry 24

• CG+tools: 12
• Tools+CG: 5
• Modifies CG: 4
• Same as CG: 3

• Deferred for future: 26
• Rejected: 18

• Shared drive of Status from
Phase 1:
• https://docs.google.com/sp

readsheets/d/1f-NX2z6axIy
v5P0mh4aeNfKO7KLSVSTtZr
TwS2YO02M/edit#gid=0

https://docs.google.com/spreadsheets/d/1f-NX2z6axIyv5P0mh4aeNfKO7KLSVSTtZrTwS2YO02M/edit#gid=0
https://docs.google.com/spreadsheets/d/1f-NX2z6axIyv5P0mh4aeNfKO7KLSVSTtZrTwS2YO02M/edit#gid=0
https://docs.google.com/spreadsheets/d/1f-NX2z6axIyv5P0mh4aeNfKO7KLSVSTtZrTwS2YO02M/edit#gid=0
https://docs.google.com/spreadsheets/d/1f-NX2z6axIyv5P0mh4aeNfKO7KLSVSTtZrTwS2YO02M/edit#gid=0

Agenda
1. Current status of C++ safety: MISRA and C++ CG
2. Parallel Safety rules
3. Automotive Safety case

For humans and tools -> C++CG and MISRA

• Rule 13 Mutexes locked with std::lock or std::try_lock shall be wrapped
with std::lock_guard, std::unique_lock or std::shared_lock with adopt_lock
tag within the same scope

The rule intention is to employing RAII for controlling the state of
mutexes in exceptional conditions

Is it easy to detect via review?

• just check std::lock arguments

Is it easy to detect by tool?

• tool can check std::lock arguments

Good for C++CG

Good for MISRA

For humans and tools -> C++CG and MISRA

• Rule 13 Mutexes locked with std::lock or std::try_lock shall be wrapped
with std::lock_guard, std::unique_lock or std::shared_lock with adopt_lock
tag within the same scope

C++CG has these rules:

Rule 13 is intentionally friendlier for tools, if compared with CP.21

For humans not tools -> C++CG

• Rule 39 Use std::call_once to ensure a function is called exactly once
(rather than the Double-Checked Locking pattern)

The rule intention is to avoid common errors, which might be
introduced if common concurrency task is being reproduced with less
care

Is it easy to detect via review?
• via careful understanding of the coder intention

Is it easy to detect by tool?

• It is difficult to detect incorrectly written
Double-Checked Locking pattern

Good for C++CG

Not so good for
tools

?

For humans not tools -> C++CG

• Rule 39 Use std::call_once to ensure a function is called exactly once
(rather than the Double-Checked Locking pattern)

C++CG has these rules:

For tools not humans -> MISRA

• Rule 19 The order of nested locks/unlock shall form a DAG

The rule intention is to avoid deadlocks via careful tracing of locking
and unlocking order.

Is it easy to detect via review?
• Starting from the moderately complex code, it

becomes very difficult to trace the order of locks

Is it easy to detect by tool?

• It is theoretically possible, if all the code
underneath the specified block is visible

Harder for C++CG

Better for Tools ?

For humans only -> meta rules

• Rule 8 Verify resource management assumptions of std::thread with the
implementation of standard library of choice

Safety implies careful analysis of assumption introduced by
dependencies, this one should be reviewed with especial care

Is it easy to detect via review?
• It is not visible in code and should be applied on

higher review levels

Is it easy to detect by tool?
• It is not visible in code and is not visible for

code analysis tools

Too high level for
C++CG?

Directive for
tools/MISRA

Agenda
1. Current status of C++ safety: MISRA and C++ CG
2. Parallel Safety rules
3. Automotive Safety case

Why Concurrency guidelines for automotive?
● ISO26262 lists concurrency aspects as one topic to be covered by “Modeling and

coding guidelines”

● But should a safety-critical system contain concurrent control-flow at all?

● Typical embedded systems are small and follow static execution patterns

● Even a multi-core automotive chip may have parallel execution but no concurrency if

components scheduled on different cores do not interact

The Old World vs. The New
● Traditionally, automotive systems rely on static scheduling

● Each task is given a predetermined time slice in the schedule for execution

● The complete schedule is configured upfront as part of the system design

● Temporal execution of tasks is completely deterministic

⇒ Tasks not scheduled to run in parallel will not overlap. Synchronization between cores

is handled by a thin basic software module layer.

⇒ Component interaction across cores is minimized

The Old World vs. The New
● Static scheduling works well only if the number of components is small or the

interaction between components is minimal

● With compute-intensive applications like highly automated driving, parallel

computation is needed to process data in time

Old: Many small independent applications sharing compute resources of a single CPU.

Simple basic software layer at the bottom.

New: One single application requiring all compute resources of a powerful multi-core CPU

and possibly a number of auxiliary hardware accelerators. Fully fledged OS at the bottom.

⇒ Lots of concurrency, asynchronous APIs as the default

Asynchronous APIs in Adaptive Autosar
ara::com::FindServiceHandle find_service_handle = RadarServiceProxy::StartFindService(

 [](ara::com::ServiceHandleContainer<RadarServiceProxy::HandleType> handles, ara::com::FindServiceHandle) {

 });

// ...

RadarServiceProxy::StopFindService(find_service_handle);

Asynchronous APIs in Adaptive Autosar
ara::com::FindServiceHandle find_service_handle = RadarServiceProxy::StartFindService(

 [](ara::com::ServiceHandleContainer<RadarServiceProxy::HandleType> handles, ara::com::FindServiceHandle) {

 if (handles.empty()) { return; }

 RadarServiceProxy service(handles.front());

 ara::core::Future<uint32_t> fut = service.UpdateRate.Get();

 // ...

 });

// ...

RadarServiceProxy::StopFindService(find_service_handle);

Asynchronous APIs in Adaptive Autosar
ara::com::FindServiceHandle find_service_handle = RadarServiceProxy::StartFindService(

 [](ara::com::ServiceHandleContainer<RadarServiceProxy::HandleType> handles, ara::com::FindServiceHandle) {

 if (handles.empty()) { return; }

 RadarServiceProxy service(handles.front());

 ara::core::Future<uint32_t> fut = service.UpdateRate.Get();

 auto fut2 = fut.then([](ara::core::Future<uint32_t> f) -> auto {

 uint32_t update_rate = f.get();

 // ...

 });

 // ...

 });

// ...

RadarServiceProxy::StopFindService(find_service_handle);

Bug Example
struct SharedData {

 uint32_t update_rate;

} shared_data;

fut.then([&shared_data](ara::core::Future<uint32_t> f) -> auto {

 shared_data.update_rate = f.get();

});

Bug Example
struct SharedData {

 std::mutex mtx;

 uint32_t update_rate;

} shared_data;

fut.then([&shared_data](ara::core::Future<uint32_t> f) -> auto {

 shared_data.mtx.lock();

 shared_data.update_rate = f.get();

});

Bug Example
struct SharedData {

 std::mutex mtx;

 uint32_t update_rate;

} shared_data;

fut.then([&shared_data](ara::core::Future<uint32_t> f) -> auto {

 shared_data.mtx.lock();

 shared_data.update_rate = f.get();

// WARNING: Do not destroy objects of type std::mutex

// if object is in locked state

});

Bug Example
struct SharedData {

 std::mutex mtx;

 uint32_t update_rate;

} shared_data;

fut.then([&shared_data](ara::core::Future<uint32_t> f) -> auto {

 shared_data.mtx.lock();

 shared_data.update_rate = f.get();

 shared_data.mtx.unlock();

});

Bug Example
struct SharedData {

 std::mutex mtx;

 uint32_t update_rate;

} shared_data;

fut.then([&shared_data](ara::core::Future<uint32_t> f) -> auto {

 shared_data.mtx.lock();

 shared_data.update_rate = f.get(); // get() may throw!

 shared_data.mtx.unlock();

});

Bug Example
struct SharedData {

 std::mutex mtx;

 uint32_t update_rate;

} shared_data;

fut.then([&shared_data](ara::core::Future<uint32_t> f) -> auto {

 shared_data.mtx.lock(); // WARNING: Do not call member functions of std::mutex

 shared_data.update_rate = f.get(); // get() may throw!

 shared_data.mtx.unlock();

});

Bug Example
struct SharedData {

 std::mutex mtx;

 uint32_t update_rate;

} shared_data;

fut.then([&shared_data](ara::core::Future<uint32_t> f) -> auto {

 std::scoped_lock{ shared_data.mtx };

 shared_data.update_rate = f.get();

});

Bug Example
struct SharedData {

 std::mutex mtx;

 uint32_t update_rate;

} shared_data;

fut.then([&shared_data](ara::core::Future<uint32_t> f) -> auto {

 std::scoped_lock{ shared_data.mtx }; // WARNING: Objects of type std::scoped_lock shall always be named

 shared_data.update_rate = f.get();

});

Bug Example
struct SharedData {

 std::mutex mtx;

 uint32_t update_rate;

} shared_data;

fut.then([&shared_data](ara::core::Future<uint32_t> f) -> auto {

 std::scoped_lock lk{ shared_data.mtx };

 shared_data.update_rate = f.get();

});

Does this mean concurrency is now fine for
safety-critical software?
Rules only attempt to catch common pitfalls in using concurrency facilities.

They are only one building block in a larger safety strategy.

Safety implications of use of concurrency must be carefully evaluated in the context of the

overall safety strategy

Final Words

More safety:Parallel/concurrency for C++11, 14, 17, C++20
Asynchronous Agents Parallel collections Mutable shared state Heterogeneous/Distributed

abstractions from
C++11, 14, 17, 20

C++11: thread,lambda
function, TLS, async

C++ 20: Jthreads
+interrupt _token,
coroutines

C++11: packaged tasks,
promises, futures,

C++ 17: ParallelSTL,
control false sharing

C++20 : Vec execution
policy, Algorithm
un-sequenced policy

C++11: locks, memory model,
mutex, condition variable, atomics,
static init/term,

C++ 14:
shared_lock/shared_timed_mutex,
OOTA, atomic_signal_fence,
C++ 17: scoped _lock,
shared_mutex, ordering of
memory models, progress
guarantees, TOE, execution
policies
C++20: atomic_ref, Latches and
barriers, atomic<shared_ptr>
Atomics & padding bits
Simplified atomic init
Atomic C/C++ compatibility
Semaphores and waiting
Fixed gaps in memory model ,
Improved atomic flags, Repair
memory model

C++11: lambda

C++14: generic lambda

C++17: , progress
guarantees, TOE,
execution policies

C++20: atomic_ref

Future safety rules for C++ 20/23 parallelism

• Not inventing, just documenting common wisdom which takes
time

• MISRA NEXT is really MISRA 2008 + AUTOSAR
• Need more manpower
• Need more experience on the safety of new features
• Will not cover C++20 and might even miss a few C++17 features

• MISRA parallel will also be in stages
• C++11 atomics, async .mm
• C++14 shared lock
• C++17 parallel algo, futures, (still need more deep dive) unseq,
• C++20 latches barriers, coroutine, atomic ref,
• C++23 senders and receivers?
• C++26 executors networking?, concurrency TS2?

Conclusion and Future plan

• 2021: plan to integrate with MISRA 202X NEXT release
• 17 rules to MISRA C++ NEXT
• 17 rules to C++CG
• 4 CG rules to be modified
• Reset Deferred to next phase

• 2022-?
• Work on Deferred rules
• Add new rules covering

• Coroutines, parallel algorithm, executors,
• Aim for next release of MISRA NEXT+ CG NEXT

• Continue with more phases and more releases

C++ Will need to integrate safety with ML

From sequential->concurrency

• 26262
• Adaptive autosar

From concurrency->heterogeneous

• ML /AI trustworthiness, safety
• 21448 SOTIF
• UL4600
• SAE ORAD

CG, Misra, both or neither
• Accepted: for initial entry 24

• CG+tools: 12
• Tools+CG: 5
• Modifies CG: 4
• Same as CG: 3

• Deferred for future: 26
• Rejected: 18

• Shared drive of Status from
Phase 1:
• https://docs.google.com/sp

readsheets/d/1f-NX2z6axIy
v5P0mh4aeNfKO7KLSVSTtZr
TwS2YO02M/edit#gid=0

https://docs.google.com/spreadsheets/d/1f-NX2z6axIyv5P0mh4aeNfKO7KLSVSTtZrTwS2YO02M/edit#gid=0
https://docs.google.com/spreadsheets/d/1f-NX2z6axIyv5P0mh4aeNfKO7KLSVSTtZrTwS2YO02M/edit#gid=0
https://docs.google.com/spreadsheets/d/1f-NX2z6axIyv5P0mh4aeNfKO7KLSVSTtZrTwS2YO02M/edit#gid=0
https://docs.google.com/spreadsheets/d/1f-NX2z6axIyv5P0mh4aeNfKO7KLSVSTtZrTwS2YO02M/edit#gid=0

Safety Critical API Evolution

minimize API surface area , reduce
ambiguity, UB, increase determinism

New Generation Safety
Critical APIs for Graphics,

Compute and Display

Industry Need
for CPU/GPU Acceleration APIs designed

to ease system safety certification

Rendering Compute Display

