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1. Current status of C++ safety: MISRA and C++ CG
2. Parallel Safety rules
3. Automotive Safety case
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Many Safety Crltlcal APls

Misra: checkable rules only

Autosar C++ Guidelines: a mix of meta guidelines and
checkable rules

High Integrity C++: for static checkers

WG23 Programming Vulnerabilities: for team leads

C++ Core Guidelines: a mix

C++ Study Group 12 Vulnerabilities: for standards

C Safe and Secure Study Group: for standards

Carnegie Mellon Cert C and C++: a mix

Joint Strike Fighter ++: checkable rules

Common Weakness Enumeration: a mix

Khronos Safety Critical Advisory
Forum

OpenCL/SYCL Safety Critical
Vulkan Safety Critical

JTC1/SC42 Machine Learning WG3
Trustworthiness

ITC22/SC32 SOTIF WGS8 SOTIF,
WG13, WG14

SAE ORAD

UL4600
RISC-V Safety/Security



Which one to choose and what is the difference?
e Safe but not C++11/14/17/20

Joint Strike Fighter Air Vehicle C++
Coding Standards for the System
Development and Demonstration
Program, 2005

i With the help of Bjarne Stroustrup

MISRA C++:2008 Guidelines for the
use of the C++ language in critical
systems, The Motor Industry Software
Reliability Association, 2008

i Continues to be the reference despite its age
i For automated static analysis tools
[}

Aimed for embedded domains

C++11/14/17/20 but not safe

High Integrity C++ Coding Standard Version 4.0, Programming
Research Ltd, 2013

¢ Some parallelism

Software Engineering Institute CERT C/C++ Coding Standard,
Software Engineering Institute Division at Carnegie Mellon
University, 2016

® Most recent effort based on C 11 and C++ 14

C++ Core Guidelines,
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuideline
s, 2017

® Most recent effort based on C++17 + 20

An excellent style guide for greater elegance, and
safety/performance

No specific domains, also for static analysis and guidance
WG23 Vulnerabilities ISO for C, C++, Ada, Fortran, ...
.

Guidelines for teamleads

Reviewed with each ISO C, C++, Ada, Fortran help



Comparing coding standards

Coding Standard
Autosar

Misra

High Integrity CPP
JSF

C++ CG

CERT C++

C++ Versions

C++14

C++03 ( )
C++11

C++03
C++11/14/17/20/1atest
C++14
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These are the 2
most important
guidelines today

N

Coding
Standard

Misra C++
High

Integrity
C++

JSF ++
C++ CG
CERT C++

Number
of Rules

229

155

226
412

156

Pedigree

Number of rules in common with

Autosar

Identical Small Diff

138 38
0 99
0 143
0 174
0 75

Big Diff

32

25

28
49
33

% of rules
in
common

91%
80%

76%
54%
69%



Follow Bjarne’s talk on
type+resource Safety on C++ CG
Aim for bug free code with high
perlformance and elegant coding
style

Meta rules + checkable rules
« USe GSL, CLion,

Use a carefully crafted set of
programming techniques

* supported by library facilities

* enforced by static analysis.
Available on GitHub

e https://github.com/isocpp/CppC

oreGuidelines/blob/master/Cpp
CoreGuidelines.md

C++ CG: Meta + automated checkable rule

Ph1losophy

o O

@)

0 O O O

Express ideas directly in code
Write in ISO Standard C++
Express intent

Ideally, a program should be
statically type safe

Prefer compile-time checking to
run-time checking

What cannot be checked at compile
time should be checkable at run
time

Catch run-time errors early
Don't leak any resources
Don't waste time or space

Prefer immutable data to mutable
data

Encapsulate messy constructs,
rat(:ler than spreading through the
code


https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md

IVIISRA and Automated checkable rules with some meta

JU‘/ MISRA — Motor Industry Software Reliability Association : ::
| + 1 ! ,
MISRA C fiest Do |

t
1998 - Guidelines for the use of the C language in vehicle based software ‘ No HA?M
MISRA C:1998 (MISRA C1) |

il 2004 - MISRA C:2004 Guidelines for the use of the C language in critical systems
MISRA C:2004 (MISRA C2)

2013 - MISRA C:2012 Guidelines for the use of the C language in critical systems
MISRA C:2012 (MISRA C3)

159 rules of which 138 are statically enforceable

MISRA C++

2008 - Guidelines for the use of the C++ language in critical systems

l Hérpaara,{}c,g !

228 rules of which 219 are statically enforceable

e Code will always have bug, but they must do no harm



So far most only
deal with
Sequential code

What is still missing?

Very few deal with
Parallel code

There is always going to be:
* Dirty data, faulty HW, integrity problems

Even fewer deal
with Concurrent,
event driven code

J

None deal with

dispatch code

* NEED Freedom from interference, which is much harder in

multithread system

e Heterogeneous-> Al/ML safety
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Stage 1: extensive deep analysis of 81 rules

e Started in 2019 at a MISRA meeting
* Why are there no rules for parallelism in MISRA?
* 2019-2021: Phase 1 complete
* Reviewed 81 rules pulled from
e C++CG
* HIC++
* REphrase H2020 project
* CERTC++
* JSF++ (no parallel rules)
* WG23 (no parallel rules)
 Added some from our own contributions
* Many joined, average 5-8 per meeting
* Also consulted outside concurrency and safety experts
e Shared Drive of Phase 1 analysis:
* https://docs.google.com/document/d/14E0BYgsH_d7fMKvXvaZWoNW1tIC65c
YBwO0aZp4dlev0Q /edit#theading=h.ytOhxah53p9e
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Rule decidability

« Human review
* Generally simple rules
* Code snippets
* Basic syntax matches intention

« Automated tool
» Static scope: can be convoluted but doable and simple for this generation of tools
* Dynamic scope: much more complex, hard even for tools of this generation, may be
doable with whole program analysis

* |ntention is hidden
« Both Human and Automated tools

* Generally simple cases
* Intention is shown in syntax

« Neither are good

* Very hard cases, dynamic scope, whole program analysis

* Intention is not clear
* Inthese cases we wonder if an [[intention:]] attribute might help



Where should parallel/concurrency/hetero rules go?

Human decidable
Easy

Easy

Hard

Hard

Tool decidable
Easy

Hard

Easy

Hard

Suitable tools in order of preference
C++CG, MISRA tools

C++CG, Tools will be meta or undecidable,
lots of false positive
May be bad rule for tools

MISRA tools, CG Meta

Neither, META directive; Code guidelines
Obvious rules, but hard to verify

Might not be a good rule anyway

Need a new [[intention::] attribute



Stage 2: collate

» Category
 Mandatory: 8
* Required: 12
e Advisory: 12
* Directive: 5
* Decidable by humans
* Easy: 27
e Medium: 1
e Complex: 20
* Unknownyet: 9
e Decidable via automated
tools
* Yes, on alocal level: 20
* Yes, on asystem level: 6
* Maybe, on a system
level: 7
* No:8
* Unknown yet: 11

Category Lo
Ignore rows - 1 +
1 Count 1l Distribution

»” Most W Least
VALUE FREQUENCY
required 12
advisory 12
mandatory 8
directive 5

decidable via human review < >

Ignore rows - 1 +

i Count i Distribution

30

10

? complex easy medium

»* Most Wy Least
VALUE FREQUENCY
easy 27
complex 20
? 9
medium 1

decidable via tools

3 2

Ignore rows - 1 +

il Count

1h Distribution

»* Most

VALUE
yes, on local level
?

no

may be, on syst...

yes, on system |...

W Least

FREQUENCY

20

11

8



CG, Misra, both or neither
e Accepted: for initial entry 24

e CG+tools: 12
* Tools+CG: 5
* Modifies CG: 4
* Same as CG: 3
* Deferred for future: 26
* Rejected: 18
* Shared drive of Status from
Phase 1:
* https://docs.google.com/sp
readsheets/d/1f-NX2z6axly
v5PO0Mmh4aeNfKO7KLSVSTtZr

TwS2YO002M/edit#gid=0

status < >

Ignore rows - 1 +

il Count i Distribution

10
0
accept for consider drop
initia later
revision

»* Most s Least
VALUE FREQUENCY
consider later 26
accept for initial... 24
drop 18

Destination: Toolsvs C++C... < >

Ignore rows | — 1 +

i Count il Distribution

0
3¢ & ¢
.;p‘& & o £

»~* Most “ Least
VALUE FREQUENCY
CG+Tools 2
Tools+CG 5
Modifies CG 4
Same as CG 3


https://docs.google.com/spreadsheets/d/1f-NX2z6axIyv5P0mh4aeNfKO7KLSVSTtZrTwS2YO02M/edit#gid=0
https://docs.google.com/spreadsheets/d/1f-NX2z6axIyv5P0mh4aeNfKO7KLSVSTtZrTwS2YO02M/edit#gid=0
https://docs.google.com/spreadsheets/d/1f-NX2z6axIyv5P0mh4aeNfKO7KLSVSTtZrTwS2YO02M/edit#gid=0
https://docs.google.com/spreadsheets/d/1f-NX2z6axIyv5P0mh4aeNfKO7KLSVSTtZrTwS2YO02M/edit#gid=0
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For humans and tools -> C++CG and MISRA

Rule 13 Mutexes locked with std:lock or std::try_lock shall be wrapped

with std::lock_guard, std::unique_lock or std::shared_lock with adopt_lock
tag within the same scope

The rule intention is to employing RAIl for controlling the state of
mutexes in exceptional conditions

1 i i ? ;
s it easy to detect via review: :> Good for C++CG
 just check std::lock arguments

s it easy to detect by tool?
« tool can check std::lock arguments :> Good for MISRA




For humans and tools -> C++CG and MISRA

« Rule 13 Mutexes locked with std::lock or std::try_lock shall be wrapped
with std::lock_guard, std::unique_lock or std::shared_lock with adopt_lock
tag within the same scope

C++CG has these rules:

CP.20: Use RAIl, never plain lock() /unlock() CP.21:Use std::lock() or std::scoped_lock to acquire multiple
mutex es

Reason Avoids nasty errors from unreleased locks.
Reason To avoid deadlocks on multiple mutex es.

Rule 13 is intentionally friendlier for tools, if compared with CP.21



For humans not tools -> C++CG

Rule 39 Use std::call_once to ensure a function is called exactly once
(rather than the Double-Checked Locking pattern)

The rule intention is to avoid common errors, which might be

introduced if common concurrency task is being reproduced with less
care

. . S .
Is it easy to detect via review: :> Good for C++CG
via careful understanding of the coder intention

s it easy to detect by tool?

Not so good for
It is difficult to detect incorrectly written :> tools
Double-Checked Locking pattern




For humans not tools -> C++CG

« Rule 39 Use std::call_once to ensure a function is called exactly once
(rather than the Double-Checked Locking pattern)

C++CG has these rules:

CP.110: Do not write your own double-checked locking for
initialization ¢

Reason Since C++11, static local variables are now initialized in a thread-safe way. When
combined with the RAIl pattern, static local variables can replace the need for writing
your own double-checked locking for initialization. std::call_once can also achieve the
same purpose. Use either static local variables of C++11 or std::call_once instead of
writing your own double-checked locking for initialization.




For tools not humans -> MISRA

« Rule 19 The order of nested locks/unlock shall form a DAG

The rule intention is to avoid deadlocks via careful tracing of locking
and unlocking order.

s it easy to detect via review?

Starting from the moderately complex code, it
becomes very difficult to trace the order of locks

P4 :> Harder for C++CG

s it easy to detect by tool?

Better for Tools
It is theoretically possible, if all the code :>
underneath the specified block is visible




For humans only -> meta rules

« Rule 8 Verify resource management assumptions of std::thread with the
implementation of standard library of choice

Safety implies careful analysis of assumption introduced by
dependencies, this one should be reviewed with especial care

Is it easy to detect via review?
Y % —>

It is not visible in code and should be applied on
higher review levels

Too high level for
C++CG?

s it easy to detect by tool?

_ bl in code and bl f % :> Directive for
It is notV|5|_ e in code and is not visible for tOO|S/|V||SRA
code analysis tools
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Why Concurrency guidelines for automotive?

® 1S026262 lists concurrency aspects as one topic to be covered by “Modeling and
coding guidelines”
® But should a safety-critical system contain concurrent control-flow at all?

e Typical embedded systems are small and follow static execution patterns
® Even a multi-core automotive chip may have parallel execution but no concurrency if
components scheduled on different cores do not interact



The Old World vs. The New

Traditionally, automotive systems rely on static scheduling
Each task is given a predetermined time slice in the schedule for execution
The complete schedule is configured upfront as part of the system design

Temporal execution of tasks is completely deterministic

= Tasks not scheduled to run in parallel will not overlap. Synchronization between cores
is handled by a thin basic software module layer.

= Component interaction across cores is minimized



The Old World vs. The New

e Static scheduling works well only if the number of components is small or the
interaction between components is minimal

e With compute-intensive applications like highly automated driving, parallel
computation is needed to process data in time

Old: Many small independent applications sharing compute resources of a single CPU.
Simple basic software layer at the bottom.

New: One single application requiring all compute resources of a powerful multi-core CPU
and possibly a number of auxiliary hardware accelerators. Fully fledged OS at the bottom.

= Lots of concurrency, asynchronous APIs as the default



Asynchronous APIls in Adaptive Autosar

ara::com::FindServiceHandle find_service_handle = RadarServiceProxy::StartFindService(

[1(ara::com::ServiceHandleContainer<RadarServiceProxy: :HandleType> handles, ara::com::FindServiceHandle) {

})s
/] ...

RadarServiceProxy::StopFindService(find_service_handle);



Asynchronous APIls in Adaptive Autosar

ara::com::FindServiceHandle find_service_handle = RadarServiceProxy::StartFindService(
[1(ara::com::ServiceHandleContainer<RadarServiceProxy: :HandleType> handles, ara::com::FindServiceHandle) {
if (handles.empty()) { return; }

RadarServiceProxy service(handles.front());

ara::core::Future<uint32 t> fut = service.UpdateRate.Get();

/] ...
})s
/] ...

RadarServiceProxy::StopFindService(find_service_handle);



Asynchronous APIls in Adaptive Autosar

ara::com::FindServiceHandle find_service_handle = RadarServiceProxy::StartFindService(
[1(ara::com::ServiceHandleContainer<RadarServiceProxy: :HandleType> handles, ara::com::FindServiceHandle) {
if (handles.empty()) { return; }

RadarServiceProxy service(handles.front());

ara::core::Future<uint32 t> fut = service.UpdateRate.Get();

auto fut2 = fut.then([](ara::core::Future<uint32_t> f) -> auto {
uint32_t update_rate = f.get();
/] ...

})s

/] ...

})s
/] ...

RadarServiceProxy::StopFindService(find_service_handle);



Bug Example

struct SharedData {

uint32_t update_rate;
} shared_data;

fut.then([&shared_data](ara::core::Future<uint32_t> f) -> auto {

shared_data.update_rate = f.get();

})s



Bug Example

struct SharedData {
std::mutex mtx;
uint32_t update_rate;
} shared_data;

fut.then([&shared_data](ara::core::Future<uint32_t> f) -> auto {
shared_data.mtx.lock();
shared_data.update_rate = f.get();

})s



Bug Example

struct SharedData {
std::mutex mtx;
uint32_t update_rate;
} shared_data;

fut.then([&shared_data](ara::core::Future<uint32_t> f) -> auto {
shared_data.mtx.lock();
shared_data.update_rate = f.get();

// WARNING: Do not destroy objects of type std::mutex

// if object is in locked state

})s



Bug Example

struct SharedData {
std::mutex mtx;
uint32_t update_rate;
} shared_data;

fut.then([&shared_data](ara::core::Future<uint32_t> f) -> auto {
shared_data.mtx.lock();
shared_data.update_rate = f.get();

shared_data.mtx.unlock();

})s



Bug Example

struct SharedData {
std::mutex mtx;
uint32_t update_rate;
} shared_data;

fut.then([&shared_data](ara::core::Future<uint32_t> f) -> auto {
shared_data.mtx.lock();
shared_data.update_rate = f.get(); // get() may throw!

shared_data.mtx.unlock();

})s



Bug Example

struct SharedData {
std::mutex mtx;
uint32_t update_rate;
} shared_data;

fut.then([&shared_data](ara::core::Future<uint32_t> f) -> auto {
shared_data.mtx.lock(); // WARNING: Do not call member functions of std::mutex
shared_data.update_rate = f.get(); // get() may throw!

shared_data.mtx.unlock();

})s



Bug Example

struct SharedData {
std::mutex mtx;
uint32_t update_rate;
} shared_data;

fut.then([&shared_data](ara::core::Future<uint32_t> f) -> auto {
std::scoped_lock{ shared_data.mtx };
shared_data.update_rate = f.get();

})s



Bug Example

struct SharedData {
std::mutex mtx;
uint32_t update_rate;
} shared_data;

fut.then([&shared_data](ara::core::Future<uint32_t> f) -> auto {
std::scoped_lock{ shared_data.mtx }; // WARNING: Objects of type std::scoped_lock shall always be named
shared_data.update_rate = f.get();

})s



Bug Example

struct SharedData {
std::mutex mtx;
uint32_t update_rate;
} shared_data;

fut.then([&shared_data](ara::core::Future<uint32_t> f) -> auto {
std::scoped_lock 1k{ shared_data.mtx };
shared_data.update_rate = f.get();

})s



Does this mean concurrency is now fine for
safety-critical software?

Rules only attempt to catch common pitfalls in using concurrency facilities.

They are only one building block in a larger safety strategy.

Safety implications of use of concurrency must be carefully evaluated in the context of the

overall safety strategy



Final Words



More safety:Parallel/concurrency for C++11, 14, 17, C++20

Asynchronous Agents

abstractions from C++11: thread,lambda
C++11,14,17,20 function, TLS, async

C++ 20: Jthreads
+interrupt _token,
coroutines

Parallel collections

C++11: packaged tasks,
promises, futures,

C++ 17: ParallelSTL,
control false sharing

C++20 : Vec execution
policy, Algorithm
un-sequenced policy

Mutable shared state Heterogeneous/Distributed

C++11: locks, memory model, C++11: lambda
mutex, condition variable, atomics,
static init/term, C++14: generic lambda
C++ 14:
shared_lock/shared_timed_mutex,
OOTA, atomic_signal_fence,

C++ 17: scoped _lock,
shared_mutex, ordering of
memory models, progress
guarantees, TOE, execution
policies

C++20: atomic_ref, Latches and
barriers, atomic<shared_ptr>
Atomics & padding bits

Simplified atomic init

Atomic C/C++ compatibility
Semaphores and waiting

Fixed gaps in memory model ,
Improved atomic flags, Repair
memory model

C++17: , progress
guarantees, TOE,
execution policies

C++20: atomic_ref



Future safety rules for C++ 20/23 parallelism

« Not inventing, just documenting common wisdom which takes
time
« MISRA NEXT is really MISRA 2008 + AUTOSAR

* Need more manpower
* Need more experience on the safety of new features
*  Will not cover C++20 and might even miss a few C++17 features

« MISRA parallel will also be in stages

C++11 atomics, async .mm

C++14 shared lock

C++17 parallel algo, futures, (still need more deep dive) unseq,
C++20 latches barriers, coroutine, atomic ref,

C++23 senders and receivers?

C++26 executors networking?, concurrency TS2?



Conclusion and Future plan

e 2021: plan to integrate with MISRA 202X NEXT release
e 17 rules to MISRA C++ NEXT
e 17 rules to C++CG
e 4 CG rules to be modified
* Reset Deferred to next phase
e 2022-?
 Work on Deferred rules
e Add new rules covering
* Coroutines, parallel algorithm, executors,
* Aim for next release of MISRA NEXT+ CG NEXT

« Continue with more phases and more releases



C++ Will need to integrate safety with ML

From sequential->concurrency

« 26262
« Adaptive autosar

From concurrency->heterogeneous

« ML /Al trustworthiness, safety
o« 21448 SOTIF

« UL4600

« SAE ORAD



CG, Misra, both or neither
e Accepted: for initial entry 24

e CG+tools: 12
* Tools+CG: 5
* Modifies CG: 4
* Same as CG: 3
* Deferred for future: 26
* Rejected: 18
* Shared drive of Status from
Phase 1:
* https://docs.google.com/sp
readsheets/d/1f-NX2z6axly
v5PO0Mmh4aeNfKO7KLSVSTtZr

TwS2YO002M/edit#gid=0

status < >

Ignore rows - 1 +

il Count i Distribution

10
0
accept for consider drop
initia later
revision

»* Most s Least
VALUE FREQUENCY
consider later 26
accept for initial... 24
drop 18

Destination: Toolsvs C++C... < >

Ignore rows | — 1 +

i Count il Distribution

0
3¢ & ¢
.;p‘& & o £

»~* Most “ Least
VALUE FREQUENCY
CG+Tools 2
Tools+CG 5
Modifies CG 4
Same as CG 3


https://docs.google.com/spreadsheets/d/1f-NX2z6axIyv5P0mh4aeNfKO7KLSVSTtZrTwS2YO02M/edit#gid=0
https://docs.google.com/spreadsheets/d/1f-NX2z6axIyv5P0mh4aeNfKO7KLSVSTtZrTwS2YO02M/edit#gid=0
https://docs.google.com/spreadsheets/d/1f-NX2z6axIyv5P0mh4aeNfKO7KLSVSTtZrTwS2YO02M/edit#gid=0
https://docs.google.com/spreadsheets/d/1f-NX2z6axIyv5P0mh4aeNfKO7KLSVSTtZrTwS2YO02M/edit#gid=0

Safety Crltlcal API Evolutlon
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New Generation Safety
Critical APIs for Graphics, 4 A
Compute and Display

minimize API surface area , reduce
ambiguity. UB, increase determlmsm

Industry Need e \“"'i : l £
for CPU/GPU Acceleration APIs designed T E
\ to ease system safety certification
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