
Herb Sutter

“Inside C++, there is a much smaller and cleaner language struggling to get out.”

— B. Stroustrup (D&E, 1994)

“Say 10% of the size of C++ in definition and similar in front-end compiler size. ...

Most of the simplification would come from generalization.”

— B. Stroustrup (ACM HOPL-III, 2007)

2

we .

C++ has lots of challenges

The industry is doing lots of major C++ evolution experiments — this is one of those

Let’s look for ways to push the boundaries to bring C++ itself forward
and double down on C++ — not to switch to something else

Let’s aim for major C++ evolution directed toward things that will
make us better C++ programmers — not programmers of something else

3

green-field language

invent new idioms/styles

new modules

new ecosystem/packagers

compatibility bridges

refresh C++ itself

make C++ guidance default

make C++ modules default

keep C++ ecosystem/packagers

keep C++ compatibility

this talk

λ

“10× simpler” means
90% less total guidance
to teach in C++ books
and courses

4

Motivation & approach
History (since 2015)
Safety

Type safety
Bounds safety
Lifetime safety
Initialization safety

Simplicity examples
Parameter passing

CppCon 2015

CppCon 2020

CppCon 2021

CppCon 2020

“50× safer” means
98% fewer CVEs & bugs
in these categories

Metrics to aim for

5

Zero-overhead abstraction

Determinism & control

Friction-free interop with C and C++prev

What is not core C++:
Specific syntax Unsafe code Security exploits
Tedium Vexing parsing Obsolete features
Lack of good defaults Difficulty writing tools 1,000-page lists of guidelines
Sharp edges (General: Not having nice things)

=
We’ve been making progress on all these … but incremental (10%), not game-changing (10×)

Major reason: 100% syntax backward compatibility

6

What if we could have our
compatibility cake and eat it too?

the cake is not a lie

Approach: Apply the zero-overhead
principle to backward source

compatibility… pay only if you use it

7

What could we do if we
had a cleanly demarcated

“bubble of new code,”
via an alternate syntax for C++?

reduce complexity 10×
increase safety 50×

improve toolability 10×
evolve more freely for another 30 years

syntax… #2 ?

“bubble of
new code”

that doesn’t exist today

What if we could do “C++11
feels like a new language” again,

for the whole language?

λ

“10× simpler” means
90% less total guidance
to teach in C++ books
and courses

8

Motivation & approach
History (since 2015)
Safety

Type safety
Bounds safety
Lifetime safety
Initialization safety

Simplicity examples
Parameter passing

CppCon 2015

CppCon 2020

CppCon 2021

CppCon 2020

“50× safer” means
98% fewer CVEs & bugs
in these categories

Metrics to aim for

9

2015-16: Basic language design
“Refactor C++” into fewer, simpler, composable, general features

2016 - : Try individual parts as standalone proposals for Syntax 1
Flesh each out in more detail
Validate it’s a problem the committee wants to solve for C++
Validate it’s a solution direction programmers might like for C++

Lifetime

P1179
CppCon 2015/18

gc_arena

CppCon 2016

<=>

P0515
CppCon 2017

Reflection &
metaclasses

P0707
CppCon 2017/18

Value-based
exceptions

P0709
CppCon 2019

Parameter
passing
d0708

CppCon 2020

Patmat using
is and as

P2392
CppCon 2021

10

2015-16: Basic language design
“Refactor C++” into fewer, simpler, composable, general features

2016 - : Try individual parts as standalone proposals for Syntax 1
Flesh each out in more detail
Validate it’s a problem the committee wants to solve for C++
Validate it’s a solution direction programmers might like for C++

Lifetime

P1179
CppCon 2015/18

gc_arena

CppCon 2016

Reflection &
metaclasses

P0707
CppCon 2017/18

Value-based
exceptions

P0709
CppCon 2019

Parameter
passing
d0708

CppCon 2020

Patmat using
is and as

P2392
CppCon 2021

<=>

P0515
CppCon 2017

11

(2009-10: L-to-R)
2015-16: Basic language design
2016 - : Try individual parts as standalone proposals for C++ itself

Flesh each out in more detail
Validate it’s a problem the committee wants to solve for C++
Validate it’s a solution direction programmers might like for C++

Problem: Dependent on prototyping in production C++ compilers

Lifetime

P1179
CppCon 2015/18

gc_arena

CppCon 2016

<=>

P0515
CppCon 2017

Reflection &
metaclasses

P0707
CppCon 2017/18

Value-based
exceptions

P0709
CppCon 2019

Parameter
passing
d0708

CppCon 2020

Patmat using
is and as

P2392
CppCon 2021

12

13

14

cfront
C++ → C compiler

“C with Classes” goals

1) Value
Address key issues of C:

lack of abstraction

2) Availability
“Usable anywhere C is,” incl. environment:

optimizers, linkers, debuggers, tools, …

3) Compatibility
Full interop with C, incl. mix C & C++ source

15

“C++ syntax 2 experiment” goals

1) Value
Address key issues of today’s C++:

lack of safety, simplicity, toolability

2) Availability
“Usable anywhere C++ is,” incl. environment:

optimizers, linkers, debuggers, tools, …

3) Compatibility
Full interop with Syntax 1 and C, incl. mix source

W A R N I N G
EXPERIMENT IN PROGRESS

github.com/hsutter/cppfront

cppfront
Cpp2 → Cpp1 compiler

16

My personal experiment
(learn some things, prove out

some concepts, share some ideas)

Hilariously incomplete

My hope: To start a conversation about
what could be possible within C++’s

own evolution to rejuvenate C++

W A R N I N G
EXPERIMENT IN PROGRESS

github.com/hsutter/cppfront

cppfront
Cpp2 → Cpp1 compiler

17

To build cppfront itself: Use any major C++20 compiler

MSVC cl cppfront.cpp -std:c++20 -EHsc
gcc g++-10 cppfront.cpp -std=c++20 -o cppfront
Clang clang++-12 cppfront.cpp -std=c++20 -o cppfront

To build “syntax 2” code: Use any major C++20 compiler
with cppfront/include in the include path

MSVC cppfront your.cpp2 → cl your.cpp -std:c++20
gcc cppfront your.cpp2 → g++-10 your.cpp -std=c++20
Clang cppfront your.cpp2 → clang++-12 your.cpp -std=c++20

18

Design
principle

Conceptual
integrity

refactor: fewer composable general features

be consistent Don’t make similar things different
Make important differences visible

be orthogonal Avoid arbitrary coupling
Let features be used freely in combination

be general Don’t restrict what is inherent
Don’t arbitrarily restrict a complete set of uses
Avoid special cases and partial features

Recall:
“Say 10% of the size of C++ …

Most of the simplification would come from generalization.”

— B. Stroustrup (ACM HOPL-III, 2007)

19

goals: safety, simplicity, toolability
stay measurable Each change must address a known C++ weakness

in a measurable way (e.g., remove X% of rules we
teach, remove X% of reported vulnerabilities)

stay C++ never violate zero-overhead, opt-in to “open the hood”

syntax & grammar
context-free Esp. parsing never requires sema (e.g., lookup)
order-independent No forward declarations or ordering gotchas
declare l-to-r Declarations are written left to right
declare ≡ use Declaration syntax mirrors use syntax

Design
stakes

Embracing
constraints

20

class shape { /* syntax 1 code since 1980, can’t update semantics
without backward compatibility breakage concerns */ };

shape: type = { /* syntax 2 code doesn’t exist today, can update
semantics as desired without any breaking change */ }

auto f(int i) -> string { /* syntax 1 code since C++11, can’t update semantics
without backward compatibility breakage concerns */ }

f: (i: int) -> string = { /* syntax 2 code doesn’t exist today, can update
semantics as desired without any breaking change */ }

21

name : type = value
left-to-right declaration

22

C++23 “import std;” is implicit
under -pure-cpp2

modules-first, fast build, strong ODR
“skating to where the puck is going”

_ wildcard, implicit template

optional {return … }
for single-expression function

d0708 param passing CppCon 2020

order independence
(no forward declarations)

23

default [[nodiscard]]

normal CTAD

UFCS

Readable Cpp1… I want to be
able to switch back to Cpp1
anytime and keep my code

25

order independence
(no forward declarations in
Cpp2 because we forward-

declare everything in
the Cpp1 code)

self-contained support
library header (e.g., in<T>)

26

left-to-right unary operators
(e.g., *. is natural, don’t need duplicate ->)

track positions, incl. comments

27

with -clean-cpp1

Readable Cpp1 in my
personal formatting style…

I want to be able to switch back
to Cpp1 anytime and keep my code

28

“Everyone knows”

Everyone knows that compiling to C++ emits
__uGLy #UnRead@bul generated code, right?

But the worst examples are compiling a foreign
language that’s unlike C++ to C++

Ugliness ∝ impedance mismatch

29

30

31

with -pure-cpp2
and -clean-cpp1

32

with -pure-cpp2
and -clean-cpp1

33

with -pure-cpp2
and -clean-cpp1

34

Mixed Syntax 1 & 2 in the same source file: Incremental adoption

You can Grail A: “Write one line and start seeing benefit”

You get Perfect source compatibility (macros, SFINAE, #include, …)

You avoid Python 2/3 problem

Standalone Syntax 2 in a separate source file: C++ 10× simpler and safer

You can Grail B: “Write in a 10× simpler and safer C++”

You get Safe by construction, seamless interop via module import

You avoid 90% of pitfalls, 90% of teaching/learning, slow compilers

λ

“10× simpler” means
90% less total guidance
to teach in C++ books
and courses

35

Motivation & approach
History (since 2015)
Safety

Type safety
Bounds safety
Lifetime safety
Initialization safety

Simplicity examples
Parameter passing

CppCon 2015

CppCon 2020

CppCon 2021

CppCon 2020

“50× safer” means
98% fewer CVEs & bugs
in these categories

Metrics to aim for

36

Rank Name Score
1 Out-of-bounds Write 64.20
2 … ('Cross-site Scripting') 45.97
3 … ('SQL Injection') 22.11
4 Improper Input Validation 20.63
5 Out-of-bounds Read 17.67
6 … ('OS Command Injection') 17.53
7 Use After Free 15.50
8 … Pathname to a Restricted Directory … 14.08
9 Cross-Site Request Forgery (CSRF) 11.53

10 …Upload of File with Dangerous Type 9.56
11 NULL Pointer Dereference 7.15
12 Deserialization of untrusted data 6.68
13 Integer Overflow or Wraparound 6.53

https://cwe.mitre.org/
top25/archive/2022/
2022_cwe_top25.html

37
2015 2016 2017 2018 2019 2020 2021 2022

Use After Free
Lifetime safety

Use Before Initialized
Initialization safety

Type Confusion
Type safety Other

Out of Bounds Read
Bounds safety

Heap Corruption
Lifetime safety

38

Static enforcement by default: Safety by construction

Dynamic enforcement where needed: Visible + pay-for-use

approach: take the best practices we already teach and promote and
1. enforce them by default
2. direct programmers to what we already say to “do this instead”
3. focus any new additions on filling remaining holes

Java

Rust .

D .

Go

syntax 2
syntax 1

39

approach: take the best practices we already teach and promote and
1. enforce them by default
2. direct programmers to what we already say to “do this instead”
3. focus any new additions on filling remaining holes

λ

“10× simpler” means
90% less total guidance
to teach in C++ books
and courses

40

Motivation & approach
History (since 2015)
Safety

Type safety
Bounds safety
Lifetime safety
Initialization safety

Simplicity examples
Parameter passing

CppCon 2015

CppCon 2020

CppCon 2021

CppCon 2020

“50× safer” means
98% fewer CVEs & bugs
in these categories

Metrics to aim for

41

= implemented
using as

as

TODO
classes

as
as
as

as
as

as

as

Queries P2392 Casts P2392
(Y)x —

reinterpret_cast<Y>(x) —
const_cast<X&>(cx) —

is_same_v<X,Y> X is Y Y(x), Y{x} x as Y
is_base_of_v<B,D> D is B static_cast<B*>(pd) pd as B*

dynamic_cast<D*>(pb) pb is D* dynamic_cast<D*>(pb) pb as D*
std::holds_alternative<T>(v) v is T std::get<T>(v)

std::get<T&>(v)
v as T

v as T&
a.type() == typeid(T) a is T std::any_cast<T>(a)

std::any_cast<T>(&a)
a as T

a as T&
o.has_value() o is T o.value() o as T

f.wait_for(chrono::seconds(0))
== future_status::ready

f is T f.get() f as T

42

sa
fe

st
at

ic
dy

na
m

ic

la
ng

ua
ge

lib
ra

ry

43

44

λ

“10× simpler” means
90% less total guidance
to teach in C++ books
and courses

45

Motivation & approach
History (since 2015)
Safety

Type safety
Bounds safety
Lifetime safety
Initialization safety

Simplicity examples
Parameter passing

CppCon 2015

CppCon 2020

CppCon 2021

CppCon 2020

“50× safer” means
98% fewer CVEs & bugs
in these categories

Metrics to aim for

46

TODO
std::

47

Q: Why does this need syntax 2?

A: Can’t ban pointer arithmetic today…
Compatibility: It would break the world,

including all the C code

Static enforcement
Arithmetic: Reject ++, --, +, -, et al. on raw pointers
Bitwise operations: Reject ~ et al. on raw pointers

48

49

50

51

52

53

λ

“10× simpler” means
90% less total guidance
to teach in C++ books
and courses

54

Motivation & approach
History (since 2015)
Safety

Type safety
Bounds safety
Lifetime safety
Initialization safety

Simplicity examples
Parameter passing

CppCon 2015

CppCon 2020

CppCon 2021

CppCon 2020

“50× safer” means
98% fewer CVEs & bugs
in these categories

Metrics to aim for

55

Lifetime

P1179
CppCon 2015/18

partial,
mostly to-do

56

Why does this need Syntax 2? Can’t make pointers non-null today…
Compatibility It would break the world
Defaults Today null is the default value(!)
(cue Kate Gregory: “what you say when you say nothing at all”)

Static enforcement
Initialization/assignment Reject setting a pointer to nullptr/0/NULL/{}
Profile.Lifetime Local static analysis for use-after-free + nulls

Dynamic enforcement
Check for non-null after every Cpp1 code expression used to initialize/assign a
Pointer, or that has mutable access to a Pointer
“Pointer” concept includes iterators — {} means null

57

58

59

60

61

λ

“10× simpler” means
90% less total guidance
to teach in C++ books
and courses

62

Motivation & approach
History (since 2015)
Safety

Type safety
Bounds safety
Lifetime safety
Initialization safety

Simplicity examples
Parameter passing

CppCon 2015

CppCon 2020

CppCon 2021

CppCon 2020

“50× safer” means
98% fewer CVEs & bugs
in these categories

Metrics to aim for

63

Essential complexity
Inherent in the problem,
present in any solution

Accidental complexity
Artifact of a specific solution design

64

533 language 25 essential + minimal
147 ‘essential’ + improvable
361 accidental + improvable

65

How to pass
parameters

16%

Initialization
7%

66

void sample(... x, ... y) {

process(x);

if (something(x)) {
process(y);
x.hold();

} else {
cout << x;

}

transfer(y);

}

67

void sample(... x, ... y) {

process(x); // definite first use of x

if (something(x)) {
process(y);
x.hold();

} else {
cout << x;

}

transfer(y);

}

68

void sample(... x, ... y) {

process(x); // definite first use of x

if (something(x)) {
process(y);
x.hold(); // definite last use of x

} else {
cout << x; // definite last use of x

}

transfer(y);

}

69

void sample(... x, ... y) {

process(x); // definite first use of x

if (something(x)) {
process(y);
x.hold(); // definite last use of x

} else {
cout << x; // definite last use of x

}

transfer(y); // definite last use of y

}

70

71

72

73

74

λ

“10× simpler” means
90% less total guidance
to teach in C++ books
and courses

75

Motivation & approach
History (since 2015)
Safety

Type safety
Bounds safety
Lifetime safety
Initialization safety

Simplicity examples
Parameter passing

CppCon 2015

CppCon 2020

CppCon 2021

CppCon 2020

“50× safer” means
98% fewer CVEs & bugs
in these categories

Metrics to aim for

76

77

78

79

80

81

82

“10× simpler” means
90% less total guidance
to teach in C++ books
and courses

83

Motivation & approach
History (since 2015)
Safety

Type safety
Bounds safety
Lifetime safety
Initialization safety

Simplicity examples
Parameter passing

CppCon 2015

CppCon 2020

CppCon 2021

CppCon 2020

“50× safer” means
98% fewer CVEs & bugs
in these categories

Metrics to aim for

λ

84

named function

unnamed function

range-for body

85

post: “old” state capture

unnamed function capture

string interpolation

86

post: “old” state capture

unnamed function capture

string interpolation

87

post: “old” state capture

unnamed function capture

string interpolation

λ

“10× simpler” means
90% less total guidance
to teach in C++ books
and courses

88

Motivation & approach
History (since 2015)
Safety

Type safety
Bounds safety
Lifetime safety
Initialization safety

Simplicity examples
Parameter passing

CppCon 2015

CppCon 2020

CppCon 2021

CppCon 2020

“50× safer” means
98% fewer CVEs & bugs
in these categories

Metrics to aim for

89

An observation

Think about the words and ideas we’ve been using

90

None of them are weird foreign terms or concepts
from Haskell/Lisp/Ada/Java/Eiffel/Go/Scheme/…

All of them are already deeply familiar to C++ developers,
they’re how we talk, how we think… only nicer

An observation

Think about the words and ideas we’ve been using

91

<T: type is Concept, I: int> explicit template parameter lists

classes user-defined type
incl. defaults (e.g., explicit ctors)
incl. type invariants (completing contracts)
trying operator=(out this, ...) unification

reflection, generation, metaclasses using the parse tree

lightweight exceptions std::error_condition value-based

92

Editor support Syntax highlighting, UFCS autocomplete, …

Godbolt CE … with choice of Cpp1 compiler?

gc.new Opt-in arena, pay only for what you use
Real tracing GC alloc + real C++ destructors
Adapt and expand github.com/hsutter/gcpp

cpp2::draw Basic 2D canvas: lines, PNG, text
Basic keyboard & pointer input
“21st-century curses/conio.h”
… Header-only?

If you’re interested
or have more ideas,
please send me mail

hello

93

frontcpp Cpp1 → Cpp2 compiler – adapt a Cpp1 pretty-printer
Cpp1 idioms/patterns → use Cpp2 features

Ex: All pure virtual functions → type(interface)
Ex: Unconditional param deref → [[pre Null: ptr]]

1→2

If you’re interested
or have more ideas,
please send me mail

94

“directed evolution” of C++ itself —
compiling to C++20/23… keeps us honest

bring any results to ISO C++ evolution

what if we could do “C++11 feels like a new language” again,
but broadly for the whole language?

support all C++20/23… evolution

embrace C++20/23… (e.g., default to
C++20 modules, C++23 import std;)

95

Cpp2

one l-to-r decl syntax

in, copy, inout, out

move

forward
named return values

new<T>, span
postfix operators

is

as, gsl::narrow

$

Cpp1
preprocessor, #define, #include, which std header to include, auto, [[nodiscard]],
forward declarations, ordering dependencies, unsafe casts, uninitialized variables
most vexing parse, east const vs west const, inside-out declaration syntax, two
variable declaration syntaxes, two free function declaration syntaxes, two irreg-
ular member function declaration syntaxes, lambda function declaration syntax
X vs X const params, deciding X vs X const& params, T vs T const& in templates
references (&, X&&, T&&) throughout the language, and explaining X&& vs T&&
std::move, why std::move doesn’t move, general overuse of std::move, why not
“return std::move,” why && isn’t rvalue reference for template types, how to
write move parameters for template types
std::forward, spelling perfect forwarding idiom right, why forwarding && is only
for templated types, how to write forwarding && params for non-template types
how to enable NRVO, how to return multiple values via anonymous pair/tuple,
how to return multiple named values using separately defined struct
new, delete, owning raw *, memory leaks, 0 as int/pointer, NULL, null dereference
pointer arithmetic, out of bounds subscripting, raw arrays, implicit array→ptr decay
(*x)++, ++x vs x++, and (int)-for-postfix dummy parameter convention
is_same_v, is_base_of_v, dynamic_cast, std::holds_alternative<T>, my_any.type()
== typeid(T), my_optional.has_value
union, va_arg arguments, C-style casts, reinterpret_cast, const_cast, function-
style casts, static_cast, dynamic_cast, std::get<T>/<T&>, std::any_cast<T>/<T*>,
opt.value()
don’t use reinterpret_cast, don’t use static_cast for arithmetic types, don’t cast
between pointer types that are the same, don’t cast between pointer types
where the conversion could be implicit, don’t use const_cast, don’t use static_-
cast to downcast, don’t use a variable before it has been initialized
lambda capture introducers (+ postcondition ‘old’ values? + string interpolation?)

Herb Sutter

“Inside C++, there is a much smaller and cleaner language struggling to get out.”

— B. Stroustrup (D&E, 1994)

“Say 10% of the size of C++ in definition and similar in front-end compiler size. ...

Most of the simplification would come from generalization.”

— B. Stroustrup (ACM HOPL-III, 2007)

	Can C++ be 10 simpler & safer … ?
	Slide Number 2
	Slide Number 3
	Roadmap
	So what is C++?
	Slide Number 6
	Slide Number 7
	Roadmap
	Last 7 years
	Last 7 years
	Last 7 years
	 What would Bjarne do?
	 What would Bjarne do?
	What did Bjarne do?
	What could we do?
	Caveats
	Structure & build & targets
	Slide Number 18
	Slide Number 19
	“Declare l-to-r”: name : type = value
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Demo: Overview
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	“Don’t pay for what you don’t use” …� 100% source compat, pay only when you use it
	Roadmap
	: 2022 Most Dangerous Software Weaknesses
	Memory Safety CVEs: Root cause by patch year
	Safety and the zero-overhead principle
	Slide Number 39
	Roadmap
	C++ Core Guidelines
	Slide Number 42
	Demo: Type safety
	Slide Number 44
	Roadmap
	C++ Core Guidelines
	Pointers point to a single object
	Demo: Bounds safety
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Roadmap
	C++ Core Guidelines
	Experiment: Pointers should not be null?
	Demo: Lifetime safety
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Roadmap
	Fred Brooks: Complexity
	Breakdown of first 638 rules catalogued
	Slide Number 65
	“Definite first/last use” (see also P1179, Ada, C#)
	“Definite first/last use” (see also P1179, Ada, C#)
	“Definite first/last use” (see also P1179, Ada, C#)
	“Definite first/last use” (see also P1179, Ada, C#)
	Demo: Initialization safety
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Roadmap
	Demo: (More) parameter passing
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Roadmap
	Consistency: Functions
	Consistency: Capture (aka “paste value”)
	Consistency: Capture (aka “paste value”)
	Consistency: Capture (aka “paste value”)
	Roadmap
	Slide Number 89
	Slide Number 90
	Medium term: Complete basic language
	Want to help? Medium-term project ideas
	Want to help? Longer-term project idea
	Slide Number 94
	Slide Number 95
	Can C++ be 10 simpler & safer … ?

