10 Years of Meeting C++

JENS WELLER

The C++ Conference 2 2 September 12th-16th

CppCon 2022

10 years of meeting C++

Jens Weller

Past
Present
Future

Questions at the end | q"

10 years ago...

A new C++ standard. Fancy!

C++11

C++11 is the second major version of C++ and the most important update since C++98. A large number of changes
were introduced to both standardize existing practices and improve the abstractions available to the C+4 programmers.

Before it was finally approved by ISO on 12 August 2011, the name 'C++0x' was used because it was expected to be
published before 2010. It took 8 years between C++03 and C++11, so it has become the longest interval between

versions so far. Since then, currently, C++ updates every 3 years regularly.

I This section is incomplete

And my opinion in 2012...

C++11 - ein neuer C++ Standard

Da es seit letztem Jahr einen neuen C++ Standard gibt, ein paar Worte hier zu. Es gibt nicht sehr hdufig einen neuen
C++ Standard, C++ ist eine Sprache, welche immer einen festen Kern hatte, und sich nicht auch als Framework
verstand. Mit C+4+98 gab es den bisher verbindlichen C++ Standard, welcher dann auch in vielen Compilern umgesetzt
wurde. In 2003 wurde dieser dann nochmals durch eine Ergdnzung aktualisiert. Nach 2003 begannen die
Vorbereitungen fur den Nachfolgestandard, welcher zu nidchst unter dem Arbeitstitel C++0x bekannt wurde. Man ging
damals davon aus, das der Standard noch vor 2010 erscheinen wirde, die Arbeiten verzdgerten sich aber, so das der
IS0 Standard erst 2011 final wurde. Weshalb der "aktuelle” C++ Standard auch als C++11 bekannt ist.

Der neue C++ Standard bringt viele Anderungen in die Sprache, so das C++11 Code nur noch bedingt mit C++ Code
des alten Standards kompatibel ist. Wobei der bisherige Standard ein Subset von C++11 bleibt (bis auf wenige
Ausnahmen wie auto). Die Neuerungen die C++11 bringt sind sehr vielfiltig, und werden spater wohl noch in einem
eigenen Kapitel behandelt werden.

Wichtig ist allerdings zu wissen, das C++11 nun erst mal von den Compilerherstellern umgesetzt werden muss. GCC
und CLang sind hier schon relativ weit, der MSVC hinkt noch etwas hinter her, auch das Subset welches alle diese
Compiler beherrschen ist dadurch noch relativ klein. Da C++03 Code auch in C++11 noch Glltigkeit besitzt, werde ich
den Kurs hauptsdchlich in diesem erstellen. Fir die Praxis ist C++11 momentan sowieso noch recht irrelevant in vielen
Gebieten. Dies wird sich ndern, wenn der Standard von den Compilerherstellern umgesetzt wurde.

And my opinion in 2012...

* First Paragraph
- How did we get here?
e Second Paragraph

C++11 - ein neuer C++ Standard

casoanda pek i | _:. . - Its new, but compatible to C++03
- May add a chapter later about it
* Third Paragraph

- C++11 must first be implemented by
the compiler vendors first

- In practice, C++11 is still quite
irrelevant in many areas anyway.

English translation

C++11 - a hew C++ standard

Since there is a new C++ standard since last year, a few words here. There is not very often a new C++ standard, C++ is a
language that always had a sclid core and did not see itself as a framework, With C+-+98 there was the previously binding
C++ standard, which was then also implemented in many compilers. In 2003, this was then updated again with an addition.
After 2003, preparations began for the successor standard, which was initially known under the working title C++0x. At the
time, it was assumed that the standard would appear before 2010, but the work was delayed, so that the ISO standard only
became final in 2011. Which is why the "current” C++ standard is also known as C++11.

The new C++ standard brings many changes to the language, so that C++11 code is only partially compatible with C++
code from the old standard. The previous standard remains a subset of C++11 (with a few exceptions such as auto). The
innovations that C++11 brings are very diverse and will probably be dealt with later in a separate chapter.

However, it is important to know that C++11 must first be implemented by the compiler manufacturers, GCC and Clang

have come a long way here, MSVC is still lagging behind, and the subset that all of these compilers can handle is therefore
still relatively small. Since C++03 code is still valid in C++11, I will mainly create the course in this. In practice, C++11 is
still quite irrelevant in many areas anyway. This will change once the standard has been implemented by compiler vendors.

C++Now 2012

C++Now 2012

Lots of C++ knowledge
Less 150 folks there

How do we reach the rest?
New standard

- C++11 and beyond?

The best weather

C++Now 2012 - Meeting C++ 2012

e Got lots of support from
Europeans for the idea

 Had started the C++ UG

Dusseldorf in December
2011

* Kinda talked my self into it

Meeting C++ 2012

Track A

Room: Cornelius 1

Registration

Room: Heinrich Heine

ynote "' Good C++11 Coding Style'

acl Wong
Room: Heinrich Heine
Coffectreak
Track B

Room: Cornelius 2

R-Value References and Move-

structors in

* Program
- C++11 / boost heavy
- Some Qt

* Results

- Big success
- german ISO C++ saved

* Proof of concept

The conference as a motivational tool

Founding local communities for C++

Jens Weller

Motivating folks to start their own User
Groups

- So that we reach more folks
Connecting the audience

After this talk Michael Wong gave an
introduction to isocpp.org

News, Status & Discussion about Standard C++

Follow All Posts
The home of Standard C++ on

C++now 2013 / Meeting C++ 2013

08:30PM
10:00PM Jens Weller

Meeting C++ evolves into a Plattform
2013 - 2014

Meeting C++ update

Meeting C++ 2021

Meeting C++ Update 2021
9+ years!

Jens Weller

Meeting C++ update

* Meeting C++ Is funded by the

conference
— This is the room that pays me
Mesting C++ Update 2021 . Community Manager
+ years!
Jens Weller - Giving feedback

* Motivating folks to join

C++ User Groups 2011 - 2019

Meeting C++ 2020 Meeting C++ 2020

2011 « 2019

And so the golden age begins...

The C++ Conference ’ ‘

The golden Age 2014 - 2019

e Stable C++ Committee

Meeti ng C++ - Every 3 years a new standard

- C++11 - C++14 - C++17 - C++20
¢ C++ Community grows

e Lots of C++ content
con o
- CppCast

The C++ Conference - Videos

These 6 years lead to where we are at present

-

What do we know about the golden age?

u
E

Some statistics on C++ content

» C++ content as

- Blogs, videos
* Posted by Meeting C++
 Datasource

- Database of my RssReader tool

Monthly postings by Meeting C++

Dataloss

0
F FLS L PSS ELSLS L L ELL TS SF LS LSS
@“’@“’@“’@“’@"’@”@”@”@”@”@”@”@”@4@“@@*@@@“’@“’@“’@“‘P@”Qgﬁ@"é’“é‘é’“é’“é‘é‘@

& &
&

oy

Known posts to my RSS Tooling

0
SEPFSP LIS LFS LI CLLRLTS LS LSS
@‘@‘r@“’@‘@”@‘@‘@”@‘@‘@‘@‘@‘\@‘}@“«9‘\@“@‘@@‘@‘r@@@@@‘ﬁ@‘@‘@‘@‘@‘fﬁﬁfﬁﬁ#&&ﬂ@ éﬁéﬁéﬁéﬁ

C
0
m
hi
INing
b
0
th

500

400

300

200

100

f;
&
&
éi\
$¥
&
é)'\x
&
&
&
&
I
&
&
&
&
&
&
é}'\r
&
<
&
S
&
0?'\:
$® o
/\\
¢

@'\x
r?'\r
(9'\1
@'\r
r?\r
(9'\:
@'\r
r?'\r
@'\x
f‘g‘\’
(9'\;
@'\r
r?'\r
(9'\,
@'\r
r?'\r
(9'\1
f‘g‘\’
(9'\;
@'\x
r?'\r
(9'\,
@'\r
r?\r
(9'\:
@'\r
r?'\r
@'\x
&
&
&
59
ég”
r§5”
é‘”
Cd
&
&
&
)

Top 16 RSS Sources

ke £ x*

.

d;b

2

N
¢
@ »2?50

@8\

el c)sgﬁ} C)-)o‘:‘

5 &0 -(‘ &
A R <+
& &

o ?\&

Top 16 RSS Sources

* QtBlog 353

* Meeting C++ YT 259

* Meeting C++ News 219

* Modernes C++ 219

e Jason Turner YT 197

e CppCon YT 194

* Fluent C++ 194

* Meeting C++ Blogroll 185
* Visual C++ Team Blog 171
* CppCast 159

* ClLion 148

* Meeting C++ Jobs 147

* The Old New Thing 137

* C++Now YT 132

* Arne Mertz 106

* KDAB 102

5 & e \ & & @
cr o & o & F

¥ > ' & €

ko) .
& *

O A e x & & X 3 D
© - Xl . ot cr ol
v

Annual Surveys

e |ISOCPP e Jetbrains
- 20187 - 2017

Third Annual C++ Foundation Developer Survey "Lite"

Key takea
and Fun facts

Note: Given the pandemic, we weren't sure whether to run our an. irvey now at all. Thank you very much to the several hundred people who ¢
you overwhelmingly encouraged us to go ahead, and so here we are trying to o it. We look forward to your responses and
Demographics

most of all we want to send our best wishes to all of you in our -+ community and your fumilies and loved ones; C ways enjoyed a
and Methodology

esive global community, and never more so than now as we are all going through this dreadful shared experience together in virtually all countries. P

e safe, everyone. Raw data

The Standard C++ Foundation's third annual global C:++ developer survey is now open. As the name suggests, it's a one-p:

2020 Annual C++ Developer Survey “Lite”

Please take 10 minutes or ipate! A summary of the results, including aggregated highlights of common answers in the write-in re

posted publicly here on isocpp.org and shared with the C++ standardization committee to help inform C++ evolution.
The surv

Thank you for participating and helping to inform our committee and community

Meeting C++ Community Survey

® 2 O 2 O Whats the choices of error handling are used in your code base?

L) exceptions

* Continuous Survey

[_J error return codes with int or enums

|_J successiFailure objects (like boost.outcomel/expected)

* Questions
- Single & Multiple choice

) Skip this question

Submit poll

Meeting C++ Community Survey
Whats the choices of error handling are used in your code base?

bool

4urn codes
error retum ¢

Which C++17 library features are you using?

Meeting C++ Community Survey
Which C++17 library features are you using? (n=2522)

1400
1200
1000
200
600
100
200
o

. © \ t

ssing O+ oter swany stdroW flesyste™ (al funciens stauoption® rallel aigor®™ grsting e (dered JMaP enceplion® ELE dae) stdvarnian

nonefmoty math 5pe° al sl for (unor y-uncauaht 20 stdzeMP
sig sty \dsh
§ or_as

orinseri

|ace
try_eme!

Which standard attributes do you use?

Meeting C++ Community Survey
Which standard attributes do you use? (n=1814)

none [[Inoreturn]] [E.aI'FIE) dependency]] [[deprecated]] [Ifalithrough]] [[nodis card]] [[maybe_unused]] M{un)likely]] [[no_unique_address]]

Have you attended CppCon?

Meeting C++ Community Survey
Have you attended CppCon? (n=2584)

m I

200

m I
200

never notyet once twice 3times 4 times 5 times or more

Its a little bit biased though

Meeting C++ Community Survey
On which continent do you live/work? (n=2728)

1200

1000

Europe MNorth America Oceania South America

Africa

Which brings us to the present
2020 - today

Pandemic

* With 2020 things changed

* The golden age ended

- Conferences
- Committee

2020 from Meeting C++ perspective

e Uncertain

* Having to plan for multiple
cenarios from the start

* On-site limitations due to only
one room fitting restrictions

* Lockdown

- On-site cancelation late
October

New things also came along

Meeting C++
online

Started as an experiment for
online

Over 50 meetings today

Various formats

— Fairs (jobs / books / tools)
- AMAs
https://meetup.meetingcpp.com

Open content sessions

C++ Job fairs
Book & Tool fair
* Lightning talks

« AMAS

Hybrid Events — the future?

e CppCon 2021/22 * Hybrid

° Meeting C++ 2022 = B.oth onsite & online
- Live Streams

- Prerecordings e Lots of challenges

- Live stream main session B o o
— Some talks online live too - Internet connection
e Accu 2022 - Extra effort

— 3 hours in meetings to speak online
at CppCon ‘22.

- Lots of communicatiop

As conferences return

 What is still viable for you onsite?

- Attendance is 1/3 to 2019 in 2022

- “Minimal viable conference”

* And you build from this again
 Was the same in 2014 — 2019 cycle

And so a new cycle begins

<

Dawn of a new C++ cycle

Dawn of a new C++ cycle

published at 10.05.2022 14:55 by Jens Weller
Save to Instapaper Pocket

Some thoughts on where C++ stands right now as a language and communtiy.

It was 10 years ago when one would realize that a new era for C++ was in its beginning: C++11 was a fundamental change. Many things
that one wanted to have in the language or standard library suddenly became available, if one had the right compiler in the newest version.
And in this time 10 years ago, the first C++now happend in Aspen, as it has again in the beginning of May.

All the same things

e C++20i1s the new C++11

- Implementations need to catch up at first

- Lots of new things in the standards

- Unknown best practice (Modules especially)
e C++23is what C++14 was to C++11

- Budfix of the “big new standard”

-

C++26 will be the new C++17

<

Looking ahead

std::Shared_future

Defined in header =future=

template< class T > class shared_future;

template< class T > class shared_future<Té&>;

template<> class shared_future<void>;

The two most fundamental iIssues

 Running C++ In context * ABI

- “std:.execution” - P2123
- Scheduling

— Parallelism

- Concurrency

— Coroutines

Enabling async in C++

21

A Tour of C++ Executors (part 1 of 2)

Working with Asynchrony
Generically:

ERIC NIEBLER

Copcon 20| ANA

Enabling async in C++

21
Working with Asynchrony Fundamental building block

Generically: - Any error, oversight will carry

An important part

The base of so much more

A Tour of C++ Executors (part 1 of 2) heavy
ERIC NIEBLER - Taking time is the right approach
Cppcon %lll Q:Q * Unfortunately -

— Blocks progress for others

Reference implementation

 Currently at

std::execution - https://github.com/
std::execution , the proposed C++ framework for asynchronous and parallel programming. b ryce I e I b aC h /
You can see a rendered copy of the current draft here. Wg 2 1_p 2 SOO_Std_exe C utl O n

Reference implementation

* Likely moving into a Repo at
Building NVI D IA

The following tools are needed: ° P 2 3 O O

¢ (CMake

C} Cl | passing

* GCC 11+ orclang 14+

Executors today: libunifex

Overview

The 'libunifex’ project is a prototype implementation of the C++ sender/receiver async programming model that is
currently being considered for standardisation.

This project contains implementations of the following:

s Schedulers
Timers
Asynchronous 1/O (Linux w/ io_uring)
Algorithms that encapsulate certain concurrency patterns
Async streams
Cancellation

Coroutine integration

Status

This project is still evolving and should be considered experimental in nature. No guarantee is made for APl or ABI
stability.

Build status

« on Github Actions: (SILEEIEN 2T

Executors today: concore

concore

Core abstractions for dealing with concurrency in C++

) Cl | passing codecov [9455 § docs passing

About

concore isa C++ library that aims to raise the abstraction level when designing concurrent programs. It allows the
user to build complex concurrent programs without the need of manually controlling threads and without the need
of (blocking) synchronization primitives. Instead, it allows the user to "describe” the existing concurrency, pushing the

planning and execution at the library level.
We strongly believe that the user should focus on describing the concurrency, not fighting synchronization problems.

The library also aims at building highly efficient applications, by trying to maximize the throughput.

Executors today: concore

* NoO changes in one year+

Core abstractions for dealing with concurrency in C++

O psams

About

concore isa C++ library that aims to raise the abstraction level when designing concurrent programs. It allows the
user to build complex concurrent programs without the need of manually controlling threads and without the need

nization primitives. Instead, it allows the user to "de: = g ur| , pushing the
planning and execution at the library level.

We strongly believe that the user should focus on describing the concurrency, not fighting synchronization problems.

The library also aims at building highly efficient applications, by trying to maximize the throughput.

Though it has a really nice documentation

Concepts and customization-point objects

0

Legend
n
customiz afion point object

Though it has a really nice documentation

Concepts and customization-point objects

e C++23 executors search

e https://concore.readthedocs.io/

ABI
Application Binary Interface

-
) ¢

To break ABI or not is not the question

-
E

C++ needs to respect its users

C++ needs to respect Iits users

* Breaking ABI * Keeping ABI stable
- Your arguments here — Your arguments here

e Both are valid!
- Gordian knot

Bryce Adelstein Lelbach — What belongs in the
C++ standard library? - C++now 2021

C++ now What Belongs In The C++ Standard Library?
https://www.youtube.com/watch?v=0gMOMYb4DqE

WHAT BELONGS IN
THE /& STANDARD LIBRARY?

T
e e
A 2
tia 7 o

- 4’.{*’_' A

.;.'" %" Pﬁe”f’#‘(’

Bljyce Adelstein Lelbach

W @blelbach | i o I
S v (S

<A NVIDIA. HPC Programming Models Architect
Standard C++ Library Evolution Cha1r, US Programming Languages Chair

Pl A
'* £ ‘H‘:\\

i)

Interface feature?

C++ now What Belongs In The C++ Standard Library?

Interfaces

struct point {
interface(std::cxx23) {
nt X, ¥, Z;
interface(std::cxx26) int w;

int get_x() const { return x; }
int get_y() const { return y; }
int get_z() const { return z; }

int get_w() const interface(std::cxx26) { return w; }

}
};
sizeof(interface(std::cxx23) point) == 12
sizeof(interface(std::cxx26) point) == 16

Source: P2123: Extending The Type System To Provide APl And ABI Flexibility; Hal Finkel & Tom Scogland
“iﬂcl Ude <C++> Copyright (C) 2021 Bryce Adelstein Lelbach

Could be a good approach?

C++ how What Belongs In The C++ Standard Library?

Interfaces

Parameters

Return Types

Non-Local Variables

Data Members

Inlining

Constant Evaluation

Polymorphism

Source: P2123: Extending The Type System To Provide APl And ABI Flexibility; Hal Finkel & Tom Scogland
#tinclude <C++> Copyright (C) 2021 Bryce Adelstein Lelbach

P2123

P2123R0
Extending the Type System to Provide API and

ABI Flexibility

Published Proposal, 2020-03-02

This version:
http://wg21.link/p2123
Issue Tracking:
Inline In Spec

Authors:
Hal Finkel (Argonne National Laboratory)

Tom Scogland (Lawrence Livermore National Laboratory)

P2123

* Alanguage level mechanism

— To support various interfaces

P2123R0 e “preakina ABI”
Extending the Type System to Provide APl and g

ABI Flexibility * Conserving ABI

Published Proposal, 2020-03-02

This version:
http://wg21.link/p2123
Issue Tracking:
Inline In Spec
Authors:
Hal Finkel (Argonne National Laboratory)
Tom Scogland (Lawrence Livermore National Laboratory)

And the long wish list for this decade...

Pattern matching * All the things that need
additions

- Updating to new features

Reflection

Networking

... and more

But, C++ Is more then just the standard

-
.

POCO

+ LIBRARIES

Thank you!

@meetingcpp

mailto:info@meetingcpp.com

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69

