
roi.barkan@gmail.com

Aliasing

Risks, Opportunities and
Techniques

Roi Barkan
CppCon, September 2022

1Link to Slides

https://docs.google.com/presentation/d/1SgRaRmnf8oPBNyoLI2X8GTRyiiOQXQmjPap1wLjks8Y/preview

roi.barkan@gmail.com

“All problems in computer science can be solved by another level of indirection"
"... except for the problem of too many levels of indirection"

- David Wheeler

levelofindirection.com

2

https://levelofindirection.com

roi.barkan@gmail.com

Hi, I’m Roi
● Roi Barkan (he/him) - רועי ברקן
● I live in Tel Aviv, Israel
● C++ developer since 2000
● VP Technologies @ Istra Research

○ Finance, Low Latency, in Israel
○ careers@istraresearch.com

● Not an expert - happy to learn
○ Please - ask questions, make comments

3

mailto:careers@istraresearch.com

roi.barkan@gmail.com

What is Aliasing?
● Definition: two (or more) variables which refer to the same memory

location being used together.
● Example:

 std::string s{“hello, ”};
 s += s;

● Causes dependencies to exist where the code seems independant
○ Aliasing is NOT about threads and volatile data
○ Reasoning about aliasing can be similar to reasoning about race conditions

● Aliasing considerations impact code correctness and efficiency/speed

4

roi.barkan@gmail.com

Talk Outline
● Examples

○ Correctness, Performance

● Aliasing and the C++ Standard
● Dealing with aliasing pitfalls

○ APIs and implementations
○ Standard vs. compiler specific

● Future of aliasing
● Aliasing based design

5

roi.barkan@gmail.com

Example: Aliased Function Arguments
● Pointers:

auto minmax = [](const string& i, const string& j,
 string* out_min, string* out_max) {
 *out_min = min(i, j); *out_max = max(i, j);
};
array<string, 2> arr{"22222", "11111"};
minmax(arr[0], arr[1], &arr[0], &arr[1]); // try to sort

● References:
auto concat = [](string& result, const auto&... args) {
 ((result += args), ...);
};
string x{"hello "}, y{"world "};
concat(x, y, x);

6https://godbolt.org/z/rzz81TsWx

https://godbolt.org/z/rzz81TsWx

roi.barkan@gmail.com 7

roi.barkan@gmail.com

Example: Not Only Arguments
● Member variables:

complex<int> x{2, 2};
x *= reinterpret_cast<int*>(&x)[0]; // multiply by real part

● Lambda closures:
auto add_to_all = [](auto& v, const auto& val) {
 for_each(begin(v), end(v), [&](auto& x) { x += val; });
};
vector<int> v{1, 2, 3};
add_to_all(v, v[0]);

8https://godbolt.org/z/7YnMGMnqd

https://godbolt.org/z/7YnMGMnqd

roi.barkan@gmail.com 9

roi.barkan@gmail.com

Example: Aliased Buffers
void loopcpy(char* dst, const char* src, int size) {
 while (size--) *dst++ = *src++;
}

using namespace std;
using namespace std::literals;
template <typename Fun>
void test(string_view name, Fun F) {
 char buffer[50] = "hello ";
 F(buffer + 1, buffer, 6);
 buffer[0] = ' ';
 cout << name << " [" << buffer << "] "
 << (" hello "sv == buffer ? "Good\n" : "Bad\n");
}

10https://godbolt.org/z/Er4dfPPqb

https://godbolt.org/z/Er4dfPPqb

roi.barkan@gmail.com

Example: Aliased Buffers
void loopcpy(char* dst, const char* src, int size) {
 while (size--) *dst++ = *src++;
}

using namespace std;
using namespace std::literals;
template <typename Fun>
void test(string_view name, Fun F) {
 char buffer[50] = "hello ";
 F(buffer + 1, buffer, 6);
 buffer[0] = ' ';
 cout << name << " [" << buffer << "] "
 << (" hello "sv == buffer ? "Good\n" : "Bad\n");
}

11

test("loopcpy", loopcpy);

test("strcpy ", [](auto dst, auto src, auto...) {

 strcpy(dst, src); });

test("strncpy", strncpy);

test("memcpy ", memcpy);

test("memmove", memmove);

test("copy_n ",

 [](auto dst, auto src, auto size) {

 copy_n(src, size, dst); });

Clang14 ICC 2021.5.0

[hhhhhh] Bad

[helll] Bad

[hello] Good

[helll] Bad

[hello] Good

[hello] Good

Standard

Bad

UB

UB

UB

Good

ID

loopcpy [hhhhhh] Bad

strcpy [helll] Bad

strncpy [hello] Good

memcpy [hello] Good

memmove [hello] Good

copy_n [hello] Good

https://godbolt.org/z/Er4dfPPqb

https://godbolt.org/z/Er4dfPPqb

roi.barkan@gmail.com

Example: STL Algorithms
● Erase (or Erase-Remove) max element with duplicates

 erase(v, *max_element(begin(v), end(v)));

or (C++20 ranges)
 erase(v, *ranges::max_element(v));

○ (remove has documentation about this, erase doesn’t)

● Copy/Move overlapping regions
 copy(begin(v),end(v)-1, begin(v)+1);

○ (Documented as faulty, copy_backward recommended instead)

● Iterators can cause aliasing
 auto max = ranges::max_element(a);
 stable_partition(begin(a),end(a),[=](const auto&x) {return x != *max;});

○ (Predicates which modify their argument or the sequence are UB, this case isn’t).

12https://godbolt.org/z/6cGvz6deE

https://en.cppreference.com/w/cpp/algorithm/remove#:~:text=reference%20to%20an%20element
https://en.cppreference.com/w/cpp/algorithm/copy#:~:text=within%20the%20range
https://godbolt.org/z/6cGvz6deE

roi.barkan@gmail.com 13

roi.barkan@gmail.com 14

roi.barkan@gmail.com

Performance Effect of Aliasing
● Extreme example

void foo(std::vector<double>& v, const double& coeff) {
 for (auto& item : v) item *= std::sin(coeff);
}

● Compiler’s missed opportunities:
○ Register <-> memory
○ Vectorization
○ Expression hoisting

● How important can it be...

15https://godbolt.org/z/qKrEfWe7Y

https://godbolt.org/z/qKrEfWe7Y

roi.barkan@gmail.com

Performance Benchmark Results

16https://godbolt.org/z/qKrEfWe7Y

https://godbolt.org/z/qKrEfWe7Y

roi.barkan@gmail.com

Lesson Learned - Aliasing is Tricky

17

● Humans rarely consider it → Strange unexpected bugs
○ We expect independence of different variables

● Compilers can’t ignore it → Unexpected performance loss
○ Learn more in Ofek Shilon’s talk about optimization remarks from Wednesday

● Library writers should document it → users should read documentation
○ Misuse often leads to ‘happens to work’ code

● “All problems in computer science can be solved by another level of indirection”
“... except for the problem of too many levels of indirection"

● Questions and comments are welcome…

roi.barkan@gmail.com

Aliasing in Other Languages
● The C language had a surge of (non-assembly) aliasing issues

○ Pointers were used as primitive substitutes to arrays, matrices, strings
○ C99 introduced the restrict keyword

■ A code block with a restrict pointer/array can only change the pointed data
through that pointer/array. Otherwise: undefined behavior

■ Most C++ compilers have some non-standard support for restrict

● Fortran typically treats aliases as undefined behavior
○ with compiler switches to assume aliasing

● Swift and Rust track reference creation aiming to prohibit the risk of
aliasing

18

roi.barkan@gmail.com

Aliasing in the C++ Standard
● C++ hasn’t adopted the restrict keyword (yet?)

○ Seems more tricky: function-signature qualifiers, templates, functors/lambdas

● Aliasing should be type-based - known as “strict aliasing”
○ Only similar types are technically allowed to alias each other (and char, std::byte)

■ Similar types - changes to const/volatile/signed, or base-derived relationship
■ Otherwise - undefined behavior

○ Strong-typedefs can reduce risk and improve performance !
○ Most compiler-optimizers relax the rules - favoring predictability over performance

■ Still - compilers try to prove whether aliasing is impossible.

● Some objects are easier to reason about
○ Local variables - locally live on the stack
○ Temporary values

19

roi.barkan@gmail.com

Aliasing in the C++ Standard Library (STL)
● The STL tries to document the effect of aliasing and sometimes mitigates

them
○ vec.push_back(v.front()); always works (with a performance cost)

○ std::bind() holds its ‘closure’ by-value and avoids aliasing

● std::valarray is specifically required to have no aliasing
○ The expression addressof(a[i]) != addressof(b[j]) evaluates to true for any two arrays a and b

and for any size_ t i and size_ t j such that i < a.size() and j < b.size(). [valarray.access]

● std::execution::par/unseq inherently (implicitly) treats many forms

of aliasing as undefined behavior.

20

https://eel.is/c++draft/numarray#valarray.access-4.sentence-1
https://eel.is/c++draft/valarray.access

roi.barkan@gmail.com

Performance - std::execution::unseq

21https://godbolt.org/z/9qsafxfvb

https://godbolt.org/z/9qsafxfvb

roi.barkan@gmail.com

Strong Typedefs
● Types that encapsulate and behave like other types, but are different and

don’t automatically convert to/from them
○ No standard implementation, but a few libraries mimic the behavior

● Motivating example:
struct A { int i; };
struct B { int i; };

int mayAlias(auto& a, const auto& b) {
 a.i += b.i;
 if (b.i == 2) return 0;
 return 1;
}

template int mayAlias(A&, const A&);
template int mayAlias(A&, const B&);

22https://godbolt.org/z/4dKfah7c5

https://godbolt.org/z/4dKfah7c5

roi.barkan@gmail.com

How to Avoid Aliasing Pitfalls
● Pass arguments by value

○ Value semantics are all the rage
○ Move semantics and copy-elision can make this relatively cheap
○ Consider supporting std::reference_wrapper (i.e. std::ref())

● Use strong typedefs and unit libraries
○ clearer code for humans, compilers might optimize it as well

● Document your code’s aliasing assumptions (contract)
○ Read other people’s documentation

● For a large user base - write defensive code
○ Verify your contract - assert/throw/etc.
○ Widen your contract (e.g. vec.push_back(v.front()))
○ Let users control the contract

23

roi.barkan@gmail.com

Defensive Code
● Basic function

template <typename Value, typename BinOp>
void unsafe_apply(std::span<Value> s, const Value& v, BinOp op) {
 for (auto& item : s) item = op(item, v);
}

● User controlled version
template <typename T> struct ByRef { using type = const T&; };
template <typename T> struct ByVal { using type = T; };

template <typename Value, typename BinOp, typename PassBy = ByRef<Value>>
void user_apply(std::span<Value> s, const Value& v_ref, BinOp op, PassBy = {}) {
 typename PassBy::type v{v_ref};
 for (auto& item : s) item = op(item, v);
}

24https://godbolt.org/z/T15odT8Ks

https://godbolt.org/z/T15odT8Ks

roi.barkan@gmail.com

Defensive Code
● Safe version

template <typename Value, typename BinOp>
void safe_apply(std::span<Value> s, const Value& v, BinOp op) {
 if (!s.empty() && std::less_equal{}(&s.front(), &v) &&
 std::less_equal{}(&v, &s.back()))
 {
 user_apply(s, v, op, ByVal<Value>{});
 return;
 }
 user_apply(s, v, op, ByRef<Value>{});
}

● Sometimes bounds/alias checking isn’t as easy

25https://godbolt.org/z/oWv8fs5qv

● Questions and comments are welcome…

https://godbolt.org/z/oWv8fs5qv

roi.barkan@gmail.com

Proposals on Aliasing in the C++ Standard
● The restrict keyword signal to users and compiler that aliasing is UB

○ Many compilers have some support for it, but standardization isn’t likely

● [[alias_set]] (2014) - annotate the relationship between variables
○ has some similarities with Rust lifetime annotations

● span<T, std::restrict_access> (2018) - property-based ‘qualifier’ for added
semantics

● std::disjoint (2018) - meant for contracts to convey aliasing consistently
● Lifetime safety (2019) - Core guidelines and static analysis which “default to

banning passing non-owning Pointers that alias”.

26

https://wg21.link/n3988
https://wg21.link/p0856
https://wg21.link/p1296
https://wg21.link/p1179

roi.barkan@gmail.com

Tricking the Compiler ?
● union is a mechanism for several object types to reside in the same

address.

● At any time one type is active and accessing a different type is typically UB
○ variant is a type safe STL class that enforces correct access

● C++ does allow some accesses to non-active types - and aliasing
○ Types need to be StandardLayoutType and accessed members need to be in their common

prefix. std::is_corresponding_member checks for this condition.

● This implies that “strict aliasing” has limits
○ I might be wrong, or this might be a bug in the standard/compilers

27

https://en.cppreference.com/w/cpp/named_req/StandardLayoutType

roi.barkan@gmail.com

Aliasing of Standard Layout Types
● Accessing aliased union members is sometimes allowed:

“In a standard-layout union with an active member of struct type T1, it is permitted to read a
non-static data member m of another union member of struct type T2 provided m is part of the
common initial sequence of T1 and T2; the behavior is as if the corresponding member of T1
were nominated.” [class.mem.general]

● Example from the standard:
struct T1 { int a, b; };
struct T2 { int c; double d; };
union U { T1 t1; T2 t2; };
int f() {

 U u = { { 1, 2 } }; // active member is t1
 return u.t2.c; // OK, as if u.t1.a were nominated
}

28

https://eel.is/c++draft/class#def:active,union_member
https://eel.is/c++draft/class#mem.general-26.sentence-1
https://eel.is/c++draft/class.mem.general

roi.barkan@gmail.com

Motivating Example
● Implement a C++ Conference:

struct CppPerson {
 std::string name; double expertise;
 //... more fields, methods
};
//Precondition - teacher and students
can't alias
void teach(span<CppPerson*> students,
 const CppPerson& teacher) {
 for (auto pStudent : students)
 pStudent->expertise +=
 std::max(teacher.expertise,100.0);
};

● Can we use unions to express
non-aliasing to the compiler ?

29

● Suggested approach:
struct Student : CppPerson {};
struct Teacher : CppPerson {};
static_assert(std::is_layout_compatible_v<
Student, Teacher>);
union Attendee {
 Student student;
 Teacher teacher;
};
void teach(span<Student*> students,
 const Teacher& teacher) {
 for (auto pStudent : students)
 pStudent->expertise +=
 std::max(teacher.expertise,100.0);
};

● Is this UB ??

https://godbolt.org/z/5coxPxxdf

https://godbolt.org/z/5coxPxxdf

roi.barkan@gmail.com

Strict Aliasing and union
● Recall strong typedefs:

struct A { int i; };
struct B { int i; };

int mayAlias(auto& a, const auto& b)
{
 a.i += b.i;
 if (b.i == 2) return 0;
 return 1;
}

30

● Let’s add unions:
union U {
 A a;
 B b;
};

int aliasA(A& a) {
 return mayAlias(a, a);

};

int aliasU(U& u) {
 return mayAlias(u.a, u.b);

};

https://godbolt.org/z/d71Mjaxz7

https://godbolt.org/z/d71Mjaxz7

roi.barkan@gmail.com

Strict Aliasing and union
● Recall strong typedefs:

struct A { int i; };
struct B { int i; };

int mayAlias(auto& a, const auto& b)
{
 a.i += b.i;
 if (b.i == 2) return 0;
 return 1;
}

31

● Let’s add unions:
union U {
 A a;
 B b;
};

int aliasA(A& a) {
 return mayAlias(a, a);

};

int aliasU(U& u) {
 return mayAlias(u.a, u.b);

};

https://godbolt.org/z/d71Mjaxz7

https://godbolt.org/z/d71Mjaxz7

roi.barkan@gmail.com

Different Optimizers, Different Worlds

32

roi.barkan@gmail.com

variant State Machines

33

● State machine is a typical case for using variant
○ At any point only one state is valid

● Changing the state to T is done via operator=(T&&) or emplace<T>()
● Different states commonly share information

○ variant<WorkingPerson, RestingPerson> - both states typically have a name, might
inherit from Person.

○ Semantic strong typedefs might be identical in structure, e.g. variant<Cat, HappyCat>

● Sadly, state changing functions aren’t allowed (UB) to read the previous
state (especially relevant for emplace<T>())

○ Previous state gets destructed before the new state constructor is invoked
○ STL chose performance over safety (unlike most containers).

roi.barkan@gmail.com

variant State Changes

34

● Undefined/unexpected behavior:
variant<filesystem::path, string> v{"some_long_file_name"s};
v = std::move(v); //Bad on non-variants as well
v.emplace<filesystem::path>(std::move(get<string>(v)));
v.emplace<filesystem::path>(get<string>(v));

● The proper (no copy) way is to use temporaries, and rely on move
semantics:
v.emplace<filesystem::path>(
 string{std::move(get<string>(v))})

roi.barkan@gmail.com

Summary
● Aliasing is tricky - people assume independence
● Value semantics makes life simpler
● Strong typedefs can assist
● Implement and document your code with care
● Smart people in the committee are working on improvements
● Know how to communicate with others and the compiler

● Happy coding !
● Questions/comments are welcome

35

Thank You !!

roi.barkan@gmail.com

References / Acknowledgements
● OptView2 - https://youtu.be/nVc439dnMTk
● [[alias_set]] - https://wg21.link/n3988
● span<T, std::restrict_access> - https://wg21.link/p0856
● std::disjoint - https://wg21.link/p1296
● Lifetime safety - https://wg21.link/p1179

36

Thank You !!

https://youtu.be/nVc439dnMTk
https://wg21.link/n3988
https://wg21.link/n3988
https://wg21.link/p0856
https://wg21.link/p0856
https://wg21.link/p1296
https://wg21.link/p1296
https://wg21.link/p1179
https://wg21.link/p1179

