
C
opyright 2022 M

etaspex -C
onfidential m

aterial, cannot be redistributed w
ithout authorization

September 13, 2022 1



C
opyright 2022 M

etaspex -C
onfidential m

aterial, cannot be redistributed w
ithout authorization

September 12, 2022 2

Agenda

• Enterprise Applications, a C++ paradox
• Why this paradox?
• C++ can do way better than existing frameworks
• Examples

• Referential Integrity
• Objects automatic destruction as a “free” byproduct
• Replacing SQL with C++ functions



C
opyright 2022 M

etaspex -C
onfidential m

aterial, cannot be redistributed w
ithout authorization

3

• C++ has one of the largest shares of the number of back-end transactions 
processed

• Large Enterprise Applications are mostly C++-based

• Yet, C++' share in number of Enterprise Applications is very small*

• Why?
• Our C++ community toolkits are inadequate or absent

• Only medium to large companies can afford compensating and building their own
• Leads to the general (mis)understanding that C++ is not meant for large-scale abstractions and is 

only meant for low-level/infrastructure software
• Yet, increasing trend (only in large companies) to elevate C++ abstractions to specification

Enterprise Applications, a C++ paradox

*Source: SlashData, "State of the Developer Nation" 22nd Edition, Q1 2022 



C
opyright 2022 M

etaspex -C
onfidential m

aterial, cannot be redistributed w
ithout authorization

4

• The need is to "handle persistent data concurrently" (and remotely for online)
• Lots of data that do not fit in RAM – need to rely on databases and factor in their constraints
• Need for fast response time, scalability, availability, fault-tolerance*, consistency
• Enterprise Applications are a perfect example of constrained environment

• Everything starts with data types and relationships
• Few algorithms – mostly binary trees access
• Lots of types, lots of relationships
• Data integrity issues

• Enterprise Applications suffer from low engineering productivity, little reuse, high testing 
costs and with time, collapsing agility due to gradually increased complexity

• All tell-tale signs of insufficient abstraction. "Raise the level of abstraction!"
• Generating code from specifications always failed

Enterprise Applications

*Read "partition tolerance".



C
opyright 2022 M

etaspex -C
onfidential m

aterial, cannot be redistributed w
ithout authorization

5

• std::unique_ptr and std::shared_ptr as is are insufficient to 
describe relationships

• Boost is very useful but still falls short

• No Application Server available

• SQL makes our C++ code fragile: it relies upon a cross-cut of the type 
system

• Zero-cost abstractions pave the way to layered abstractions (aka 
Hyperautomation/Hyper-abstraction), let's use them

• Let's learn from the past and go back to basics

Our C++ Tools are Inadequate

*Source: SlashData, "State of the Developer Nation" 22nd Edition, Q1 2022 



C
opyright 2022 M

etaspex -C
onfidential m

aterial, cannot be redistributed w
ithout authorization

September 12, 2022 6

• 1980s had the Flow Charts

• +20: 2000s had UML

• +20: In 2020 ”No Code” 
(exclusively diagrams) regained 
interest

• Nobody will try as hard as Grady 
Booch who unsuccessfully tried 
diagram-based software 
engineering with UML

• We need a different approach: 
what if we always started 
building the bridge from the 
wrong end?

So many failed 
attempts at 
Diagram-Based 
Engineering



C
opyright 2022 M

etaspex -C
onfidential m

aterial, cannot be redistributed w
ithout authorization

September 12, 2022 7

• What is "code"? People usually mean (low-
level) “programs” by that

• What is "specification"? Describing the 
"what", not the "how"

• Spreadsheets, which replaced programs 
using financial libraries showed that
formulating only the what is possible

• Separating levels of “what” and “how” is 
precisely what programming is: defining 
abstractions

• By layering abstractions, at a level high 
enough, specification and code become 
the same

• Let's start with data modeling

Specification or Code? Both!



C
opyright 2022 M

etaspex -C
onfidential m

aterial, cannot be redistributed w
ithout authorization

8

Wikipedia for "Ontology (information science)":

In computer science and information science, an ontology encompasses a representation, 
formal naming, and definition of the categories, properties, and relations between the 
concepts, data, and entities that substantiate one, many, or all domains of discourse. More 
simply, an ontology is a way of showing the properties of a subject area and how they are 
related, by defining a set of concepts and categories that represent the subject.

Adopted first by AI (knowledge acquisition), gaining momentum in data science.

Let's aim at offering a generic C++ toolkit allowing to describe ontologies easily, quickly, reusably, and 
embed all the logic we need to produce complete Enterprise Applications for any domain.

Let's have the ambition to produce applications way cheaper, more sophisticated and more efficient
than anything written by hand.

"Data Model" is tired, "Ontology" is wired

*Source: SlashData, "State of the Developer Nation" 22nd Edition, Q1 2022 



C
opyright 2022 M

etaspex -C
onfidential m

aterial, cannot be redistributed w
ithout authorization

September 12, 2022 9

• By specification we mean concise and precise source 
that goes directly into a regular C++ compiler

• We started from the standard library and Boost
• It takes 5 to 8 additional carefully crafted 

abstraction/template "arches" to bridge 
implementation to specification

• Example of abstraction layering: raw pointer, smart 
pointer, relationship, ontology type (generic or not), 
ontology, service

• At every layer, productivity increases (compound 
effect), the need for testing decreases, and 
performance starts identical vs. manual 
programming, ending up much higher (abstraction 
benefit) – "Complexity wall"

Hyper-abstracted C++: Starting from the "Other End"
Bridging abstraction arches from low-level code to specification

Image courtesy of Pexels from Pixabay



C
opyright 2022 M

etaspex -C
onfidential m

aterial, cannot be redistributed w
ithout authorization

10

Ontology Complexity "Wall"- Hyper-abstraction benefits

Manual(x)
Metaspex(x)

Engineering Cost – Manual vs. Hyper-abstracted

Wall Complexity

Low Definition High Definition

Manual(x)
Metaspex(x)

Application Performance – Manual vs. Hyper-abstracted

Wall Complexity

Low Definition High Definition

Zero-overhead
abstraction

Abstraction
benefit

En
gi

ne
er

in
g 

Co
st

Ap
pl

ic
at

io
n 

Pe
rf

or
m

an
ce

 &
 A

ffo
rd

ab
ili

ty



C
opyright 2022 M

etaspex -C
onfidential m

aterial, cannot be redistributed w
ithout authorization

11

Our Specification-Level Abstractions in Numbers

• Implementation: ~300 klocs of layered template abstractions, offering:
• A general-purpose C++ application server (HTTP REST JSON-based)
• Tools to describe high-definition ontologies (types and their relationships), including inter-document links
• Automatic persistence in document databases (MongoDB, Couchbase, CouchDB) described in configuration files

• Etc.

• C++ specifications become independent from Operating System, Web server and database
• Lots of reusable types and ~200 ready-made services coming with the Foundation Ontology

• Advanced security
• Concise
• 10 lines to declare a type that persists automatically
• 8 lines to declare a service creating a document in a database
• 1 line to declare a multi-dimensional index (KD-Tree)

• Efficient: < 100 microseconds of application tier total CPU time to run a service call creating a document in Couchbase (Ubuntu 
20.04, conventional CPU)

• Let's see a few of our high-level abstractions



C
opyright 2022 M

etaspex -C
onfidential m

aterial, cannot be redistributed w
ithout authorization

12

A simple document model: own<> and link<>
• Generic, strongly typed
• Similar to HTML with URLs
• Links possible across 

databases, database products, 
datacenters

• Integrates nicely with 
document databases

• Simple: complexity sealed 
inside

• More finesse in the ontology 
means less complication later 
on, type as much as you can

• All this comes with integrity 
rules

Root type

Root type



C
opyright 2022 M

etaspex -C
onfidential m

aterial, cannot be redistributed w
ithout authorization

13

• An object can own another one

• An object can be owned at most by one other object

• Root types cannot be owned (they have a UUID and are referenced in dictionaries)

• A document is the set of objects owned transitively by a root object

• An object can own another one only if the first is in a document

• An object can possess a link to another only if the second is in a document

• An object can be the target of as many links as needed

• Links cycles are authorized

• The system automatically maintains these rules when an ownership is broken

Embedded Referential Integrity Rules



C
opyright 2022 M

etaspex -C
onfidential m

aterial, cannot be redistributed w
ithout authorization

14

"Relaxed" Referential Integrity Automatic Maintenance

• Operates on strong links
• Weak links are merely broken
• Done in cascade
• Logical operation, no direct 

link with objects' lifespan
• No SQL running
• More sophisticated than 

RDBMS constraints

Strong link automatically cut

Strong link preserved

Own relationship being cut



C
opyright 2022 M

etaspex -C
onfidential m

aterial, cannot be redistributed w
ithout authorization

15

struct characteristics;
struct category;

struct product: public root<>
{

HX2A_ROOT(product, "prod", 1, root);
product(reserved_t): root(reserved),

_chars(*this), _category(*this) {}

own<characteristics, "ch"> _chars;
strong_link<category, "ct"> _category;

};

Example: an eCommerce Product

Also: weak_link,
own_list, own_vector
link_list, link_vector
etc…



C
opyright 2022 M

etaspex -C
onfidential m

aterial, cannot be redistributed w
ithout authorization

16

• All document roots are in dictionaries, held by smart pointers (reference 

counting)

• Own relationships rely on smart pointers (reference counting as well)

• Links contain only regular pointers

• Objects are automatically and immediately destroyed

Theorem: Thanks to Referential Integrity, links never point at destroyed objects

Zero-Cost Byproduct: Automatic Object Destruction



C
opyright 2022 M

etaspex -C
onfidential m

aterial, cannot be redistributed w
ithout authorization

17

Far better than Garbage Collection
Traversals are guided, limited to specific documents/sub-documents

Compatible with real-time, with guarantees (and frugal)

Better than std::shared_pointer, same guarantees

More frugal, link loops allowed without deadlocks

Templates get compiled into fast lightweight binaries

See animation (Metaspex Channel)

https://www.youtube.com/watch?v=M-71t1Az-8c

Better and… Free

https://www.youtube.com/watch?v=M-71t1Az-8c


C
opyright 2022 M

etaspex -C
onfidential m

aterial, cannot be redistributed w
ithout authorization

18

We already have a language: C++

Object-oriented (can resolve SQL's cross cut maintenance headache issue)

Most powerful metaprogramming model in existence

Compiles into lightweight binary code

In the "domain of discourse", types and owns/links form the syntax, let's add 

semantics

Replacing SQL



C
opyright 2022 M

etaspex -C
onfidential m

aterial, cannot be redistributed w
ithout authorization

19

class contract: public root<>
{

// …
slot<time_t, "s"> _start;
slot<uint32_t, "d"> _duration;

time_t end(){
return _start + _duration;

}
attribute<time_t, &contract::end, "e"> _end;

};

Their values persist and indexes can be built on them

Semantic Attributes Example

Bidirectional!



C
opyright 2022 M

etaspex -C
onfidential m

aterial, cannot be redistributed w
ithout authorization

20

• Fairly easy to read, describe the what not the how (rules)

• Fast: run compiled C++ functions above layered abstractions, including links

• Precalculated and lazily evaluated

• Object-oriented, resilient to ontology updates (reusable)

• Recalculated incrementally and minimally

• Can calculate documents over documents (and etc.)

• No SQL running for evaluation

• Queries are O(log(N)), as they browse only an index

Semantic Attributes



C
opyright 2022 M

etaspex -C
onfidential m

aterial, cannot be redistributed w
ithout authorization

21

class my_service: public basic_service<"my_service_name",
name_payload>

{
reply_p call(http_request&, const session_info*,

const organization_p&, const user_p&,
const rfr<name_payload>& p){

db::connector c("hx2a");
make_rfr<mytype>(p->name);
return {};

}
} _my_service;

Compiles into a Nginx or Apache module, can interact with any supported database.

To call the service:

curl http://myhost/my_service_name –d '{"name": "mydocname"}'

Service Creating a Persistent Document

Logical name 
mapped to a physical 
description in the 
configuration file

One of the Foundation 
Ontology predefined 
payloads



C
opyright 2022 M

etaspex -C
onfidential m

aterial, cannot be redistributed w
ithout authorization

22

We can now capture complete statically-validated specification-level domain ontologies
They can be reused to produce quickly entire database and Web server-neutral high-definition 
applications using additional abstractions:
- General-purpose C++ Application Server (can be used with any database)
- Automatic Multitenancy - Multi-dimensional search (KD-trees)
- Basic services - Strongly-typed database cursors
- Services with full credential checks - Outgoing services (post, fanout…)
- Paginated services - Growing Foundation Ontology
- Offline/batch applications - Full-fledge security
- Persistent Queues - Invertible relationships
- Meta-Ontologies - Etc.

Capitalizing on Ontologies & Abstractions



C
opyright 2022 M

etaspex -C
onfidential m

aterial, cannot be redistributed w
ithout authorization

23

• Time
• Back-ends/offline applications in hours instead of months/years
• Iterate at a rapid pace
• Customize implementations (including datamodel changes) quickly

• Cost
• Supercharge engineering teams
• Use fewer hardware

• Embrace gradually and effortlessly the most modern tech

• Value
• Develop high-definition applications too complex today

• Agility is high, technology never lags behind business or industry mandates

• Improved security

• Low latency

High-Level Benefits



C
opyright 2022 M

etaspex -C
onfidential m

aterial, cannot be redistributed w
ithout authorization

February 21, 2021 24



C
opyright 2022 M

etaspex -C
onfidential m

aterial, cannot be redistributed w
ithout authorization

25

• A methodology (automated or not) to build systems on top of a subsystem or several 
subsystems

• E.g.: structured programming on top of assembly programming, assembly programming on top of processor microcode, 
algorithms on top of iterators on top of containers in the C++ STL, a Linux filesystem on top of a disk driver, a unicode 
iterator on top of raw strings, device drivers API making application code independent from various physical devices, 
etc.

• Abstracting is not scripting on top of the subsystems
• It is not opening up a Turing-complete programming model on top of subsystems API

• Abstracting is not automation on top of subsystems
• Abstractions do not generate the exact client code which would be written by hand if the abstraction did not exist. 

Abstractions are opinionated

Abstraction: the Essence of Programming
What it is, what it is not



C
opyright 2022 M

etaspex -C
onfidential m

aterial, cannot be redistributed w
ithout authorization

26

• Subsystems must expose orthogonal APIs
• No function exposed in a subsystem API must be a combination of others

• Otherwise it factors client code within its own layer, and prevents abstractions to emerge

• C++ operators which are syntactic helpers are an exception

• Above subsystems: factoring is not abstracting
• Factoring is mechanical, abstracting requires thinking and modeling

• Factoring obscures the situation

• Structured programming did not arise from factoring assembly code

• Treat factoring with a lot of suspicion

Abstraction: the Essence of Programming
How to – Adopt a discipline to allow abstraction emergence



C
opyright 2022 M

etaspex -C
onfidential m

aterial, cannot be redistributed w
ithout authorization

27

• Do not fuse abstractions together
• Examples of such fusions are: integrity constraints on a relational database schema, which fuse together referential 

integrity and data lifespan, garbage collectors which fuse together expensive data traversals and objects lifespan, etc.

• Be clear on subsystems control and document how to use the subsystems API directly. 
These abilities can be complete (transparent abstraction), limited, or nonexistent 
(opaque abstraction)

• If you remove a file in a Linux filesystem, you’ll still see its contents if you read the disk byte per byte immediately after 
through the disk driver. Reading the disk byte per byte is not an operation allowed by the filesystem abstraction to 
access the content of files. It is allowed, though, to clone a disk

• An abstraction must be carefully crafted so that a reasonably fine level of control can be obtained over the subsystems. 
The goal is not full control, but it is not to hamper control unreasonably either

• Abstractions must not measurably affect performance, offer a higher productivity and 
quality (reduce bugs)

• Because of that, at scale they allow to develop systems impossible to develop without them (productivity boost 
pushing limits further, and offering more clarity)

Abstraction: the Essence of Programming
How to - Adopt a discipline to allow abstraction emergence


