
1

Nina Ranns

2

Committee member since 2013,
Cat owner,

Coffee drinker,
Chocolate lover,

Comma supervisor, and
C++ nerd

3

• John Lakos

• Vittorio Romeo

• Rostislav Khlebnikov

• Alisdair Meredith

• An extended team of collaborators

What Is The Book About?

• Analyze every new feature of the C++11/14 language

• Categorize risk/reward given the potential for misunderstanding
(safe, conditionally safe, unsafe)

• common pitfalls and how to avoid them

4

Types with special provisions

• treating user defined types as built in types in certain cases

• new features require new definitions (constexpr specifier and literal
types)

• “blessing” certain common programming patterns inherited from C
code

5

C++ Object Model

6

C++ Object Model

• “The constructs in a C++ program create, destroy, refer to,
access, and manipulate objects.”

7

C++ Object Model

• “The constructs in a C++ program create, destroy, refer to,
access, and manipulate objects.”

8

• “An object occupies a region of storage in its period of
construction, throughout its lifetime, and in its period of
destruction.”

C++ Object Model

• “The object representation of an object of type T is the sequence of
N unsigned char objects taken up by the object of type T, where N
equals sizeof(T) ”

9

C++ Object Model

• “The object representation of an object of type T is the sequence of
N unsigned char objects taken up by the object of type T, where N
equals sizeof(T) ”

10

• “The value representation of an object is the set of bits that hold the
value of type T.”

Types of objects

• objects of scalar types (arithmetic types, enumeration types, pointer
types, pointer-to-member types, std::nullptr_t)

• objects of user defined types, i.e. class types

• arrays

11

Types of objects

• objects of scalar types (arithmetic types, enumeration types, pointer
types, pointer-to-member types, std::nullptr_t)

• objects of user defined types, i.e. class types

• arrays

12

Types of objects

• objects of scalar types (arithmetic types, enumeration types, pointer
types, pointer-to-member types, std::nullptr_t)

• objects of user defined types, i.e. class types

• arrays

13

Objects of user defined type
• normally have constructor called when lifetime begins

• normally have destructor called when lifetime ends

• normally have values copied using assignment or copy construction

• normally have unspecified layout

• normally have differing object representation and value
representation

14

Types with special provisions

15

aggregate types
standard-layout types
trivially copyable types

trivial types
POD types
literal types

structural types
implicit-lifetime types

Types with special provisions

16

aggregate types
standard-layout types
trivially copyable types

trivial types
POD types
literal types

structural types
implicit-lifetime types

Aggregates

• existed in C++98

• can be initialised as a collection of objects (aggregate initialisation)

• allows for designated initialisers

• definition incrementally expanded to cover more user defined types

17

Aggregates

• existed in C++98

• can be initialised as a collection of objects (aggregate initialisation)

• allows for designated initialisers

• definition incrementally expanded to cover more user defined types

18

19

Aggregates

• existed in C++98

• can be initialised as a collection of objects (aggregate initialisation)

• allows for designated initialisers

• definition incrementally expanded to cover more user defined types

20

Aggregates

• existed in C++98

• can be initialised as a collection of objects (aggregate initialisation)

• allows for designated initialisers (since C++20)

• definition incrementally expanded to cover more user defined types

21

22

23

24

“The initializations of the elements of the aggregate are evaluated in the element order. “

Aggregates

• existed in C++98

• can be initialised as a collection of objects (aggregate initialisation)

• allows for designated initialisers

• definition incrementally expanded to cover more user defined types

25

Aggregates

• existed in C++98

• can be initialised as a collection of objects (aggregate initialisation)

• allows for designated initialisers

• definition incrementally expanded to cover more user defined types

26

Aggregates - C++03

• An aggregate is an array or a class with

• no user-declared constructors,

• no private or protected direct non-static data members,

• no virtual functions, and

• no base classes

27

Aggregates - C++03

• An aggregate is an array or a class with

• no user-declared constructors,

• no private or protected direct non-static data members,

• no virtual functions, and

• no base classes

28

Aggregates - C++03

• An aggregate is an array or a class with

• no user-declared constructors,

• no private or protected direct non-static data members,

• no virtual functions, and

• no base classes

29

Aggregates - C++03

• An aggregate is an array or a class with

• no user-declared constructors,

• no private or protected direct non-static data members,

• no virtual functions, and

• no base classes

30

Aggregates - C++11

• An aggregate is an array or a class with

• no user-provided or explicit constructors,

• no private or protected direct non-static data members,

• no virtual functions, and

• no base classes

31

• no brace-or-equal-initializers for non-static data members

Aggregates - C++14

• An aggregate is an array or a class with

• no user-provided or explicit constructors,

• no private or protected direct non-static data members,

• no virtual functions, and

• no base classes

32

Aggregates - C++17

• An aggregate is an array or a class with

• no user-provided, explicit, or inherited constructors,

• no private or protected direct non-static data members,

• no virtual functions, and

• no virtual, private, or protected base classes

33

34

“The elements of an aggregate are … for a class, the direct base classes in declaration
order, followed by the direct non-static data members that are not members of an

anonymous union, in declaration order. “

 …

Aggregates - C++17

• An aggregate is an array or a class with

• no user-provided, explicit, or inherited constructors,

• no private or protected direct non-static data members,

• no virtual functions, and

• no virtual, private, or protected base classes

35

Aggregates - C++20

• An aggregate is an array or a class with

• no user-declared, explicit, or inherited constructors,

• no private or protected direct non-static data members,

• no virtual functions, and

• no virtual, private, or protected base classes

36

37

38

39

See P1008 for more details

40

Library trait - std::is_aggregate
• Introduced in C++17 to resolve the problem of emplace and construct library idioms

41

Library trait - std::is_aggregate
• C++20 adds aggregate parens initialisation (see P0960). Library trait obsolete ?

42

Library trait - std::is_aggregate
• C++20 adds aggregate parens initialisation (see P0960). Library trait obsolete ?

Note : “… narrowing conversions are permitted, designators are not permitted, a temporary object bound to a
reference does not have its lifetime extended, and there is no brace elision. “

Types with special provisions

43

aggregate types
standard-layout types
trivially copyable types

trivial types
POD types
literal types

structural types
implicit-lifetime types

Types with special provisions

44

aggregate types
standard-layout types
trivially copyable types

trivial types
POD types
literal types

structural types
implicit-lifetime types

Standard layout types

• Classes with “predictable” layout.

• “Standard-layout classes are useful for communicating with code
written in other programming languages.”

45

Standard Layout Class
• has the same access control for all non-static data members,

• has all non-static data members and bit-fields first declared either in
the most derived class or in only one base class,

• has no base classes that require a distinct address,

• has no virtual functions and no virtual base classes,

• all base classes and non-static data members are of standard
layout type, no reference members

46

Standard Layout Class
• has the same access control for all non-static data members,

• has all non-static data members and bit-fields first declared either in
the most derived class or in only one base class,

• has no base classes that require a distinct address,

• has no virtual functions and no virtual base classes,

• all base classes and non-static data members are of standard
layout type, no reference members

47

48

Standard Layout Class
• has the same access control for all non-static data members,

• has all non-static data members and bit-fields first declared either in
the most derived class or in only one base class,

• has no base classes that require a distinct address,

• has no virtual functions and no virtual base classes,

• all base classes and non-static data members are of standard
layout type, no reference members

49

Standard Layout Class
• has the same access control for all non-static data members,

• has all non-static data members and bit-fields first declared either in
the most derived class or in only one base class,

• has no base classes that require a distinct address,

• has no virtual functions and no virtual base classes,

• all base classes and non-static data members are of standard
layout type, no reference members

50

Distinct address (C++11)

• Two objects that are not bit-fields may have the same address if one
is a subobject of the other, or if at least one is a base class
subobject of zero size and they are of different types;

51

Distinct address (C++20)

• Two objects that are not bit-fields may have the same address if one
is a subobject of the other, or if at least one is a base class
subobject* of zero size and they are of different types;

52

Distinct address (C++20)

• Two objects that are not bit-fields may have the same address if one
is a subobject of the other, or if at least one is a base class
subobject* of zero size and they are of different types;

53

 *in C++20, [no_unique_address]
non-static members could be of zero size

• Two objects that are not bit-fields may have the same address if one
is a subobject of the other, or if at least one is a base class
subobject* of zero size and they are of different types

Distinct address (C++20)

54

 *in C++20, [no_unique_address]
non-static members could be of zero size

55

Standard Layout Class
• has the same access control for all non-static data members,

• has all non-static data members and bit-fields first declared either in
the most derived class or in only one base class,

• has no base classes that require a distinct address,

• has no virtual functions and no virtual base classes,

• all base classes and non-static data members are of standard
layout type, no reference members

56

Standard Layout Class
• has the same access control for all non-static data members,

• has all non-static data members and bit-fields first declared either in
the most derived class or in only one base class,

• has no base classes that require a distinct address,

• has no virtual functions and no virtual base classes,

• all base classes and non-static data members are of standard
layout type, no reference members

57

Standard Layout Class
• has the same access control for all non-static data members,

• has all non-static data members and bit-fields first declared either in
the most derived class or in only one base class,

• has no base classes that require a distinct address,

• has no virtual functions and no virtual base classes,

• all base classes and non-static data members are of standard
layout type, no reference members

58

Implications of Standard Layout
• layout of the object depends only on the non-static data members

• the address of a standard layout class object and its first non-static
data member is the same

• the address of a standard layout class object and all of its base
classes is the same

• offsetof is well defined with standard layout class types*

59

Implications of Standard Layout
• layout of the object depends only on the non-static data members

• the address of a standard layout class object and its first non-static
data member is the same

• the address of a standard layout class object and all of its base
classes is the same

• offsetof is well defined with standard layout class types*

60

Implications of Standard Layout
• layout of the object depends only on the non-static data members

• the address of a standard layout class object and its first non-static
data member is the same

• the address of a standard layout class object and all of its base
classes is the same

• offsetof is well defined with standard layout class types*

61

Implications of Standard Layout
• layout of the object depends only on the non-static data members

• the address of a standard layout class object and its first non-static
data member is the same

• the address of a standard layout class object and all of its base
classes is the same

• offsetof is well defined with standard layout class types*

62

* and conditionally supported with non standard layout types

Common Initial Sequence

• Two standard layout structs have a common initial sequence if
some of their non-static data members and bit-fields in declaration
order have layout-compatible types

63

Common Initial Sequence

• Two standard layout structs have a common initial sequence if
some of their non-static data members and bit-fields in declaration
order have the same (underlying) type

64

Common Initial Sequence (C++20)

• Two standard layout structs have a common initial sequence if
some of their non-static data members and bit-fields in declaration
order have the same (underlying) type, and either both are declared

65

with [[no_unique_address]] or neither is.

Reading from a Union

• If an inactive member of a union has a common initial sequence
with the active member, it’s possible to read a member of the
common initial sequence through that inactive member

• The read must happen through the union object, not through a
pointer or a reference to the inactive member

66

Reading from a Union

U u{A{}}; // `a` is the active member;

int k = u.b.j; // ok, `b.j` is a member of the common initial sequence
int l = u.b.c; // UB, `b.c` is not a member of the common initial sequence

struct B {
 int j;
 char c;
};

struct A {
 int i;
 long l;
};

union U {
 A a;
 B b;
};

67

Reading from a Union

U u{A{}}; // `a` is the active member;

if (u.b.type_id == b_type) {
 /*…*/
}

struct B {
 int type_id;
 char c;
};

struct A {
 int type_id;
 long l;
};

union U {
 A a;
 B b;
};

68

Reading from a Union

U u{A{}}; // `a` is the active member;

B &bref = u.b; // forms reference to inactive union member
if (b.type_id == b_type) { // UB: reading through reference to an inactive member
 /*…*/
}

struct B {
 int type_id;
 char c;
};

struct A {
 int type_id;
 long l;
};

union U {
 A a;
 B b;
};

69

70

Library trait - std::is_standard_layout

• Introduced in C++11

• limited usability (static_assert to ensure correctness?)

• questionable quality of implementation suggest it isn’t widely used

Types with special provisions

71

aggregate types
standard-layout types
trivially copyable types

trivial types
POD types
literal types

structural types
implicit-lifetime types

Types with special provisions

72

aggregate types
standard-layout types
trivially copyable types

trivial types
POD types
literal types

structural types
implicit-lifetime types

Trivial special member
functions

73

Trivial default constructor

• not user-provided

• class has no virtual functions and no virtual base classes

• all the base classes and non-static data members have trivial
default constructors

• class has no default member initializers for non-static data
members

74

Trivial default constructor

• not user-provided

• class has no virtual functions and no virtual base classes

• all the base classes and non-static data members have trivial
default constructors

• class has no default member initializers for non-static data
members

75

Trivial default constructor

• not user-provided

• class has no virtual functions and no virtual base classes

• all the base classes and non-static data members have trivial
default constructors

• class has no default member initializers for non-static data
members

76

Trivial default constructor

• not user-provided

• class has no virtual functions and no virtual base classes

• all the base classes and non-static data members have trivial
default constructors

• class has no default member initializers for non-static data
members

77

Trivial copy constructor and
assignment operator

• not user-provided

• class has no virtual functions and no virtual base classes

• all the base classes and non-static data members have trivial
corresponding special member function

78

Trivial destructor

• not user-provided

• not virtual

• destructors of all base classes and non-static data members are
trivial

79

Trivially copyable type
• at least one non-deleted* copy operation

• all copy operations are trivial

• has a trivial non-deleted destructor

80

Trivially copyable type
• at least one non-deleted* copy operation

• all copy operations are trivial

• has a trivial non-deleted destructor

81

* C++20 definition takes into account constraints too

Trivially copyable type
• at least one non-deleted* copy operation

• all copy operations are trivial

• has a trivial non-deleted destructor

82

* C++20 definition takes into account constraints too

Trivially copyable type
• at least one non-deleted* copy operation

• all copy operations are trivial

• has a trivial non-deleted destructor

83

* C++20 definition takes into account constraints too

Trivially copyable type
• at least one non-deleted* copy operation

• all copy operations are trivial

• has a trivial non-deleted destructor

84

* C++20 definition takes into account constraints too

Note that there are no requirements on access control or ambiguity of call

Implications of Trivially Copyable

• the value is contained in the underlying byte representation

• can be memcpy-ed to and from another object of same type

• can be memcpy-ed to and from an array of char, unsigned char,
or std::byte

• compiler can implement the copy (copy/move construction or copy/
move assignment) as memcpy

85

Implications of Trivially Copyable

• the value is contained in the underlying byte representation

• can be memcpy-ed to and from another object of same type

• can be memcpy-ed to and from an array of char, unsigned char,
or std::byte

• compiler can implement the copy (copy/move construction or copy/
move assignment) as memcpy

86

Implications of Trivially Copyable

• the value is contained in the underlying byte representation

• can be memcpy-ed to and from another object of same type

• can be memcpy-ed to and from an array of char, unsigned char,
or std::byte

• compiler can implement the copy (copy/move construction or copy/
move assignment) as memcpy

87

88

Library trait - std::is_trivially_copyable

• Introduced in C++11

• prerequisite for bitwise copy

• does not ensure copy operation is non-deleted - generic code
should also check for availability of the relevant copy operation

89

Types with special provisions

90

aggregate types
standard-layout types
trivially copyable types

trivial types
POD types
literal types

structural types
implicit-lifetime types

Types with special provisions

91

aggregate types
standard-layout types
trivially copyable types

trivial types
POD types
literal types

structural types
implicit-lifetime types

Trivial Type

• trivial class type = trivially copyable + non-deleted/eligible trivial
default constructor

• remnant from POD days - only used in the library to describe types
which used to be required to be of POD type

92

93

Library trait - std::is_trivial

• Introduced in C++11

• limited usability - check for POD requirement ?

94

Library trait - std::is_trivial

• Introduced in C++11

• limited usability - check for POD requirement ?

Types with special provisions

95

aggregate types
standard-layout types
trivially copyable types

trivial types
POD types
literal types

structural types
implicit-lifetime types

Types with special provisions

96

aggregate types
standard-layout types
trivially copyable types

trivial types
POD types
literal types

structural types
implicit-lifetime types

What are PODs

• Defined in C++98 for C compatibility

• their physical representation mimics that of a C type (it doesn’t use
C++ only features which affect its physical representation)

• behave like C types in terms of construction, copying, and
destruction (it doesn’t make use of C++ only features that are
relevant to constructions, destruction, and copying)

97

POD: Plain Old Data
• The original definition :

• an aggregate (no user-declared constructors, no private or
protected non-static data members, no base classes, and
no virtual functions)

• no non-static data members of reference type, all non-static data
members of POD type, no user-defined copy assignment
operator, and no user-defined destructor.

98

POD in C++11

• properties relevant to object layout - standard layout types

• properties relevant to object construction, copying and destruction -
trivial types

• original term no longer needed - deprecated, then removed in
C++20

99

100

101

102

Library trait - std::is_pod

• Introduced in C++11

• deprecated in C++20

Types with special provisions

103

aggregate types
standard-layout types
trivially copyable types

trivial types
POD types
literal types

structural types
implicit-lifetime types

Types with special provisions

104

aggregate types
standard-layout types
trivially copyable types

trivial types
POD types
literal types

structural types
implicit-lifetime types

Literal types

• A literal type is one for which it might be possible to create an
object at compile time.

• It is not a guarantee that it is possible to create such an object, nor
is it a guarantee that any object of that type will be usable at
compile time.

105

Literal types

• A literal type is one for which it might be possible to create an
object within a constant expression.

• It is not a guarantee that it is possible to create such an object, nor
is it a guarantee that any object of that type will usable in a constant
expression.

106

Constant expressions

• requirement for constant initialisation (i.e. initialisation during
compile time)

• three new keywords constexpr(C++11), consteval(C++20), and
constinit(C++20)

107

Limitations of constant expressions

• things that are not possible/correct at compile time

• things that are difficult to implement

• For more information : C++Now 2019: Daveed Vandevoorde “C++
Constants”, P0992 Andrew Sutton “Translation and evaluation A
mental model for compile-time metaprogramming”

108

Literal types

• a scalar type

• a reference type referring to a literal type

• an array of literal type

• void (C++14)

• a literal class type

109

Literal class (C++11)
• it is an aggregate type or has at least one constexpr constructor or

constructor template that is not a copy or move constructor

• every constructor call and full-expression in the brace-or-equal-
initializers for non-static data members is a constant expression

• all of its non-static data members and base classes are of literal
types.

• has a trivial destructor
110

Literal class (C++17)
• it is a closure type, an aggregate type or has at least one constexpr

constructor or constructor template that is not a copy or move
constructor

• every constructor call and full-expression in the brace-or-equal-
initializers for non-static data members is a constant expression

• all of its non-static data members and base classes are of literal
types.

• has a trivial destructor
111

Literal class (C++20)
• it is a closure type, an aggregate type or has at least one constexpr

constructor or constructor template that is not a copy or move
constructor

• all of its non-static data members and base classes are of literal
types.

• has a constexpr destructor
112

Library trait - std::is_literal_type

• introduced in C++11, deprecated in C++17, removed in C++20

• the real question is - does this initialisation qualify as constant
initialisation ?

• will we need the definition of literal type in the future ?

113

Library trait - std::is_literal_type

• introduced in C++11, deprecated in C++17, removed in C++20

• the real question is - does this initialisation qualify as constant
initialisation ?

• will we need the definition of literal type in the future ?

114

115

Library trait - std::is_literal_type

• introduced in C++11, deprecated in C++17, removed in C++20

• the real question is - does this initialisation qualify as constant
initialisation ?

• will we need the definition of literal type in the future ?

116

Library trait - std::is_literal_type

• introduced in C++11, deprecated in C++17, removed in C++20

• the real question is - does this initialisation qualify as constant
initialisation ?

• will we need the definition of literal type in the future ?

117

Types with special provisions

118

aggregate types
standard-layout types
trivially copyable types

trivial types
POD types
literal types

structural types
implicit-lifetime types

Types with special provisions

119

aggregate types
standard-layout types
trivially copyable types

trivial types
POD types
literal types

structural types
implicit-lifetime types

Structural types (C++20)
• prerequisite for non-type template parameter

• scalar type

• lvalue reference type

• literal class type with

• all base classes and non static data members public, non
mutable and of structural type

120

Types with special provisions

121

aggregate types
standard-layout types
trivially copyable types

trivial types
POD types
literal types

structural types
implicit-lifetime types

Types with special provisions

122

aggregate types
standard-layout types
trivially copyable types

trivial types
POD types
literal types

structural types
implicit-lifetime types

Object lifetime
• “An object is created by a definition, by a new-expression, when

implicitly changing the active member of a union, or when a
temporary object is created.“

123

(before C++20)

Object lifetime
• “An object is created by a definition, by a new-expression, when

implicitly changing the active member of a union, or when a
temporary object is created.“

124

(before C++20)

Object lifetime
• “An object is created by a definition, by a new-expression, when

implicitly changing the active member of a union, or when a
temporary object is created.“

125

(before C++20)

126

• “When an expression J that has integral type is added to or subtracted from an expression
P of pointer type, the result has the type of P.
— If P evaluates to a null pointer value and J evaluates to 0, the result is a null pointer value.
— Otherwise, if P points to an array element i of an array object x with n elements the
expressions P + J (…) points to the array element i + j of x
— Otherwise, the behavior is undefined.

127

• “When an expression J that has integral type is added to or subtracted from an expression
P of pointer type, the result has the type of P.
— If P evaluates to a null pointer value and J evaluates to 0, the result is a null pointer value.
— Otherwise, if P points to an array element i of an array object x with n elements the
expressions P + J (…) points to the array element i + j of x
— Otherwise, the behavior is undefined.

128

129

• “When an expression J that has integral type is added to or subtracted from an expression
P of pointer type, the result has the type of P.
— If P evaluates to a null pointer value and J evaluates to 0, the result is a null pointer value.
— Otherwise, if P points to an array element i of an array object x with n elements the
expressions P + J (…) points to the array element i + j of x
— Otherwise, the behavior is undefined.

130

X has a trivial constructor.
 X has a trivial destructor.

What if we add special lifetime rules for types which require no code for
construction and no code for destruction ?

Implicit lifetime types

• scalar types

• array types

• aggregate classes and classes with a trivial destructor and at least
one trivial constructor

131

Object lifetime
• “An object is created by a definition, by a new-expression, when

implicitly changing the active member of a union, or when a
temporary object is created.“

132

(before C++20)

Object lifetime
• “An object is created by a definition, by a new-expression, by an

operation that implicitly creates objects, when implicitly changing
the active member of a union, or when a temporary object is
created.“

133

(after C++20)

Object lifetime
• “An object is created by a definition, by a new-expression, by an

operation that implicitly creates objects, when implicitly changing
the active member of a union, or when a temporary object is
created.“

134

(after C++20)

• aligned_alloc, malloc, calloc, realloc, memcpy, memove,
std::bit_cast, std::pmr::memory_resource.allocate()

Object lifetime
• “An object is created by a definition, by a new-expression, by an

operation that implicitly creates objects, when implicitly changing
the active member of a union, or when a temporary object is
created.“

135

(after C++20)

• aligned_alloc, malloc, calloc, realloc, memcpy, memove,
std::bit_cast, std::pmr::memory_resource.allocate()

• “An operation that begins the lifetime of an array of char, unsigned
char, or std::byte implicitly creates objects within the region of
storage occupied by the array.”

Implicit lifetime types

• Created to make C code well defined in C++

• additionally solves the problem of pointer arithmetic

• no library trait

136

Summary

137

138

type when do you care trait
aggregate type

member-wise initialisation, ability to use designated
initializers

is_aggregate (C++17)

trivially copyable type copying using memcpy, memove, and bit_cast std::is_trivially_copyable (C++11)

trivial type partial check for C code compatibility std::is_trivial (C++11)

standard layout type pointer-interconvertibility, union access through
common initial sequence, offsetoff std::is_standard_layout (C++11)

POD type check for C code compatibility std::is_pod (C++11, deprecated in C++20)

literal type requirement for compile time initilisation std::is_literal_type (C++11, deprecated in C+
+17, removed in C++20)

structural type requirement for non-type template parameter no trait

implicit-lifetime type makes common programming patterns well defined no trait

Thank you !

139

