
Concurrency TS 2 Use Cases 
and Future Directions

Hazard-Pointer and RCU Tricks and Tips
Michael Wong, Maged Michael, and Paul E. 

McKenney
TS2 Editorial Team



TS2 Tricks and Tips



TS road to C++ Standard

● Concurrency TS1
○ improvements to std::future
○ Latches and barriers
○ Atomic smart pointers

● Concurrency TS2 



The cart before the horse?

● TS 2 likely will close in 2023 in N4895
○ 2 initial items - Hazard Pointers, RCU

■ https://github.com/cplusplus/concurrency-ts2
■ HP: https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p1121r3.pdf
■ RCU: https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p1122r4.pdf

○ A few others possible: snapshot, asymmetric fences
○ Then usually a few more years for experience, so could miss C++26

● But Hazard Pointers and RCU already have a lot of C++ experience, since 2016
○ ARE WE REBELS? Why wait?

■  Committee agrees and is pushing it forward even before TS2 is out
○ Aiming for C++26 now

■ SG1 approved for C++26 for HP and RCU, soon LEWG, then LWG
■ HP: https://www.open-std.org/JTC1/SC22/WG21/docs/papers/2022/p2530r0.pdf
■ RCU: https://www.open-std.org/JTC1/SC22/WG21/docs/papers/2022/p2545r0.pdf

○ So what’s changed from TS to IS 26
■ Actually not much

https://github.com/cplusplus/concurrency-ts2
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p1121r3.pdf
https://www.open-std.org/JTC1/SC22/WG21/docs/papers/2022/p2530r0.pdf


Read Copy Update (RCU) TS2->IS 26

● RCU - no change for C++26 based on Folly experience
○ For after C++26, there will be some ideas for additions



Hazard Pointers (HP) TS2->IS26

● Omits custom 
domains

● Omits global 
cleanup 

○ enables 
synchronous 
reclamation

○ Maged’s talk 
from cppcon 
2021



Deferred Reclamation! What is it?

● TS 2 will have several Deferred Reclamation facilities
○ 2 low level APIs: HP and RCU
○ May be 1 high level for deferred reclamation
○  So what is Deferred Reclamation and why is it important

■ It is Heisenberg’s Uncertainty Principle married with Schrödinger’s Cat in Lock-free algo
■ Readers access data while holding reader locks or data is protected

● Guarantee data will remain live while lock is held or data is protected
■ One or more updaters update data by replacing it with newly allocated data

● All subsequent readers will see new value
● Old values is not destroyed until all readers access it have released their locks
● Here is where you can have 2 views of Schrödinger’s Cat: one alive and one dead

■ Benefits; readers never block the updater or other readers
● Updaters never block readers

■ What you pay: Updates have extra cost, could be very small
● They need allocation and new values construction
● OK if updates are rare



8

Example Application

▪Schrödinger wants to construct an in-memory database for 
the animals in his zoo (example in upcoming ACM Queue)

– Births result in insertions, deaths in deletions
– Queries from those interested in Schrödinger's animals
– Lots of short-lived animals such as mice: High update rate
– Great interest in Schrödinger's cat (perhaps queries from mice?)

▪Simple approach: chained hash table with per-bucket locking
0: lock
1: lock
2: lock
3: lock

mouse zebra

boa cat gnuboa cat gnu

Will holding this lock prevent the cat from dying?8



Trading Certainty for Performance and Scalability in Life
A Common Problem
1. Acquire a lock
2. While holding the lock, 

compute some property 
of data protected by that 
lock

3. Release the lock
4. Use the computed 

property

Several Approaches

1. Reader Writer Lock
2. Reference count 
3. RCU
4. Hazard pointers

9



1
0

Publication of And Subscription to New Data

A cptr

  ->a=?
  ->b=?
  ->c=?

cptrcptr cptr

in
iti

al
iz

at
io

n

km
al

lo
c(

)

cp
tr 

= 
tm

p  ->a=1
  ->b=2
  ->c=3

  ->a=1
  ->b=2
  ->c=3

Key: Dangerous for updates: all readers can access
Still dangerous for updates: pre-existing readers can access (next slide)
Safe for updates: inaccessible to all readers

readertmp tmp tmp

But if all we do is insert, we have a big memory leak!



1
1

Deferred Removal via Reference Counting
▪Combines waiting for readers and multiple versions:

– Writer removes the cat's element from the list (Unlink cat)
– Writer waits for all readers to finish 
– Writer can then free the cat's element 

A

B

C

boa

cat

gnu

boa

cat

gnu

boa

cat

gnu

boa

gnu

W
ai

t f
or

 re
fs

 to
 d

ra
in

U
nl

in
k 

ca
t

One Version Two Versions One Version

Readers? Readers? Readers?X

One Version

fre
e(

)

But how can software deal with two different versions simultaneously???



Beyond performance, you also 
need to choose from other 
properties of lock-free 
programming

Reader 
Writer 
Locks

Reference 
Counting

RCU Hazard 
Pointers

Readers Slow and unscalable Slow and unscalable Fast and scalable Fast and Scalable

Unreclaimed objects None None Unbounded Bounded

Traversal speed No or low overhead Atomic RMW updates No or low overhead Low overhead

Reference acquisition Unconditional Depends on use case Unconditional Conditional

Contention among readers Can be very high Can be very high No contention No contention

Automatic reclamation No Yes No No

Reclamation timing Immediate Immediate Deferred Deferred

Non-blocking traversal * Blocking Either blocking or lock free 
with limited reclamation

Bounded population 
oblivious wait free

Lock free.

Non-blocking reclamation (no 
memory allocator) *

Blocking Either blocking or lock free 
with limited reclamation

Blocking Bounded wait free

12 * Typically of theoretical interest



What else could be in TS2?

● Could be more, but we are likely to close 
it in 2023, which limits it
○ A high level interface for deferred 

reclamation: SNAPSHOT P0561
○ Asymmetric fences P1202



SNAPSHOT: An RAII interface for Deferred Reclamation
 class Server {   

public:

    void SetConfig(Config new_config) {     
config_.update(std::make_unique<const 
Config>(std::move(new_config)));    }

    void HandleRequest() {

      snapshot_ptr<const Config> config = 
config_.get_snapshot();

      // Use `config` like a unique_ptr<const 
Config>    }   

private:

    snapshot_source<Config> config_;

  };

 template <typename T, typename Alloc = allocator<T>>   class raw_snapshot_source {

  public:

    // Not copyable or movable

    raw_snapshot_source(raw_snapshot_source&&) = delete;

    raw_snapshot_source& operator=(raw_snapshot_source&&) = delete;

    raw_snapshot_source(const raw_snapshot_source&) = delete;

    raw_snapshot_source& operator=(const raw_snapshot_source&) = delete;

    raw_snapshot_source(nullptr_t = nullptr, const Alloc& alloc = Alloc());

    raw_snapshot_source(std::unique_ptr<T> ptr, const Alloc& alloc = Alloc());

    void update(nullptr_t);

    void update(unique_ptr<T> ptr);

    bool try_update(const snapshot_ptr<T>& expected, std::unique_ptr<T>&& desired);

    snapshot_ptr<T> get_snapshot() const;

  }; 

 template <typename T>   using snapshot_source = raw_snapshot_source<see below>;



Asymmetric Fences

namespace std::experimental::inline concurrency_v2 { // ?.2.1     

  asymmetric_thread_fence_heavy void 
asymmetric_thread_fence_heavy(memory_order order) noexcept; // ?.2.2   

  asymmetric_thread_fence_light void 
asymmetric_thread_fence_light(memory_order order) noexcept; 

}



How to use TS2 (or IS26) safely
Deferred reclamation can be applied readily to most concurrent linked data structures

○ HP
■ Not hard to convert ref count to HP
■ No blocking concerns as Reclamation objects are bounded 
■ because we removing the cleanup in the IS26, your code should be aware of any dependency on destructors

○ RCU 
■ Reader might block reclamation if unbounded, so an unbounded amount of memory might remain unclaimed 
■ But in safety critical, memory is bounded by the maximum duration of RCU read-side critical section X max amount of 

memory retired per unit of time
■ In safety if you use static allocation then you will not have new injections and this is actually good as it will not block 

reclamation
■ If you recycle a fixed number of statically allocated blocks, then blocking in an RCU reader is less damaging to updates 

than blocking in a reader-writer-locking reader.
■ An RCU reader typically only blocks recycling of memory, allowing updates to proceed concurrently with RCU readers.
■ In contrast, a reader-writer-locking reader blocks updates entirely.

○ Coroutines:
■ Similar to things like std::mutex, RCU readers should not span a coroutine suspension point (unless special 

non-standard extensions or use cases are applied).
■ Similar to reference counting, hazard pointers can be held across coroutine suspension points, and further can be 

passed from one thread to another.
○ Both hazard pointers and RCU can have debugging issues due to thread switching



Hazard-Pointer Tricks and Tips 



Hazard Pointers in a Nutshell
Protect access to objects that may be concurrently removed.
A hazard pointer is a single-writer multi-reader pointer.
If a hazard pointer points to an object 
        before its removal,
                then the object will not be reclaimed 
                        as long as the hazard pointer remains unchanged

Features:
● Fast and scalable protection
● Supports arbitrarily long protection

Protect object A
Set a hazard pointer to point to A
if A is not removed
    then it is safe to use A

Remove and reclaim object A
Remove A
if no hazard pointers point to A
    then it is safe to reclaim A



Concurrency TS2 Hazard Pointers Interface 

class hazard_pointer_domain {
public:
  hazard_pointer_domain() noexcept;
  explicit hazard_pointer_domain(
      pmr::polymorphic_allocator<byte> poly_alloc) noexcept;
  hazard_pointer_domain(const hazard_pointer_domain&) = delete;
  hazard_pointer_domain& operator=(const hazard_pointer_domain&) = delete;
  ~hazard_pointer_domain();
};

hazard_pointer_domain& hazard_pointer_default_domain() noexcept;

template <typename T, typename D = default_delete<T>>
class hazard_pointer_obj_base {
public:
  void retire(
    D d = D(),
    hazard_pointer_domain& domain = hazard_pointer_default_domain()) noexcept;
  void retire(hazard_pointer_domain& domain) noexcept;
};

// For synchronous reclamation
void hazard_pointer_clean_up(
    hazard_pointer_domain& domain = hazard_pointer_default_domain()) noexcept;

class hazard_pointer {
public:
  hazard_pointer() noexcept; // Empty
  hazard_pointer(hazard_pointer&&) noexcept;
  hazard_pointer& operator=(hazard_pointer&&) noexcept;
  ~hazard_pointer();  
  [[nodiscard]] bool empty() const noexcept;
  template <typename T> T* protect(const atomic<T*>& src) noexcept;  
  template <typename T> bool try_protect(T*& ptr, const atomic<T*>& src) noexcept;
  template <typename T> void reset_protection(const T* ptr) noexcept;
  void reset_protection(nullptr_t = nullptr) noexcept;
  void swap(hazard_pointer&) noexcept;
};

hazard_pointer make_hazard_pointer(
    hazard_pointer_domain& domain = hazard_pointer_default_domain());

void swap(hazard_pointer&, hazard_pointer&) noexcept;

Custom Domains

Global Cleanup

Protectable Objects

Hazard Pointers



Hazard Pointers TS2 Interface Essential Subset
template <typename T> class hazard_pointer_obj_base {
  void retire() noexcept; // Object must be already removed
};

class hazard_pointer {
  hazard_pointer() noexcept; // Construct an empty hazard pointer
  hazard_pointer(hazard_pointer&&) noexcept;
  hazard_pointer& operator=(hazard_pointer&&) noexcept;
  ~hazard_pointer();
  template <typename T> bool try_protect(T*& ptr, const atomic<T*>& src) 
noexcept;
  template <typename T> T* protect(const atomic<T*>& src) noexcept;  
  template <typename T> void reset_protection(const T* ptr) noexcept;
};
hazard_pointer make_hazard_pointer(); // Construct a non-empty hazard pointer
void swap(hazard_pointer&, hazard_pointer&) noexcept;



hazard_pointer_obj_base : base type of objects protectable by hazard pointers
  retire : removed object is to be reclaimed when no longer protected

hazard_pointer : hazard pointer object, may be empty, a nonempty hazard pointer object owns a hazard pointer
  hazard_pointer() : constructs an empty hazard pointer object
  operator=(hazard_pointer&&) : moves hazard pointer objects,
                                                                             ends moved to and continues moved from protection if any,
                                                                             moved from becomes empty
  ~hazard_pointer() : destroys the hazard pointer object, ends protection by the owned hazard pointer if any
  try_protect(ptr, src) : protects ptr only if src equals ptr
  protect(src) : protects a pointer from src

  reset_protection(ptr) : ends current protection if any, starts protecting ptr if not null and not removed
make_hazard_pointer : constructs a nonempty hazard pointer object
swap : swaps two hazard pointer objects

Hazard Pointers TS2 Interface Essential Subset



3 Use Case Examples of Hazard Pointers TS2 Interface

1. Protecting arbitrarily-long access

2. Hand-over-hand traversal

3. Iteration



(1) Protecting Arbitrarily-Long Access



Protecting Arbitrarily-Long Access

class Foo : public hazard_pointer_obj_base<Foo> { /* Foo members */ };

void access(const std::atomic<Foo*>& src, Func fn) { // Called frequently
  hazard_pointer h = make_hazard_pointer(); // Construct a non-empty 
  Foo* ptr = h.protect(src);  // ptr is now protected
  fn(ptr); // fn is also allowed to block and/or take long time
  // End of scope destroys h and ends the protection of ptr
}

void update(std::atomic<Foo*>& src, Foo* newptr) { // Called infrequently
  Foo* oldptr = src.exchange(newptr);  // oldptr is now removed
  oldptr->retire(); // oldptr will be reclaimed only when unprotected
}



(2) Hand-over-Hand Traversal



Concurrent Linked List Example 1/2
class Node : public hazard_pointer_obj_base<Node> 
  { T value_;  atomic<Node*> next_; /* etc */ };

atomic<Node*> head_; // Pointer to the head of the linked list

// Single (or synchronized) writer
void remove(Node* prev, Node* target) {
  prev->next_.store(target->next_.load());
  target->next_.store(nullptr);
  target->retire();// target will be reclaimed only when unprotected
}



Concurrent Linked List Example 2/2
// May be called by multiple concurrent readers
bool find(const T& val) {
  hazard_pointer hprev = make_hazard_pointer();
  hazard_pointer hcurr = make_hazard_pointer();
  while (true) {
    atomic<Node*>* prev = &head_;
    atomic<Node*> curr = prev->load();
    while (true) {
      if (!curr) return false; // not found
      if (!hcurr->try_protect(curr, *prev)) break;
      auto next = curr->next_.load();
      if (prev->load() != curr) break; // start over
      if (curr->value_ == val) return true; // found
      swap(hcurr, hprev); // hprev protects curr the next prev
      prev = &(curr->next_); // advance prev
      curr = next; // advance curr
    }
  }
}

prev curr

protected 
by hprev

protected 
by hcurr

prev curr

protected 
by hprev

protected 
by hcurr



Example of Incorrect Protection

prev curr

protected 
by hprev

protected 
by hcurr

prev curr

protected 
by hprev

protected 
by hcurr

INCORRECT: curr may be already retired
Can't start protecting a retired object

// May be called by multiple concurrent readers
bool find(const T& val) {
  hazard_pointer hprev = make_hazard_pointer();
  hazard_pointer hcurr = make_hazard_pointer();
  while (true) {
    atomic<Node*>* prev = &head_;
    atomic<Node*> curr = prev->load();
    while (true) {
      if (!curr) return false; // not found
      if (!hcurr->try_protect(curr, *prev)) break;
      auto next = curr->next_.load();
      if (prev->load() != curr) break; // start over
      if (curr->value_ == val) return true; // found
      swap(hcurr, hprev); hprev.reset_protection(curr);
      prev = &(curr->next_); // advance prev
      curr = next; // advance curr
    }
  }
}



Example of Incorrect Handling of Hazard Pointer Objects

prev curr

protected 
by hprev

protected 
by hcurr

prev curr

protected 
by hprev

protected 
by hcurr

INCORRECT: hcurr becomes empty after move
Can't use an empty hazard pointer object for protection

// May be called by multiple concurrent readers
bool find(const T& val) {
  hazard_pointer hprev = make_hazard_pointer();
  hazard_pointer hcurr = make_hazard_pointer();
  while (true) {
    atomic<Node*>* prev = &head_;
    atomic<Node*> curr = prev->load();
    while (true) {
      if (!curr) return false; // not found
      if (!hcurr->try_protect(curr, *prev)) break;
      auto next = curr->next_.load();
      if (prev->load() != curr) break; // start over
      if (curr->value_ == val) return true; // found
      swap(hcurr, hprev); hprev = hcurr; // move
      prev = &(curr->next_); // advance prev
      curr = next; // advance curr
    }
  }
}



(3) Iteration



Hash Table Iterator Example 1/4
class Node : public hazard_pointer_obj_base<Node> {
  K key_; atomic<Node*> next_; atomic<int> linkcount_; /* etc */
  void acquire_link() { ++linkcount_; }
  void release_link() { if (--linkcount_ == 0) this->retire(); }
  ~Node() {
    // releases link to successor, retire it if its link count is down to zero
    Node* next = curr->next_.load(); if (node) node->release_link();
  }
};
class Bucket { atomic<Node*> head_; /* etc */ };
Bucket buckets_[NUM_BUCKETS];

// Synchronized writer
void removeNode(Node* prev, Node* target) {
  Node* next = curr->next_.load();
  next->acquire_link(); // acquire extra link to next
  prev->next_.store(next); // both prev and curr point to next
  curr->release_link(); // retire curr if unlinked
}



Hash Table Iterator Example 2/4
class Iterator {
  hazard_pointer hp_[2]; int idx_{0};  Node* node_{nullptr}; /* etc */
  // movable only

  void firstNode() {
    hp_[0] = make_hazard_pointer();
    hp_[1] = make_hazard_pointer();
    nextNode();
  }

  void nextNode() {
    while (!node_) {
      if (idx_ >= NUM_BUCKETS) break;
      node_ = hp_[0].protect(buckets_[idx_].head_);
      if (node_) break;
      ++idx_;
    }
  }



Hash Table Iterator Example 3/4
  const Iterator& operator++() {
    node_ = hp_[1].protect(node_->next_);
    hp_[0].swap(hp_[1]);
    if (!node_) {
      ++idx_;
      nextNode();
    }
    return *this;
  }
}; // Iterator

Iterator begin() { Iterator it; it.firstNode(); return it; }

Iterator end() { return Iterator(); }



Hash Table Iterator Example 4/4
// User code

// Iteration can be concurrent with hashtable updates without interference
// Multiple concurrent iterations do not interfere with each other
// Protection duration is allowed to be arbitrarily long

for (Iterator it = ht.begin(); it != ht.end(); ++it)
  userOp(it);

   



A Stupid RCU Trick



Graphical Introduction to RCU



One Trick of Many



One Trick of Many: Phased State Change Today



RCU-Mediated Phased State Change

● The lowest-level and most primitive known RCU use case:
● Multithreaded application

○ Common-case operation must be fast
○ But care is required during maintenance

● Use flag to indicate that care is required
○ But how to reliably synchronize?
○ OK to be careful just before/after maintenance



RCU-Mediated Phased State Change (Graphical)



Common-Case Operation

atomic<Bool> be_careful;

void cco()
{
    std::scoped_lock l(std::rcu_default_domain());
    if (be_careful.load(memory_order_relaxed))
        cco_carefully();
    else
        cco_quickly();
} // RAII end of RCU reader



Maintenance Operation

void maint()
{
    be_careful.store(true, memory_order_relaxed);
    rcu_synchronize();
    do_maint();
    rcu_synchronize(); // Why is this needed?
    be_careful.store(false, memory_order_relaxed);
}



Problematic Maintenance Operation

void maint()
{
    be_careful.store(true, memory_order_relaxed);
    rcu_synchronize();
    do_maint();
    // rcu_synchronize();
    be_careful.store(false, memory_order_relaxed);
    // Because the above store can be reordered into
    // the call to do_maint(), which can in turn permit
    // a concurrent cco_quickly() access, which is BAD!!!
}



Alternative Maintenance Operation

void maint()
{
    be_careful.store(true, memory_order_relaxed);
    rcu_synchronize();
    do_maint();
    // No second rcu_synchronize()...
    be_careful.store(false, memory_order_release);
    // ...But this requires the change to cco() shown on
    // the next slide…
}



Alternative Common-Case Operation

atomic<Bool> be_careful;

void cco()
{
    std::scoped_lock l(std::rcu_default_domain());
    if (be_careful.load(memory_order_acquire))
        cco_carefully();
    else
        cco_quickly();
} // RAII end of RCU reader



Summary

RCU is able to mediate a phased state change

Almost zero common-case read-side synchronization overhead

Addition of read-side acquire load removes update-side rcu_synchronize()

This pattern is used in the Linux kernel



One Trick of Many



Want More Stupid RCU Tricks?

1. Linux Foundation Mentorship Program Presentations:
a. Unraveling RCU-Usage Mysteries (Fundamentals)

i. Includes introductory overview of RCU
b. Unraveling RCU-Usage Mysteries (Additional Use Cases)

2. Stupid RCU Tricks blog series
3. Is Parallel Programming Hard, And, If So, What Can You Do About It?

a. Section 9.5.4 (“RCU Usage”)
b. Chapter 13 (“Putting It All Together”)

https://www.linuxfoundation.org/webinars/unraveling-rcu-usage-mysteries/
https://linuxfoundation.org/webinars/unraveling-rcu-usage-mysteries-additional-use-cases/
https://paulmck.livejournal.com/19583.html
https://drive.google.com/file/d/1amB7DcRwxSSPxFSjfbpIHg5fhxWaWH1D/view?usp=sharing

