CppCon 2022

@AXSaucecto

GPU Accelerated Computing and Optimizations on Cross-Vendor Graphics Cards with Vulkan & Kompute

Alejandro Saucedo

@AxSaucedo

IT'S BREATHTAKING.

Hello, my name is Alejandro

Engineering Director Seldon Technologies

Chief Scientist The Institute for Ethical AI & ML

Governing Council Member-at-Large Association for Computing Machinery

ICE TO MEET YOU!

WILLYOU

STOP THAT?

@ AASaucedo

1

High level Objectives

Parallel Processing GPU Computing Vulkan SDK **Kompute Framework** Hands on Examples

Why Parallel Processing?

- Functions can often be reduced to highly parallelizable stages (Matrix Mult, ML Layers, etc)
- Micro-batching allows for further parallelization of multiple inputs (eg. cost instead of loss)
- Breaking up fractions of each ensemble comp. across tightly coupled hardware (eg. multi-GPU)

Ben-Nun, Tal, and Torsten Hoefler. "Demystifying parallel and distributed deep learning: An in-depth concurrency analysis." ACM Computing Surveys (CSUR) 52.4 (2019): 1-43.

GPU Compute: Hardware design

NVIDIA GTX 1080 (2016)

This is one NVIDIA Pascal GP104 streaming multi-processor (SM) unit

Stanford cs 149 2019 Slides: http://cs149.stanford.edu/fall19/lecture/gpuarch/slide_038

GPU Compute: Memory Model

Distinct host and GPU device address spaces

Memory is allocated and copied explicitly

Stanford cs 149 2019 Slides: http://cs149.stanford.edu/fall19/lecture/gpuarch/slide_038

GPU Compute: Memory Model

Device global memory

Different address spaces reflect different regions of locality in the program

> Readable/writable by all threads

> > Stanford CS149, Fall 2019

Stanford cs 149 2019 Slides: http://cs149.stanford.edu/fall19/lecture/gpuarch/slide_038

Motivations: Heterogeneity

Introducing Vulkan

Created by the Khronos group

The Khronos Group, Inc. is a non-profit member-funded industry consortium, focused on the creation of open standard, royalty free APIs for authoring and accelerated playback of dynamic media on a wide variety of platforms and devices.

Top Vulkan Priorities

- 1. Performance
- 2. Interoperability
- 3. Performance

T) P E N

Oregon State University, SIGGRAPH 2020 Lecture Slides <u>http://web.engr.oregonstate.edu/~mjb/vulkan/</u>

Khronos Members

Oregon State University, SIGGRAPH 2020 Lecture Slides http://web.engr.oregonstate.edu/~mjb/vulkan/

Vulkan SDK

Advantages

- Low level with rich access to components
- C-style API as core interface for developing GPU applications
- A broad range of top players leading the development of the framework
- Highly compatible across different platforms, mobile, and different suppliers

Disadvantages.

- Low level with rich access to components
- C-style API as core interface for developing GPU applications
 - A broad range of top players leading the development of the framework
- Highly compatible across different platforms, mobile, and different suppliers

Architecture

Vulkan Overarching Application which owns all sub-components

Oregon State University, SIGGRAPH 2020 Lecture Slides http://web.engr.oregonstate.edu/~mjb/vulkan/_

Application

Vulkan Pipeline Types

Vulkan Best Practice for Mobile Developers https://arm-software.github.io/vulkan best practice for mobile developers/

Push

The Life of a Vulkan Program

Setup Physical & Logical Device

Load & Compile Shader Code

Create Compute Pipeline

Copy data to host visible memory

Record Commands

Copy data to GPU only memory Bind pipeline (+ shader) Bind descriptor sets **Dispatch command** Copy data from GPU only memory

Copy output to host & print data

Only takes about 500-2000 lines of code...

Enter Kompute

The General Purpose Vulkan Computing Framework.

- **Dozens** instead of thousands of lines of code required
- Augments Vulkan interface instead of abstracting it
- **BYOV**: Bring-your-own-Vulkan design to play nice with existing Vulkan applications
- Non-Vulkan name convention to disambiguate components

THE LINUX FOUNDATION

OMPUTTE

Kompute is part of the Linux Foundation **kompute.cc/overview/community.html**

High Level Overview of Features

• C++ Interface

- Python Bindings
- Explicit (GPU/CPU) memory ownership
 - Granular access to GPU queues
 - Single header file available
 - Integration with Mobile Apps
 - Integration with Game Engine

Vulkan Kompute: Components

Enter Vulkan Kompute (Simple Sum Example)

// 1. Create Kompute Manager
kp::Manager mgr;

// 2. Create and initialise Kompute Tensors through manager
auto tensorInA = mgr.tensor({ 2., 2., 2. });
auto tensorInB = mgr.tensorT<float>({ 1., 2., 3. });
auto tensorOut = mgr.tensorT<float>({ 0., 0., 0. });

auto params = { tensorInA, tensorInB, tensorOut };

// 3. Run operation synchronously
auto algo = mgr.algorithm(params, shader);

// 4. Copy Tensor and execute algorithm
mgr.sequence()

->record<kp::OpTensorSyncDevice>(params);

->record<kp::OpAlgoDispatch>(algo);

->record<kp::OpTensorSyncLocal>(params)
->eval();

// Prints the output which is Output: { 2, 4, 6 }
for (const float& elem : tensorOut->data())
 std::cout << elem << " ";</pre>

static std::vector<uint32_t> shader = compileShader(R"(
 #version 450

layout (local_size_x = 1) in;

// The input tensors bind index is relative
layout(binding = 0) buffer bina { float tina[]; };
layout(binding = 1) buffer binb { float tinb[]; };
layout(binding = 2) buffer bout { float tout[]; };

```
void main() {
    uint index = gl_GlobalInvocationID.x;
    tout[index] = tina[index] * tinb[index];
```

");

Deeper Optimizations

Run a single command/operation in a sequence with manager

Asynchronous execution of

Sequences

Reuse multiple sequences in same Tensors with pre-recorded cmds

Concurrent execution of Sequences across GPU queues

Enter Vulkan Kompute (Hardware Parallel)

// Kompute Manager with custom settings
uint32_t deviceId(1);
std::vector<uint32_t> queues({ 0, 2 });

kp::Manager mgr(deviceId, queues);

// Create seq on relative index
auto algo1 = mgr.algorithm(paramsA, shader);
auto algo2 = mgr.algorithm(paramsB, shader);

sq1->evalAsync<kp::OpaAlgoDispatch>(algo1);

sq2->evalAsync<kp::OpaAlgoDispatch>(algo2);

// Create parameters to use for each computation
std::vector<std::shared_ptr<kp::Tensor>> paramsA = { ... };
std::vector<std::shared_ptr<kp::Tensor>> paramsB = { ... };

// Create seq on relative index auto sq1 = mgr.sequence(0); auto sq2 = mgr.sequence(1);

sq1->evalAwait();

sq2->evalAwait();

Check out other tutorials

GPU Accelerated Machine Learning [Blog Post]

Godot Game Engine [Blog Post]

Get Involved!

Hello

Filters - Q is:open label:"good first issue"			C Labels 11	🕈 Mileston	es 0	New issue
■ ① 6 Open 🗸 0 Closed						
Setup automated CI testing for PRs using #114 opened 4 hours ago by axsaucedo	g GitHub actions 👳					Ç 5
 Explore / discuss for potential ideas or in #52 opened on 6 Sep 2020 by axsaucedo 	nprovements good fi		age			₽8
 O Evaluat performance of copy command of good first issue triage #46 opened on 6 Sep 2020 by axsaucedo 	on tensor (recordCo	py vs map	enhancement			
O Add example showing how existing vulka documentation good first issue #41 opened on 5 Sep 2020 by axsaucedo	an graphical engine	can integi	rate Kompute			Ç 5
 Add parallel scan sum aggregate exampl #27 opened on 2 Sep 2020 by axsaucedo 	e documentation enha	ancement	good first issue			
Create exported project via vonka for sin	onler installation en	hancement	good first issue			

Pick up one of the good-first-issues

Share thoughts and suggestions via #52

I am Dmitrii, the creator of VkFFT and Vulkan version of Spirit. I saw your comment and I believe your project is the way to go, if Vulkan wants to be popular in compute or, specifically, scientific field. There has to be some kind of a layer that will move them as further as possible from the way I developed Vulkan Spirit. There are some important things, that have to be clarified in the absolute beginning, which are related to the architectural problems and how this layer should be designed. These things are based on my

axsaucedo commented on 6 Sep 2020	Member 😳	
Open issue to openly discuss potential ideas or improvements, whether on documentation, interfaces, examples	s, bug fixes, etc.	
C = axsaucedo added the triage label on 6 Sep 2020		
DTolm commented on 7 Sep 2020	0	

Explore / discuss for potential ideas or improvements #52 (1) Open axsaucedo opened this issue on 6 Sep 2020 · 8 comments

High level Roadmap

Integrate as backend of ML / scientific-computing framework(s)

Create more default kp::Operations to have out of the box commands

Examples running Kompute across other platforms and frameworks

CppCon 2022

@AXSaucecto

GPU computing using Vulkan & Kompute for Cross-vendor Graphic Cards (AMD, Qualcomm, NVIDIA & friends)

Alejandro Saucedo

@AxSaucedo