
CppCon 2022
GPU Accelerated Computing and Optimizations
on Cross-Vendor Graphics Cards with Vulkan &

Kompute

Alejandro Saucedo

@AxSaucedo

 @
AxSaucedo

http://twitter.com/axsaucedo

 @
AxSaucedo

Engineering Director
Seldon Technologies

Chief Scientist
The Institute for Ethical AI & ML

Governing Council Member-at-Large
Association for Computing Machinery

my name is Alejandro

Alejandro Saucedo
@AxSaucedo

Hello,

https://ethical.institute/

High level Objectives

Parallel Processing
GPU Computing

Vulkan SDK
Kompute Framework
Hands on Examples

Why Parallel Processing?

Ben-Nun, Tal, and Torsten Hoefler. "Demystifying parallel and distributed deep learning: An in-depth concurrency analysis." ACM
Computing Surveys (CSUR) 52.4 (2019): 1-43.

● Functions can often be reduced to highly parallelizable stages (Matrix Mult, ML Layers, etc)

● Micro-batching allows for further parallelization of multiple inputs (eg. cost instead of loss)

● Breaking up fractions of each ensemble comp. across tightly coupled hardware (eg. multi-GPU)

GPU Compute: Hardware design

Stanford cs 149 2019 Slides: http://cs149.stanford.edu/fall19/lecture/gpuarch/slide_038

http://cs149.stanford.edu/fall19/lecture/gpuarch/slide_038

GPU Compute: Memory Model

Stanford cs 149 2019 Slides: http://cs149.stanford.edu/fall19/lecture/gpuarch/slide_038

Memory is allocated
and copied explicitly

Distinct host and GPU device address spaces

http://cs149.stanford.edu/fall19/lecture/gpuarch/slide_038

GPU Compute: Memory Model

Stanford cs 149 2019 Slides: http://cs149.stanford.edu/fall19/lecture/gpuarch/slide_038

Different address spaces reflect different regions of
locality in the program

http://cs149.stanford.edu/fall19/lecture/gpuarch/slide_038

Motivations: Heterogeneity

Introducing Vulkan

The Khronos Group, Inc. is a non-profit member-funded industry
consortium, focused on the creation of open standard, royalty free
APIs for authoring and accelerated playback of dynamic media on a
wide variety of platforms and devices.

Created by the Khronos group

Oregon State University, SIGGRAPH 2020 Lecture Slides
http://web.engr.oregonstate.edu/~mjb/vulkan/

1. Performance

2. Interoperability

3. Performance

Top Vulkan Priorities

http://web.engr.oregonstate.edu/~mjb/vulkan/

Khronos Members

Oregon State University, SIGGRAPH 2020 Lecture Slides http://web.engr.oregonstate.edu/~mjb/vulkan/

http://web.engr.oregonstate.edu/~mjb/vulkan/

Vulkan SDK
Advantages Disadvantages

● Low level with rich access to
components

● C-style API as core interface for
developing GPU applications

● A broad range of top players leading
the development of the framework

● Highly compatible across different
platforms, mobile, and different
suppliers

● Low level with rich access to
components

● C-style API as core interface for
developing GPU applications

● A broad range of top players leading
the development of the framework

● Highly compatible across different
platforms, mobile, and different
suppliers

Oregon State University, SIGGRAPH 2020 Lecture Slides http://web.engr.oregonstate.edu/~mjb/vulkan/

Vulkan Overarching
Application which owns
all sub-components

Vulkan can have
multiple instances of
application Physical devices

specify the underlying
GPU card hardware

Logical devices are
abstractions for
physical devices with
set properties Work gets submitted

via queues from CPU
and gets picked up and
executed from GPUCommand buffers specify

work to be carried out
as an individual unity
(move data, run shader,
copy data, etc)

Application

Instance

Physical
Device

Logical
Device

Q
ue

ue

Command Buffer

Command Buffer

Command Buffer

Architecture

http://web.engr.oregonstate.edu/~mjb/vulkan/

Application
Application

Instance

Physical
Device

Logical
Device

Q
ue

ue

Instance

Physical
Device

Physical
Device

Logical
Device

Logical
Device

Logical
Device

Q
ue

ue

Q
ue

ue

Q
ue

ue

Q
ue

ue

Q
ue

ue

Q
ue

ue

Can be extended to
complex architectures
with multiple devices

Application

Instance

Physical
Device

Logical
Device

Q
ue

ue

Command Buffer

Command Buffer

Command Buffer

Pipeline

Pipeline
Layout

Compute PipelineGraphics Pipeline

Descriptor
Sets

Push Constant

Uniform Buffer

Storage Buffer

Storage Image

Shader
Module

Vulkan Pipeline is core
to the “processing”
stages, binding the key
components on each stage

Shaders consist of the
parallel code that runs
in the GPU to perform any
relevant processing

Descriptors are the
components that can be
used to bind data from
GPU buffers into shaders
and pipelines

Vulkan Pipeline Types

Vulkan Best Practice for Mobile Developers https://arm-software.github.io/vulkan_best_practice_for_mobile_developers/

https://arm-software.github.io/vulkan_best_practice_for_mobile_developers/samples/performance/pipeline_cache/pipeline_cache_tutorial.html

The Life of a Vulkan Program
Setup Physical & Logical Device

Load & Compile Shader Code

Create Compute Pipeline

Copy data to host visible memory

Record Commands

Copy output to host & print data

Copy data to GPU only memory

Bind pipeline (+ shader)

Bind descriptor sets

Dispatch command

Copy data from GPU only memory

Only takes about
500-2000 lines of code...

Enter Kompute

● Dozens instead of thousands
of lines of code required

● Augments Vulkan interface
instead of abstracting it

● BYOV: Bring-your-own-Vulkan
design to play nice with
existing Vulkan applications

● Non-Vulkan name convention
to disambiguate components

The General Purpose Vulkan
Computing Framework.

● C++ Interface

● Python Bindings

● Explicit (GPU/CPU) memory ownership

● Granular access to GPU queues

● Single header file available

● Integration with Mobile Apps

● Integration with Game Engine

High Level Overview of
Features

Kompute is part of the Linux Foundation
kompute.cc/overview/community.html

http://kompute.cc/overview/community.html

Vulkan Kompute: Components

Kompute
Operation

Kompute
Manager

Kompute
Sequence

Kompute
Operation

Kompute
Tensor

Kompute
Algorithm

Kompute
Tensor

Top level
resource that
manages Vk Device
and Vk Queue

Manages & executes
operations as
batch in GPU as
record commands
and queue submits

Extensible operation
that performs
instructions in GPU
with tensor and
optional shader

Core data unit
component to transfer
and process via GPU
memory and buffers

Abstracts the
compute pipeline,
shader modules and
descriptor set
bindings for
processing

// Prints the output which is Output: { 2, 4, 6 }

for (const float& elem : tensorOut->data())

 std::cout << elem << " ";

// 4. Copy Tensor and execute algorithm

mgr.sequence()

 ->record<kp::OpTensorSyncDevice>(params);

 ->record<kp::OpAlgoDispatch>(algo);

 ->record<kp::OpTensorSyncLocal>(params)

 ->eval();

Enter Vulkan Kompute (Simple Sum Example)
// 1. Create Kompute Manager

kp::Manager mgr;

static std::vector<uint32_t> shader = compileShader(R"(

 #version 450

 layout (local_size_x = 1) in;

 // The input tensors bind index is relative

 layout(binding = 0) buffer bina { float tina[]; };

 layout(binding = 1) buffer binb { float tinb[]; };

 layout(binding = 2) buffer bout { float tout[]; };

 void main() {

 uint index = gl_GlobalInvocationID.x;

 tout[index] = tina[index] * tinb[index];

 }

)");

// 2. Create and initialise Kompute Tensors through manager

auto tensorInA = mgr.tensor({ 2., 2., 2. });

auto tensorInB = mgr.tensorT<float>({ 1., 2., 3. });

auto tensorOut = mgr.tensorT<float>({ 0., 0., 0. });

auto params = { tensorInA, tensorInB, tensorOut };

// 3. Run operation synchronously

auto algo = mgr.algorithm(params, shader);

Deeper Optimizations

Run a single command/operation in
a sequence with manager

Reuse multiple sequences in same
Tensors with pre-recorded cmds

Asynchronous execution of
Sequences

Concurrent execution of
Sequences across GPU queues

GPUCPU

Kompute GPU Optimizations

Kompute
Operation

Kompute
Manager

Kompute
Sequence

Kompute
Operation

Kompute
Tensor

Kompute
Algorithm

Kompute
Tensor

GPU (NVIDIA, AMD,
Qualcomm, etc)

GRAPHICS Family Index 0

COMPUTE Family Index 2

Queue Index 0

...

Queue Index 15

Queue Index 0

...

Queue Index 7

TRANSFER Family Index 1

Kompute
Operation

Kompute
Sequence

Queue Index 0

Queue Index 1

Enter Vulkan Kompute (Hardware Parallel)
// Kompute Manager with custom settings

uint32_t deviceId(1);

std::vector<uint32_t> queues({ 0, 2 });

kp::Manager mgr(deviceId, queues);

sq1->evalAsync<kp::OpaAlgoDispatch>(algo1);

sq2->evalAsync<kp::OpaAlgoDispatch>(algo2);

// Create seq on relative index

auto sq1 = mgr.sequence(0);

auto sq2 = mgr.sequence(1);

sq1->evalAwait();

sq2->evalAwait();

// Create parameters to use for each computation

std::vector<std::shared_ptr<kp::Tensor>> paramsA = { ... };

std::vector<std::shared_ptr<kp::Tensor>> paramsB = { ... };

// Create seq on relative index

auto algo1 = mgr.algorithm(paramsA, shader);

auto algo2 = mgr.algorithm(paramsB, shader);

Check out other tutorials

Godot Game Engine [Blog Post]

Android App Integration [Blog Post]

GPU Accelerated Machine Learning
[Blog Post]

https://towardsdatascience.com/supercharging-game-development-with-gpu-accelerated-ml-using-vulkan-kompute-the-godot-game-engine-4e75a84ea9f0
https://towardsdatascience.com/gpu-accelerated-machine-learning-in-your-mobile-applications-using-the-android-ndk-vulkan-kompute-1e9da37b7617
https://towardsdatascience.com/machine-learning-and-data-processing-in-the-gpu-with-vulkan-kompute-c9350e5e5d3a

Get Involved!

Pick up one of the
good-first-issues

Share thoughts and
suggestions via #52

High level Roadmap

Integrate as backend of ML / scientific-computing
framework(s)

Create more default kp::Operations to have out of
the box commands

Examples running Kompute across other platforms
and frameworks

CppCon 2022
GPU computing using Vulkan & Kompute for

Cross-vendor Graphic Cards (AMD, Qualcomm,
NVIDIA & friends)

Alejandro Saucedo

@AxSaucedo

 @
AxSaucedo

http://twitter.com/axsaucedo

