Back To Basics
API Design

JASON TURNER

@ The C++ Conference . . September 12th-16th
@JE S emptycrate.cor2|2c 11

Dyright Jason Turner pp

Jason Turner

e Host of C++ Weekly https://www.youtube.com/c/lefticusl
e Author

= C++ Best Practices

s OpCode, Copy and Reference, Object Lifetime Puzzlers
s https://amzn.to/3xWh80x

= https://leanpub.com/u/jason_turner

e Developer

» https://cppbestpractices.com

» https://github.com/cpp-best-practices

e Microsoft MVP for C++ 2015-present

Copyright Jason Turner @lefticus emptycrate.com/idocpp 1

Jason Turner

Independent and available for training and code reviews

e https://articles.emptycrate.com/idocpp

Copyright Jason Turner @lefticus emptycrate.com/idocpp 1

About my Talks

e Move to the front!
e Please interrupt and ask questions
e Thisis approximately how my training days look

Copyright Jason Turner @lefticus emptycrate.com/idocpp .

Local Meetups

| got the chance to practice this talk at my meetup.

Copyright Jason Turner @lefticus emptycrate.com/idocpp L s

Local Meetups

| got the chance to practice this talk at my meetup.

And therefor have no idea how long this is going to take.

Copyright Jason Turner @lefticus emptycrate.com/idocpp 1=

Local Meetups

| got the chance to practice this talk at my meetup.
And therefor have no idea how long this is going to take.

e Doyou live in a city with a local meetup?

Copyright Jason Turner @lefticus emptycrate.com/idocpp 1=

Local Meetups

| got the chance to practice this talk at my meetup.
And therefor have no idea how long this is going to take.

e Doyou livein a city with a local meetup?
e Do you attend your local meetup?

Copyright Jason Turner @lefticus emptycrate.com/idocpp 1

Local Meetups

| got the chance to practice this talk at my meetup.
And therefor have no idea how long this is going to take.

e Doyou livein a city with a local meetup?
e Do you attend your local meetup?
e Do you live or work in the Denver/Boulder/Longmont area?

Copyright Jason Turner @lefticus emptycrate.com/idocpp 1

Local Meetups

| got the chance to practice this talk at my meetup.
And therefor have no idea how long this is going to take.

e Doyou livein a city with a local meetup?

e Do you attend your local meetup?

e Do you live or work in the Denver/Boulder/Longmont area?
e Do you attend my meetup?

Copyright Jason Turner @lefticus emptycrate.com/idocpp 1=

Back To Basics: APl Design

| was asked if | could give a Back To Basics track talk on API design.

Copyright Jason Turner @lefticus emptycrate.com/idocpp 16

Back To Basics: APl Design

| was asked if | could give a Back To Basics track talk on API design.

Copyright Jason Turner @lefticus emptycrate.com/idocpp TG

Back To Basics: APl Design

| was asked if | could give a Back To Basics track talk on API design.

e Me

Copyright Jason Turner @lefticus emptycrate.com/idocpp TG

constexpr ALL THE-
THINGS!

Copyright Jason Turner @lefticus emptycrate.com/idocpp . -

Copyright Jason Turner @lefticus emptycrate.com/idocpp L 8

More Seriously

Copyright Jason Turner @lefticus emptycrate.com/idocpp

Back To Basics: APl Design

Copyright Jason Turner @lefticus emptycrate.com/idocpp

Back To Basics: APl Design

e Qutside of the kinds of things | tend to talk about for conferences

Copyright Jason Turner @lefticus emptycrate.com/idocpp o

Back To Basics: APl Design

e Qutside of the kinds of things | tend to talk about for conferences
e Largely taken from material | normally leave for classes

Copyright Jason Turner @lefticus emptycrate.com/idocpp 0

Back To Basics: APl Design

e QOutside of the kinds of things | tend to talk about for conferences
e Largely taken from material | normally leave for classes
e You should hire me to come do training at your company!

Copyright Jason Turner @lefticus emptycrate.com/idocpp o

C++ Best Practices #32:
“Make Your APl Hard To Use
Wrong”

Copyright Jason Turner @lefticus emptycrate.com/idocpp

Make Your APl Hard To Use Wrong

e Thisis what we will be focusing on in this session
e | show you code, you tell me if the APl is easy or hard to use wrong (or
if there is a gray area).

Copyright Jason Turner @lefticus emptycrate.com/idocpp o

And Maybe Something

About constexpx

Copyright Jason Turner @lefticus emptycrate.com/idocpp

The Common std: :vector (C++98 version)

template<typename T>
class vector {

public:
bool empty() const;
b

https://godbolt.org/z/hsYvEW9sd

Easy or Hard to use wrong? Why?

Copyright Jason Turner @lefticus emptycrate.com/idocpp -

The Common std: :vector (C++98 version)

template<typename T>
class vector {

public:
bool empty() const;
b

https://godbolt.org/z/hsYvEW9sd

Easy or Hard to use wrong? Why?

e What does - do?

Copyright Jason Turner @lefticus emptycrate.com/idocpp 42

The Common std: :vector (C++98 version)

template<typename T>
class vector {

public:
bool empty() const;
b

https://godbolt.org/z/hsYvEW9sd

Easy or Hard to use wrong? Why?

e What does - do?

e What happens if we drop the return value?

Copyright Jason Turner @lefticus emptycrate.com/idocpp 42

The Common std: :vector (C++98 version)

template<typename T>
class vector {

public:
bool empty() const;
b

https://godbolt.org/z/hsYvEW9sd

Easy or Hard to use wrong? Why?

e What does - do?

e What happens if we drop the return value?
e What kind of error handling does it have?

Copyright Jason Turner @lefticus emptycrate.com/idocpp 42

The Common std: :vector

template<typename T>
class vector {

public:
bool empty() const;
b

https://godbolt.org/z/hsYvEW9sd

How would you rewrite this?

Copyright Jason Turner @lefticus emptycrate.com/idocpp ie

The Common std: :vector

template<typename T>
class vector {

public:
bool empty() const;
b

https://godbolt.org/z/hsYvEW9sd

How would you rewrite this?

[[nodiscard]] bool 1is empty() const;

Easy or Hard to use wrong?

Copyright Jason Turner @lefticus emptycrate.com/idocpp -

The Common std: :vector

template<typename T>
class vector {
public:

bool empty() const;
b https://godbolt.org/z/hsYVEW9sd

How would you rewrite this?

[[nodiscard]] bool 1is empty() const;

Easy or Hard to use wrong?

What kind of error handling does this have? Are there any reasonable
errors for it?

Copyright Jason Turner @lefticus emptycrate.com/idocpp

4 .3

The Common std: :vector

template<typename T>
class vector {

public:
[[nodiscard]] bool is empty() const noexcept;
b https://godbolt.org/z/3Ef90Gjor

Easy or Hard to use wrong?

Copyright Jason Turner @lefticus emptycrate.com/idocpp -

Use Better Naming

Copyright Jason Turner @lefticus emptycrate.com/idocpp

Use Better Naming

Naming is hard.

As we know, the two hardest problems in computer science are:

Copyright Jason Turner @lefticus emptycrate.com/idocpp -

Use Better Naming

Naming is hard.
As we know, the two hardest problems in computer science are:

1. Cache Invalidation

Copyright Jason Turner @lefticus emptycrate.com/idocpp -

Use Better Naming

Naming is hard.
As we know, the two hardest problems in computer science are:

1. Cache Invalidation
2. Naming

Copyright Jason Turner @lefticus emptycrate.com/idocpp -

Use Better Naming

Naming is hard.
As we know, the two hardest problems in computer science are:

1. Cache Invalidation
2. Naming
3. Off-by-one Errors

Copyright Jason Turner @lefticus emptycrate.com/idocpp -

Use Better Naming

Naming is hard.

As we know, the two hardest problems in computer science are:

1. Cache Invalidation
2. Naming

3. Off-by-one Errors
4. Scope creep

Copyright Jason Turner @lefticus emptycrate.com/idocpp -

Use Better Naming

Naming is hard.
As we know, the two hardest problems in computer science are:

1. Cache Invalidation
2. Naming

3. Off-by-one Errors
4. Scope creep

5. Bounds checking

Copyright Jason Turner @lefticus emptycrate.com/idocpp -

Use Better Naming

Naming is hard.

As we know, the two hardest problems in computer science are:

1. Cache Invalidation
2. Naming

3. Off-by-one Errors
4. Scope creep

5. Bounds checking

Phil Karlton, Unknown, Dave Stagner

Copyright Jason Turner @lefticus emptycrate.com/idocpp -

Copyright Jason Turner @lefticus emptycrate.com/idocpp "

[[nodiscard]] and Functions

get value();

main() {
get value(); // warning issued from any reasonable compiler

}

Copyright Jason Turner @lefticus emptycrate.com/idocpp 5 -

[[nodiscard]] and Lambdas

C++23 fixes a minor loophole in the standard and now allows

_with lambdas.

int main() {
auto 1 = [] [[nodiscard]] () -> int { return 42; };

1(); // warning here
} https://godbolt.orqg/z/ad444nqgW

Copyright Jason Turner @lefticus emptycrate.com/idocpp 6 3

TiRGAHSEaTa and Types

struct [[nodiscard]] ErrorType{};
ErrorType get value();

int main() {
get value(); // warning issued from any reasonable compiler
} https://godbolt.org/z/Gdv8YsMcG

Copyright Jason Turner @lefticus emptycrate.com/idocpp 5.

[Inodiscard]] and Constructors

struct FDHolder {
[[nodiscard]] FDHolder(int FD);
FDHolder();

}I

int main() {
FDHolder{42}; // warning
FDHolder h{42}; // constructed object not discarded, no warning
FDHolder{}; // default constructed, no warning
} https://godbolt.org/z/x5e87xr7Ka

Copyright Jason Turner @lefticus emptycrate.com/idocpp i s

Copyright Jason Turner @lefticus emptycrate.com/idocpp 6 6

fiRGaEseaza Summary

e Used to indicate when itis an error to ignore a return value from a
function

Copyright Jason Turner @lefticus emptycrate.com/idocpp 6 6

firGaEseaza Summary

e Used toindicate when itis an error to ignore a return value from a
function
e Can be applied to constructors as of C++20

Copyright Jason Turner @lefticus emptycrate.com/idocpp 6 6

fiRGaEseaza Summary

e Used toindicate when itis an error to ignore a return value from a

function
e Can be applied to constructors as of C++20

e Can have a message to explain the error |{fnodiscard("Lock objects

Copyright Jason Turner @lefticus emptycrate.com/idocpp 6 6

fiRGaEseaza Summary

e Used toindicate when itis an error to ignore a return value from a
function
e Can be applied to constructors as of C++20

e Can have a message to explain the error |ffnodiscard(Lock objects

e Should be used extensively. Any non-mutating (getter/accessor/-)

function should be _

Copyright Jason Turner @lefticus emptycrate.com/idocpp 6 6

fiRGaEseaza Summary

e Used toindicate when itis an error to ignore a return value from a
function
e Can be applied to constructors as of C++20

e Can have a message to explain the error |ffnodiscard(Lock objects

e Should be used extensively. Any non-mutating (getter/accessor/-)

function should be _
" icos()},{[[nodiscard]]?

Copyright Jason Turner @lefticus emptycrate.com/idocpp 6 6

fiRGaEseaza Summary

e Used toindicate when itis an error to ignore a return value from a
function
e Can be applied to constructors as of C++20

e Can have a message to explain the error |{fnodiscard(Lock objects

e Should be used extensively. Any non-mutating (getter/accessor/-)

function should be _

- ?

)

Copyright Jason Turner @lefticus emptycrate.com/idocpp "

fiRGaEseaza Summary

e Used toindicate when itis an error to ignore a return value from a
function
e Can be applied to constructors as of C++20

e Can have a message to explain the error |f{nodiscard(Lock objects

e Should be used extensively. Any non-mutating (getter/accessor/-)

function should be _

- ?

)

m ?
, !

e Can be checked / enforced with static analysis

Copyright Jason Turner UE S emptycrate.com/idocpp 6 6

Copyright Jason Turner UE S emptycrate.com/idocpp o

void myfunc() {
// required to terminate the program
throw 42;

}

main() {

try {
myfunc();

} catch(...) {
// catch is irrelevant, terminate is called
}

}

Copyright Jason Turner @lefticus emptycrate.com/idocpp

Summary So Far

Copyright Jason Turner @lefticus emptycrate.com/idocpp

Summary So Far

Copyright Jason Turner @lefticus emptycrate.com/idocpp 5

Summary So Far

e Use better naming

Copyright Jason Turner @lefticus emptycrate.com/idocpp 5

Summary So Far

e Use better naming

e Use {[nodiseazd]] (with reasons) liberally

Copyright Jason Turner UE S emptycrate.com/idocpp 5 o

Summary So Far

e Use better naming

e Use \[nodiscazdl]] (with reasons) liberally

e Use - to help indicate what kind of error handling is being used

Copyright Jason Turner UE S emptycrate.com/idocpp s o

Increasing The Stakes: A
Factory Function

Copyright Jason Turner @lefticus emptycrate.com/idocpp

A Factory Function

Widget *make widget(int widget type);

Easy or Hard to use wrong?

Copyright Jason Turner @lefticus emptycrate.com/idocpp 5

A Factory Function

Widget *make widget(int widget type);

Easy or Hard to use wrong?

e What happens if we ignore the return value?

Copyright Jason Turner @lefticus emptycrate.com/idocpp 5

A Factory Function

Widget *make widget(int widget type);

Easy or Hard to use wrong?

e What happens if we ignore the return value?
e What is the possible range of input values?

Copyright Jason Turner @lefticus emptycrate.com/idocpp 5

A Factory Function

Widget *make widget(int widget type);

How would you rewrite this?

Copyright Jason Turner @lefticus emptycrate.com/idocpp 5

A Factory Function

Widget *make widget(int widget type);

How would you rewrite this?

[[nodiscard]] std::unique ptr<Widget> make widget(int widget type);

Easy or Hard to use wrong?

Copyright Jason Turner @lefticus emptycrate.com/idocpp o

A Factory Function

enum class WidgetType {
Slider = 0,
Button =1
b

[[nodiscard]] std::unique ptr<Widget> make widget(WidgetType type);

Easy or Hard to use wrong?

Copyright Jason Turner @lefticus emptycrate.com/idocpp

9.4

A Factory Function

enum class WidgetType {
Slider = 0,
Button =1

}I

[[nodiscard]] std::unique ptr<Widget> make widget(WidgetType type);

Easy or Hard to use wrong?

auto widget = make widget(static cast<WidgetType>(-42));

Copyright Jason Turner @lefticus emptycrate.com/idocpp

9.4

A Factory Function

enum class WidgetType {
Slider = 0,
Button 1

}I

[[nodiscard]] std::unique ptr<Widget> make widget(WidgetType type);

Easy or Hard to use wrong?

auto widget = make widget(static cast<WidgetType>(-42));

e What about error handling?

Copyright Jason Turner @lefticus emptycrate.com/idocpp -

A Factory Function

enum class WidgetType {
Slider = 0,
Button =1
b

[[nodiscard]] std::unique ptr<Widget> make widget(WidgetType type);
Easy or Hard to use wrong?

auto widget = make widget(static cast<WidgetType>(-42));

e What about error handling?
e |sit possible to fail to create a Widget?

Copyright Jason Turner @lefticus emptycrate.com/idocpp

9.4

A Factory Function

enum class WidgetType {
Slider = 0,
Button =1
b

[[nodiscard]] std::unique ptr<Widget> make widget(WidgetType type);
Easy or Hard to use wrong?

auto widget = make widget(static cast<WidgetType>(-42));

e What about error handling?

e |sit possible to fail to create a Widget?
e Should it throw an exception?

Copyright Jason Turner @lefticus emptycrate.com/idocpp

9.4

A Factory Function

enum class WidgetType {
Slider = 0,
Button =1

}I

[[nodiscard]] std::unique ptr<Widget> make widget(WidgetType type);

Easy or Hard to use wrong?

auto widget = make widget(static cast<WidgetType>(-42));

e What about error handling?
e |sit possible to fail to create a Widget?
e Should it throw an exception?

e Isa - return an error condition?

Copyright Jason Turner @lefticus emptycrate.com/idocpp -

A Factory Function

enum class WidgetType {
Slider = 0,
Button =1

}I

[[nodiscard]] std::unique ptr<Widget> make widget(WidgetType type);

Easy or Hard to use wrong?

auto widget = make widget(static cast<WidgetType>(-42));

e What about error handling?
e |sit possible to fail to create a Widget?
e Should it throw an exception?

e Isa - return an error condition?

We’ll come back to this in a minute.

Copyright Jason Turner @lefticus

emptycrate.com/idocpp

9.

4

Never Return a Raw Pointer

Copyright Jason Turner @lefticus emptycrate.com/idocpp

Never Return a Raw Pointer

Copyright Jason Turner @lefticus emptycrate.com/idocpp

Never Return a Raw Pointer

e |[tsimply raises too many questions. Who owns it? Who deletes it? Is it a
singleton global?

Copyright Jason Turner @lefticus emptycrate.com/idocpp 0.z

Never Return a Raw Pointer

e |t simply raises too many questions. Who owns it? Who deletes it? Isit a
singleton global?

e Consider lowning_ptr/, nontowninguptz| or some kind of wrapper to

document intent, if you must.

Copyright Jason Turner UE S emptycrate.com/idocpp 0 2

Have a Consistent Error
Handling Policy

Copyright Jason Turner @lefticus emptycrate.com/idocpp

Consistent Error Handling

Copyright Jason Turner @lefticus emptycrate.com/idocpp

Consistent Error Handling

e Use one consistent method of reporting errors in your library

Copyright Jason Turner @lefticus emptycrate.com/idocpp W%

Consistent Error Handling

e Use one consistent method of reporting errors in your library

e Strongly avoid out-of-band error reporting ({getilast erzor(); or lexrno)

Copyright Jason Turner UE S emptycrate.com/idocpp u

Consistent Error Handling

e Use one consistent method of reporting errors in your library

e Strongly avoid out-of-band error reporting ({getilast erzor(); or lexrno)

e Make errors impossible to ignore (no returning an error code!)

Copyright Jason Turner UE S emptycrate.com/idocpp u

Consistent Error Handling

e Use one consistent method of reporting errors in your library

e Strongly avoid out-of-band error reporting ({getilasterzor(); or lexrno)

e Make errors impossible to ignore (no returning an error code!)

e Never use [Stdsioptional<! to indicate an error condition. (it does not

convey a reason, and the reason becomes out of bound).

Copyright Jason Turner UE S emptycrate.com/idocpp u

Consistent Error Handling

e Use one consistent method of reporting errors in your library

e Strongly avoid out-of-band error reporting ({getilast erzor(); or lexrno)

e Make errors impossible to ignore (no returning an error code!)

» Never use [Stdsioptional<| to indicate an error condition. (it does not

convey a reason, and the reason becomes out of bound).

e Consider _ (C++23) or similar

Copyright Jason Turner UE S emptycrate.com/idocpp u

Summary So Far

Copyright Jason Turner @lefticus emptycrate.com/idocpp

Summary So Far

e Use better naming

e Use |[inodiscazd]]] (with reasons) liberally

e Use - to help indicate what kind of error handling is being used

Copyright Jason Turner UE S emptycrate.com/idocpp o o

Summary So Far

e Use better naming

e Use [[nodiscazd]]] (with reasons) liberally

e Use - to help indicate what kind of error handling is being used
e Never return a raw pointer

Copyright Jason Turner UE S emptycrate.com/idocpp o o

Summary So Far

e Use better naming

e Use |[nodiscazd]]] (with reasons) liberally

e Use - to help indicate what kind of error handling is being used
e Never return a raw pointer

e Provide consistent, impossible to ignore error handling with in-band
reporting of what went wrong

Copyright Jason Turner UE S emptycrate.com/idocpp o o

The Humble fepen Function

FILE *fopen(const char *pathname, const char *mode);

Easy or Hard to use wrong? Why?

Copyright Jason Turner UE S emptycrate.com/idocpp b 3

The Humble fepen Function

FILE *fopen(const char *pathname, const char *mode);

Easy or Hard to use wrong? Why?

e How is error handling done?

Copyright Jason Turner UE S emptycrate.com/idocpp b 3

The Humble fepen Function

FILE *fopen(const char *pathname, const char *mode);

Easy or Hard to use wrong? Why?

e How is error handling done?
e What happens if we drop the return value?

Copyright Jason Turner UE S emptycrate.com/idocpp b 3

The Humble fepen Function

FILE *fopen(const char *pathname, const char *mode);

Easy or Hard to use wrong? Why?

e How is error handling done?
e What happens if we drop the return value?

e What is the format for -?

Copyright Jason Turner UE S emptycrate.com/idocpp b 3

The Humble fepen Function

FILE *fopen(const char *pathname, const char *mode);

Easy or Hard to use wrong? Why?

e How is error handling done?
e What happens if we drop the return value?

e Whatis the format for ?
hv

e What happens if | call

Copyright Jason Turner UE S emptycrate.com/idocpp b 3

The Humble fepen Function

*fopen(const *pathname, const

Easy or Hard to use wrong? Why?

e How is error handling done?
e What happens if we drop the return value?

e What is the format for ?
e What happens if call

 What happens i col EpenUIUEISBRL 07

Copyright Jason Turner UE S emptycrate.com/idocpp b 3

The Humble fepen Function

FILE *fopen(const char *pathname, const char *mode);

How would you rewrite this?

Copyright Jason Turner @lefticus emptycrate.com/idocpp 12 .4

The Humble fepen Function

FILE *fopen(const char *pathname, const char *mode);

How would you rewrite this?

using FilePtr = std::unique ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

| [nodiscard]] FilePtr fopen(const char *pathname, const char *mode);

Copyright Jason Turner @lefticus emptycrate.com/idocpp B

The Humble fepen Function

using FilePtr = std::unique ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

| [nodiscard]] FilePtr fopen(const char *pathname, const char *mode);

Easy or Hard to use wrong?

Copyright Jason Turner @lefticus emptycrate.com/idocpp v

The Humble fepen Function

using FilePtr = std::unique ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

| [nodiscard]] FilePtr fopen(const char *pathname, const char *mode);

Easy or Hard to use wrong?

Avoid easily swappable parameters:

using FilePtr = std::unique ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const std::filesystem::path &path,
std::string view mode); https://godbolt.org/z/rb7TvhGc9

Copyright Jason Turner @lefticus emptycrate.com/idocpp v

Avoid Easily Swappable
Parameters

Copyright Jason Turner @lefticus emptycrate.com/idocpp

Avoid Easily Swappable Parameters

Copyright Jason Turner @lefticus emptycrate.com/idocpp

Avoid Easily Swappable Parameters

e Two (or more) parameters beside each other of the same type are easy
to swap.

Copyright Jason Turner @lefticus emptycrate.com/idocpp @z

Avoid Easily Swappable Parameters

e Two (or more) parameters beside each other of the same type are easy
to swap.
e clang-tidy has [bugprone-easily-swappable-parameters]

Copyright Jason Turner @lefticus emptycrate.com/idocpp @z

The Humble fepen Function

using FilePtr = std::unique ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const std::filesystem::path &path,
std::string view mode); https://godbolt.org/z/xrb7TvhGc9

Easy or Hard to use wrong?

Copyright Jason Turner @lefticus emptycrate.com/idocpp .

The Humble fepen Function

using FilePtr = std::unique ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const std::filesystem::path &path,
std::string view mode); https://godbolt.org/z/xrb7TvhGc9

Easy or Hard to use wrong?

// Unfortunately this still compiles.

auto file = fopen("rw+", "/my/file");

Copyright Jason Turner @lefticus emptycrate.com/idocpp .

The Humble fepen Function

using FilePtr = std::unique ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const std::filesystem::path &path,
std::string view mode); https://godbolt.org/z/xrb7TvhGc9

What is the fundamental problem here?

Copyright Jason Turner @lefticus emptycrate.com/idocpp @

The Humble fepen Function

using FilePtr = std::unique ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const std::filesystem::path &path,
std::string view mode); https://godbolt.org/z/xrb7TvhGc9

What is the fundamental problem here?

// simplified
namespace std {
namespace filesystem {
path(string type&& source, format fmt=auto format);

}

struct string view {
string view(const char *);
b
} https://godbolt.org/z/z6G5z3s4s

Copyright Jason Turner @lefticus emptycrate.com/idocpp @

The Humble fepen Function

using FilePtr = std::unique ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const std::filesystem::path &path,
std::string view mode); https://godbolt.org/z/xrb7TvhGc9

What is the fundamental problem here?

// simplified
namespace std {
namespace filesystem {
path(string type&& source, format fmt=auto format);

}

struct string view {
string view(const char *);
b
} https://godbolt.org/z/z6G5z3s4s

Implicit conversions.

Copyright Jason Turner QUE emptycrate.com/idocpp @

Avoid Implicit Conversions /
Use Strong Types

Copyright Jason Turner @lefticus emptycrate.com/idocpp

Avoid Implicit Conversions / Use Strong
Types

Copyright Jason Turner @lefticus emptycrate.com/idocpp

Avoid Implicit Conversions / Use Strong
Types

- SNSRI - BESRRAAR 2rpear to be strongly

typed but are not

Copyright Jason Turner @lefticus emptycrate.com/idocpp

Avoid Implicit Conversions / Use Strong
Types

+ SRS SRaRNE = ERENEEERANAR 2oocor to be strongly

typed but are not

e Implicit conversions between |const ‘char |, [String, [String view,, and

path break type safety

Copyright Jason Turner @lefticus emptycrate.com/idocpp 2

Avoid Implicit Conversions / Use Strong
Types

+ SRS SRERNE = ERENEEANAR 2ocor to be strongly

typed but are not

e Implicit conversions between |const ‘char |, [String, [String view,, and
path break type safety
e Conversion operators and single parameter constructors (including

variadic and ones with default parameters) should be -

Copyright Jason Turner @lefticus emptycrate.com/idocpp 12

The Humble fepen Function

using FilePtr = std::unique ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

| [nodiscard]] FilePtr fopen(const std: fllesystem path &path,
std::string view mode) https://godbolt.org/z/rb7TvhGc9

-k,

correct types for this use case, can we make this better?

Copyright Jason Turner @lefticus emptycrate.com/idocpp 13

The Humble fepen Function

using FilePtr = std::unique ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

| [nodiscard]] FilePtr fopen(const std: fllesystem path &path,
std::string view mode) https://godbolt.org/z/rb7TvhGc9

-k,

correct types for this use case, can we make this better?

void fopen(const auto &, const auto &) = delete;

Copyright Jason Turner @lefticus emptycrate.com/idocpp 13

=delete Problematic

Overloads

ason Turner @lefticus emptycrate.com/idocpp

=delete Problematic Overloads

Copyright Jason Turner @lefticus emptycrate.com/idocpp

=delete Problematic Overloads
e Any function can be |[Sdeleteld.

Copyright Jason Turner UE TS emptycrate.com/idocpp 5 o

=delete Problematic Overloads
e Any function can be [Sdeleteld.

e |fyou - a template, it will become the match for any non-exact
parameters, and prevent implicit conversions

Copyright Jason Turner UE S emptycrate.com/idocpp 5 o

Summary So Far

Copyright Jason Turner @lefticus emptycrate.com/idocpp

Summary So Far

e Use better naming

e Use [[fnodiscazd]]] (with reasons) liberally

e Never return a raw pointer

e Use [oexeept| to help indicate what kind of error handling is being used

e Provide consistent, impossible to ignore error handling with in-band
reporting of what went wrong

Copyright Jason Turner UE S emptycrate.com/idocpp 6 o

Summary So Far

e Use better naming

e Use [[inodiscazd]]] (with reasons) liberally

e Never return a raw pointer

e Use [oexeept| to help indicate what kind of error handling is being used
e Provide consistent, impossible to ignore error handling with in-band
reporting of what went wrong

o [se stronger types

Copyright Jason Turner UE S emptycrate.com/idocpp 6 o

Summary So Far

e Use better naming

e Use [[fnodiseard]]| (with reasons) liberally

e Never return a raw pointer

e Use [oexeept| to help indicate what kind of error handling is being used
e Provide consistent, impossible to ignore error handling with in-band
reporting of what went wrong

o Use stronger types

e Avoid default conversions

Copyright Jason Turner UE TS emptycrate.com/idocpp 6 o

Summary So Far

e Use better naming

e Use [[fnodiseard]]| (with reasons) liberally

e Never return a raw pointer

e Use [oexeept| to help indicate what kind of error handling is being used

e Provide consistent, impossible to ignore error handling with in-band
reporting of what went wrong

o Use stronger types

e Avoid default conversions

e (Sparingly) delete problematic overloads / prevent conversions

Copyright Jason Turner UE TS emptycrate.com/idocpp 6 o

Backing Up a Bit

Copyright Jason Turner @lefticus emptycrate.com/idocpp

Making The Factory a Bit Better

With what we now have, can we make this better / harder to use wrong?

[[nodiscard]] std::unique ptr<Widget> make widget(int widget type);

Copyright Jason Turner @lefticus emptycrate.com/idocpp .

Making The Factory a Bit Better

With what we now have, can we make this better / harder to use wrong?

[[nodiscard]] std::unique ptr<Widget> make widget(int widget type);

Depending on context, we might be able to use stronger typing to make
our factory better:

template<typename WidgetType>

[[nodiscard]] WidgetType make widget()
requires (std::is base of v<Widget, WidgetType>);

Copyright Jason Turner @lefticus emptycrate.com/idocpp .

The Humble fepen Function

using FilePtr = std::unique ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

| [nodiscard]] FilePtr fopen(const char *pathname, const char *mode);

Copyright Jason Turner @lefticus emptycrate.com/idocpp o

The Humble fepen Function

using FilePtr = std::unique ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

| [nodiscard]] FilePtr fopen(const char *pathname, const char *mode);

* Are {pathname| and [mede optional?

Copyright Jason Turner UE TS emptycrate.com/idocpp 3

The Humble fepen Function

using FilePtr = std::unique ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

| [nodiscard]] FilePtr fopen(const char *pathname, const char *mode);

* Are {pathname| and [mede optional?

e What happens if aullpes is passed to either of them?

Copyright Jason Turner UE TS emptycrate.com/idocpp 3

The Humble fepen Function

using FilePtr = std::unique ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

| [nodiscard]] FilePtr fopen(const char *pathname, const char *mode);

Are {pathname| and [mede] optional?

What happens if faullpes| is passed to either of them?
UB is invoked

Copyright Jason Turner UE S emptycrate.com/idocpp 3

The Humble fepen Function

using FilePtr = std::unique ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

| [nodiscard]] FilePtr fopen(const char *pathname, const char *mode);

* Are jpathname| and [mede optional?

e What happens if aullpes is passed to either of them?
e UBisinvoked

Easy or Hard to use wrong (in this regard?)

Copyright Jason Turner UE S emptycrate.com/idocpp 3

Only Pass Raw Pointers for
Single Optional Objects

Copyright Jason Turner @lefticus emptycrate.com/idocpp

Only Pass Raw Pointers for Single Optional
Objects

#include <cassert>
#include <string>

void use string(std::string * const * str) {

assert(str != nullptr); // is str optional?
// do things

}

https://godbolt.org/z/8ed6b4rT]

Copyright Jason Turner @lefticus emptycrate.com/idocpp

18 . 2

Only Pass Raw Pointers for Single Optional
Objects

#include <string>

void use string(std::string * const * str) {
if (str) { // is str optional?

// do things
} else {
// do other things

}
} https://godbolt.org/z/xMEdbvE59

Copyright Jason Turner @lefticus emptycrate.com/idocpp I

Only Pass Raw Pointers for Single Optional
Objects

If you pass a pointer, you must check it for [nulipes|

#include <string>

void use string(std::string const * const str) {
puts(str->c str()); // do not do, unsafe
} https://godbolt.org/z/4dx50z1bz

Copyright Jason Turner QUE emptycrate.com/idocpp 6

Prefer & Parameters For Non-Small, Non-
Trivial Objects

#include <string>

// non-trivial, pass by (const) reference

void use string(const std::string &str) {
puts(str.c str());

}

void use int(const int i) { // trivial and small, copy it
// use 1.

} https://godbolt.org/z/x36Glssoc

Copyright Jason Turner @lefticus emptycrate.com/idocpp

18 . 5

Don’t Pass Smart Pointers
Unless You Need to
Participate In The Lifetime

Copyright Jason Turner @lefticus emptycrate.com/idocpp

Avoiding Passing Smart Pointers

(This is a much bigger discussion)

#include <string>
#include <memory>

// API usage is artificially limited
void use string(const std::shared ptr<const std::string> &str) {

if (str) { // we don't care it's a

// shared pointer, we're treating as a raw *!
// use string

}
} https://godbolt.org/z/W9E13eGxc

Copyright Jason Turner @lefticus emptycrate.com/idocpp

19 . 2

Summary So Far

Copyright Jason Turner @lefticus emptycrate.com/idocpp

Summary So Far

e Use better naming

e Use [[fnodiseard]]| (with reasons) liberally

e Never return a raw pointer

e Use [oexeept| to help indicate what kind of error handling is being used

e Provide consistent, impossible to ignore error handling with in-band
reporting of what went wrong

e Use stronger types

e Avoid default conversions

e (Sparingly) delete problematic overloads / prevent conversions

Copyright Jason Turner UE TS emptycrate.com/idocpp S

Summary So Far

e Use better naming

e Use [[fnodiseard]]| (with reasons) liberally

e Never return a raw pointer

e Use [noexeept| to help indicate what kind of error handling is being used

e Provide consistent, impossible to ignore error handling with in-band
reporting of what went wrong

e Use stronger types

e Avoid default conversions

e (Sparingly) delete problematic overloads / prevent conversions

e Avoid passing pointers (only to be used for single/optional objects)

Copyright Jason Turner UE TS emptycrate.com/idocpp S

Summary So Far

e Use better naming

e Use |[inodiscazd]]] (with reasons) liberally

e Never return a raw pointer

e Use [oexeept| to help indicate what kind of error handling is being used

e Provide consistent, impossible to ignore error handling with in-band
reporting of what went wrong

e Use stronger types

e Avoid default conversions

e (Sparingly) delete problematic overloads / prevent conversions

e Avoid passing pointers (only to be used for single/optional objects)

e Avoid passing smart pointers

Copyright Jason Turner UE S emptycrate.com/idocpp 20 o

One Elephant Left In This
Example

Copyright Jason Turner @lefticus emptycrate.com/idocpp

The Humble fepen Function

using FilePtr = std::unique ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const std::filesystem::path &path,
std::string view mode); https://godbolt.org/z/xb7TvhGc9

What is the possible set of inputs to -?

Copyright Jason Turner @lefticus emptycrate.com/idocpp o

The Humble fepen Function

using FilePtr = std::unique ptr< , decltype([](*f) { fclose(f); })>;

FilePtr fopen(const std::filesystem::path &path,
std::string view mode);

What is the possible set of inputs to -?

Copyright Jason Turner @lefticus emptycrate.com/idocpp

We Can Always Count On
POSIX APIs For Interesting
Discussion

Copyright Jason Turner @lefticus emptycrate.com/idocpp

The Humble fepen Function

using FilePtr = std::unique ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const std::filesystem::path &path,
std::string view mode); https://godbolt.org/z/xrb7TvhGc9

Easy or Hard to use wrong?

Copyright Jason Turner QUE emptycrate.com/idocpp .

The Humble fepen Function

using FilePtr = std::unique ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const std::filesystem::path &path,
std::string view mode); https://godbolt.org/z/xb7TvhGc9

Easy or Hard to use wrong?

How do we fix this?

Copyright Jason Turner @lefticus emptycrate.com/idocpp .

The Humble fepen Function

using FilePtr = std::unique ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const std::filesystem::path &path,
std::string view mode); https://godbolt.org/z/xb7TvhGc9

Easy or Hard to use wrong?
How do we fix this?

e Maybe it’s possible to make this some sort of compile-time type
checked set?

Copyright Jason Turner @lefticus emptycrate.com/idocpp .

The Humble fepen Function

using FilePtr = std::unique ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const std::filesystem::path &path,
std::string view mode); https://godbolt.org/z/xb7TvhGc9

Easy or Hard to use wrong?
How do we fix this?

e Maybe it’s possible to make this some sort of compile-time type
checked set?
e Maybe some bit flags would work?

Copyright Jason Turner @lefticus emptycrate.com/idocpp .

The Humble fepen Function

using FilePtr = std::unique ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const std::filesystem::path &path,
std::string view mode); https://godbolt.org/z/xb7TvhGc9

Easy or Hard to use wrong?
How do we fix this?

e Maybe it’s possible to make this some sort of compile-time type
checked set?

e Maybe some bit flags would work?

e Maybe thisis truly open ended and OS dependent and “stringly typed”
is the only option?

Copyright Jason Turner @lefticus emptycrate.com/idocpp .

Fuzz Your Interfaces

Copyright Jason Turner @lefticus emptycrate.com/idocpp

Fuzz Your Interfaces

fuzzer - a tool that tests your APl against a set of “random” inputs.

e Should be run with something like address/undefined sanitizers
enabled

e Usesyour APl in ways that you never would
e Can be used with any APl with creativity
e Helps discover patterns of misuse internal to your API

Copyright Jason Turner @lefticus emptycrate.com/idocpp

23 .2

Final Summary

Copyright Jason Turner @lefticus emptycrate.com/idocpp

Copyright Jason Turner @lefticus emptycrate.com/idocpp 2 . 2

e Try to use your APl incorrectly

Copyright Jason Turner @lefticus emptycrate.com/idocpp 2 . 2

e Try to use your APl incorrectly
e Use better naming

Copyright Jason Turner @lefticus emptycrate.com/idocpp 2 . 2

e Try to use your APl incorrectly
e Use better naming

o Use— (with reasons) liberally

Copyright Jason Turner QUE emptycrate.com/idocpp 2 . 2

e Try to use your APl incorrectly
e Use better naming

C Use— (with reasons) liberally

e Never return a raw pointer

Copyright Jason Turner QUE emptycrate.com/idocpp 2 . 2

e Try to use your APl incorrectly
e Use better naming

e Use |[fnodiscazd]]| (with reasons) liberally

e Never return a raw pointer
e Use - to help indicate the type of error handling

Copyright Jason Turner @lefticus emptycrate.com/idocpp 2 . 2

e Try to use your APl incorrectly
e Use better naming

e Use |[inodiscazd]]] (with reasons) liberally

e Never return a raw pointer
e Use - to help indicate the type of error handling
e Provide consistent, impossible to ignore, in-band error handling

Copyright Jason Turner @lefticus emptycrate.com/idocpp 2 . 2

e Try to use your APl incorrectly
e Use better naming

e Use |[inodiscazd]]] (with reasons) liberally

e Never return a raw pointer

e Use - to help indicate the type of error handling

e Provide consistent, impossible to ignore, in-band error handling
e Use stronger types and avoid default conversions

Copyright Jason Turner @lefticus emptycrate.com/idocpp 2 . 2

e Try to use your APl incorrectly
e Use better naming

e Use |[inodiscazd]]] (with reasons) liberally

e Never return a raw pointer

e Use - to help indicate the type of error handling

e Provide consistent, impossible to ignore, in-band error handling
e Use stronger types and avoid default conversions

e (Sparingly) delete problematic overloads / prevent conversions

Copyright Jason Turner @lefticus emptycrate.com/idocpp 2 . 2

e Try to use your APl incorrectly
e Use better naming

e Use [[inodiscazd]]] (with reasons) liberally

e Never return a raw pointer

e Use - to help indicate the type of error handling

e Provide consistent, impossible to ignore, in-band error handling

e Use stronger types and avoid default conversions

e (Sparingly) delete problematic overloads / prevent conversions

e Avoid passing pointers (only to be used for single/optional objects)

Copyright Jason Turner @lefticus emptycrate.com/idocpp 2 . 2

e Try to use your APl incorrectly
e Use better naming

o Use— (with reasons) liberally

e Never return a raw pointer

e Use - to help indicate the type of error handling

e Provide consistent, impossible to ignore, in-band error handling

e Use stronger types and avoid default conversions

e (Sparingly) delete problematic overloads / prevent conversions

e Avoid passing pointers (only to be used for single/optional objects)
e Avoid passing smart pointers

Copyright Jason Turner QUE emptycrate.com/idocpp 2 . 2

e Try to use your APl incorrectly
e Use better naming

e Use |[inodiscazd]]] (with reasons) liberally

e Never return a raw pointer

e Use - to help indicate the type of error handling

e Provide consistent, impossible to ignore, in-band error handling

e Use stronger types and avoid default conversions

e (Sparingly) delete problematic overloads / prevent conversions

e Avoid passing pointers (only to be used for single/optional objects)
e Avoid passing smart pointers

e Limityour APl as much as possible

Copyright Jason Turner @lefticus emptycrate.com/idocpp 2 . 2

e Try to use your APl incorrectly
e Use better naming

e Use |[inodiscazd]]| (with reasons) liberally

e Never return a raw pointer

e Use - to help indicate the type of error handling

e Provide consistent, impossible to ignore, in-band error handling

e Use stronger types and avoid default conversions

e (Sparingly) delete problematic overloads / prevent conversions

e Avoid passing pointers (only to be used for single/optional objects)
e Avoid passing smart pointers

e Limityour APl as much as possible

e Fuzz your API

Copyright Jason Turner @lefticus emptycrate.com/idocpp 2 . 2

Make Your APl Hard To Use
Wrong

Copyright Jason Turner @lefticus emptycrate.com/idocpp

Oh, and Enable for constexpx

Unless You Have a Really
Good Reason Not To

Copyright Jason Turner @lefticus emptycrate.com/idocpp

Jason Turner

e Host of C++ Weekly https://www.youtube.com/c/lefticusl
e Author

= C++ Best Practices

» OpCode, Copy and Reference, Object Lifetime Puzzlers
s https://amzn.to/3xWh80x

= https://leanpub.com/u/jason_turner

e Developer

» https://cppbestpractices.com

» https://github.com/cpp-best-practices

e Microsoft MVP for C++ 2015-present

Copyright Jason Turner @lefticus emptycrate.com/idocpp 5.

Jason Turner

Independent and available for training and code reviews

e https://articles.emptycrate.com/idocpp

Copyright Jason Turner @lefticus emptycrate.com/idocpp 2% 3

