
Copyright Jason Turner @le�icus emptycrate.com/idocpp 1 . 1

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Jason Turner
Host of C++ Weekly https://www.youtube.com/c/le�icus1
Author

C++ Best Practices
OpCode, Copy and Reference, Object Lifetime Puzzlers
https://amzn.to/3xWh8Ox
https://leanpub.com/u/jason_turner

Developer
https://cppbestpractices.com
https://github.com/cpp-best-practices

Microso� MVP for C++ 2015-present

1 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Jason Turner
Independent and available for training and code reviews

https://articles.emptycrate.com/idocpp

1 . 3

Copyright Jason Turner @le�icus emptycrate.com/idocpp

About my Talks
Move to the front!
Please interrupt and ask questions
This is approximately how my training days look

1 . 4

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Local Meetups
I got the chance to practice this talk at my meetup.

1 . 5

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Local Meetups
I got the chance to practice this talk at my meetup.

And therefor have no idea how long this is going to take.

1 . 5

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Local Meetups
I got the chance to practice this talk at my meetup.

And therefor have no idea how long this is going to take.

Do you live in a city with a local meetup?

1 . 5

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Local Meetups
I got the chance to practice this talk at my meetup.

And therefor have no idea how long this is going to take.

Do you live in a city with a local meetup?
Do you attend your local meetup?

1 . 5

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Local Meetups
I got the chance to practice this talk at my meetup.

And therefor have no idea how long this is going to take.

Do you live in a city with a local meetup?
Do you attend your local meetup?
Do you live or work in the Denver/Boulder/Longmont area?

1 . 5

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Local Meetups
I got the chance to practice this talk at my meetup.

And therefor have no idea how long this is going to take.

Do you live in a city with a local meetup?
Do you attend your local meetup?
Do you live or work in the Denver/Boulder/Longmont area?
Do you attend my meetup?

1 . 5

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Back To Basics: API Design
I was asked if I could give a Back To Basics track talk on API design.

1 . 6

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Back To Basics: API Design
I was asked if I could give a Back To Basics track talk on API design.

Sure, I can do that.

1 . 6

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Back To Basics: API Design
I was asked if I could give a Back To Basics track talk on API design.

Sure, I can do that.

Me

1 . 6

Copyright Jason Turner @le�icus emptycrate.com/idocpp 1 . 7

Copyright Jason Turner @le�icus emptycrate.com/idocpp 1 . 8

Copyright Jason Turner @le�icus emptycrate.com/idocpp

More Seriously

2 . 1

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Back To Basics: API Design

2 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Back To Basics: API Design
Outside of the kinds of things I tend to talk about for conferences

2 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Back To Basics: API Design
Outside of the kinds of things I tend to talk about for conferences
Largely taken from material I normally leave for classes

2 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Back To Basics: API Design
Outside of the kinds of things I tend to talk about for conferences
Largely taken from material I normally leave for classes
You should hire me to come do training at your company!

2 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

C++ Best Practices #32:
“Make Your API Hard To Use

Wrong”

3 . 1

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Make Your API Hard To Use Wrong
This is what we will be focusing on in this session
I show you code, you tell me if the API is easy or hard to use wrong (or
if there is a gray area).

3 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

And Maybe Something
About constexpr

4 . 1

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Common std::vector (C++98 version)

Easy or Hard to use wrong? Why?

1
2
3
4
5

template<typename T>
class vector {
public:
 bool empty() const;
}; https://godbolt.org/z/hsYvEW9sd

4 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Common std::vector (C++98 version)

Easy or Hard to use wrong? Why?

1
2
3
4
5

template<typename T>
class vector {
public:
 bool empty() const;
}; https://godbolt.org/z/hsYvEW9sd

What does empty() do?

4 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Common std::vector (C++98 version)

Easy or Hard to use wrong? Why?

1
2
3
4
5

template<typename T>
class vector {
public:
 bool empty() const;
}; https://godbolt.org/z/hsYvEW9sd

What does empty() do?
What happens if we drop the return value?

4 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Common std::vector (C++98 version)

Easy or Hard to use wrong? Why?

1
2
3
4
5

template<typename T>
class vector {
public:
 bool empty() const;
}; https://godbolt.org/z/hsYvEW9sd

What does empty() do?
What happens if we drop the return value?
What kind of error handling does it have?

4 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Common std::vector

How would you rewrite this?

1
2
3
4
5

template<typename T>
class vector {
public:
 bool empty() const;
}; https://godbolt.org/z/hsYvEW9sd

4 . 3

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Common std::vector

How would you rewrite this?

1
2
3
4
5

template<typename T>
class vector {
public:
 bool empty() const;
}; https://godbolt.org/z/hsYvEW9sd

Easy or Hard to use wrong?

1 [[nodiscard]] bool is_empty() const;

4 . 3

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Common std::vector

How would you rewrite this?

1
2
3
4
5

template<typename T>
class vector {
public:
 bool empty() const;
}; https://godbolt.org/z/hsYvEW9sd

Easy or Hard to use wrong?

1 [[nodiscard]] bool is_empty() const;

What kind of error handling does this have? Are there any reasonable
errors for it?

4 . 3

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Common std::vector

Easy or Hard to use wrong?

1
2
3
4
5

template<typename T>
class vector {
public:
 [[nodiscard]] bool is_empty() const noexcept;
}; https://godbolt.org/z/3Ef9oGj9r

4 . 4

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Use Better Naming

5 . 1

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Use Better Naming
Naming is hard.

As we know, the two hardest problems in computer science are:

5 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Use Better Naming
Naming is hard.

As we know, the two hardest problems in computer science are:

1. Cache Invalidation

5 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Use Better Naming
Naming is hard.

As we know, the two hardest problems in computer science are:

1. Cache Invalidation
2. Naming

5 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Use Better Naming
Naming is hard.

As we know, the two hardest problems in computer science are:

1. Cache Invalidation
2. Naming
3. Off-by-one Errors

5 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Use Better Naming
Naming is hard.

As we know, the two hardest problems in computer science are:

1. Cache Invalidation
2. Naming
3. Off-by-one Errors
4. Scope creep

5 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Use Better Naming
Naming is hard.

As we know, the two hardest problems in computer science are:

1. Cache Invalidation
2. Naming
3. Off-by-one Errors
4. Scope creep
5. Bounds checking

5 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Use Better Naming
Naming is hard.

As we know, the two hardest problems in computer science are:

1. Cache Invalidation
2. Naming
3. Off-by-one Errors
4. Scope creep
5. Bounds checking

Phil Karlton, Unknown, Dave Stagner

5 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

[[nodiscard]]

6 . 1

Copyright Jason Turner @le�icus emptycrate.com/idocpp

[[nodiscard]] and Functions
Instructs the compiler to generate a warning if a return value is
dropped. Can be applied to types or function declarations.

1
2
3
4
5

[[nodiscard]] int get_value();

int main() {
 get_value(); // warning issued from any reasonable compiler
} https://godbolt.org/z/xvrjhjGdK

6 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

[[nodiscard]] and Lambdas
C++23 fixes a minor loophole in the standard and now allows
[[nodiscard]] with lambdas.
1
2
3
4
5

int main() {
 auto l = [] [[nodiscard]] () -> int { return 42; };

 l(); // warning here
} https://godbolt.org/z/ad444nqqW

6 . 3

Copyright Jason Turner @le�icus emptycrate.com/idocpp

[[nodiscard]] and Types
1
2
3
4
5
6

struct [[nodiscard]] ErrorType{};
ErrorType get_value();

int main() {
 get_value(); // warning issued from any reasonable compiler
} https://godbolt.org/z/Gdv8YsMcG

6 . 4

Copyright Jason Turner @le�icus emptycrate.com/idocpp

[[nodiscard]] and Constructors
1
2
3
4
5
6
7
8
9

10

struct FDHolder {
 [[nodiscard]] FDHolder(int FD);
 FDHolder();
};

int main() {
 FDHolder{42}; // warning
 FDHolder h{42}; // constructed object not discarded, no warning
 FDHolder{}; // default constructed, no warning
} https://godbolt.org/z/x5e87r7Ka

6 . 5

Copyright Jason Turner @le�icus emptycrate.com/idocpp

[[nodiscard]] Summary

6 . 6

Copyright Jason Turner @le�icus emptycrate.com/idocpp

[[nodiscard]] Summary
Used to indicate when it is an error to ignore a return value from a
function

6 . 6

Copyright Jason Turner @le�icus emptycrate.com/idocpp

[[nodiscard]] Summary
Used to indicate when it is an error to ignore a return value from a
function
Can be applied to constructors as of C++20

6 . 6

Copyright Jason Turner @le�icus emptycrate.com/idocpp

[[nodiscard]] Summary
Used to indicate when it is an error to ignore a return value from a
function
Can be applied to constructors as of C++20
Can have a message to explain the error [[nodiscard("Lock objects
should never be discarded")]]

6 . 6

Copyright Jason Turner @le�icus emptycrate.com/idocpp

[[nodiscard]] Summary
Used to indicate when it is an error to ignore a return value from a
function
Can be applied to constructors as of C++20
Can have a message to explain the error [[nodiscard("Lock objects
should never be discarded")]]

Should be used extensively. Any non-mutating (getter/accessor/ const)
function should be [[nodiscard]]

6 . 6

Copyright Jason Turner @le�icus emptycrate.com/idocpp

[[nodiscard]] Summary
Used to indicate when it is an error to ignore a return value from a
function
Can be applied to constructors as of C++20
Can have a message to explain the error [[nodiscard("Lock objects
should never be discarded")]]

Should be used extensively. Any non-mutating (getter/accessor/ const)
function should be [[nodiscard]]

cos() , [[nodiscard]] ?

6 . 6

Copyright Jason Turner @le�icus emptycrate.com/idocpp

[[nodiscard]] Summary
Used to indicate when it is an error to ignore a return value from a
function
Can be applied to constructors as of C++20
Can have a message to explain the error [[nodiscard("Lock objects
should never be discarded")]]

Should be used extensively. Any non-mutating (getter/accessor/ const)
function should be [[nodiscard]]

cos() , [[nodiscard]] ?
vector::insert() , [[nodiscard]] ?

6 . 6

Copyright Jason Turner @le�icus emptycrate.com/idocpp

[[nodiscard]] Summary
Used to indicate when it is an error to ignore a return value from a
function
Can be applied to constructors as of C++20
Can have a message to explain the error [[nodiscard("Lock objects
should never be discarded")]]

Should be used extensively. Any non-mutating (getter/accessor/ const)
function should be [[nodiscard]]

cos() , [[nodiscard]] ?
vector::insert() , [[nodiscard]] ?

Can be checked / enforced with static analysis

6 . 6

Copyright Jason Turner @le�icus emptycrate.com/idocpp

noexcept

7 . 1

Copyright Jason Turner @le�icus emptycrate.com/idocpp

noexcept

noexcept notifies the user (and compiler) that a function may not
throw an exception. If an exception is thrown from that function,
terminate MUST be called.

1
2
3
4
5
6
7
8
9

10
11
12

void myfunc() noexcept {
 // required to terminate the program
 throw 42;
}

int main() {
 try {
 myfunc();
 } catch(...) {
 // catch is irrelevant, `terminate` is called
 }
} https://godbolt.org/z/P1EjKbMsc

7 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Summary So Far

8 . 1

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Summary So Far

8 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Summary So Far
Use better naming

8 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Summary So Far
Use better naming
Use [[nodiscard]] (with reasons) liberally

8 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Summary So Far
Use better naming
Use [[nodiscard]] (with reasons) liberally
Use noexcept to help indicate what kind of error handling is being used

8 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Increasing The Stakes: A
Factory Function

9 . 1

Copyright Jason Turner @le�icus emptycrate.com/idocpp

A Factory Function

Easy or Hard to use wrong?

1 Widget *make_widget(int widget_type);

9 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

A Factory Function

Easy or Hard to use wrong?

1 Widget *make_widget(int widget_type);

What happens if we ignore the return value?

9 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

A Factory Function

Easy or Hard to use wrong?

1 Widget *make_widget(int widget_type);

What happens if we ignore the return value?
What is the possible range of input values?

9 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

A Factory Function

How would you rewrite this?

1 Widget *make_widget(int widget_type);

9 . 3

Copyright Jason Turner @le�icus emptycrate.com/idocpp

A Factory Function

How would you rewrite this?

1 Widget *make_widget(int widget_type);

Easy or Hard to use wrong?

1 [[nodiscard]] std::unique_ptr<Widget> make_widget(int widget_type);

9 . 3

Copyright Jason Turner @le�icus emptycrate.com/idocpp

A Factory Function

Easy or Hard to use wrong?

1
2
3
4

enum class WidgetType {
 Slider = 0,
 Button = 1
};

1 [[nodiscard]] std::unique_ptr<Widget> make_widget(WidgetType type);

9 . 4

Copyright Jason Turner @le�icus emptycrate.com/idocpp

A Factory Function

Easy or Hard to use wrong?

1
2
3
4

enum class WidgetType {
 Slider = 0,
 Button = 1
};

1 [[nodiscard]] std::unique_ptr<Widget> make_widget(WidgetType type);

1 auto widget = make_widget(static_cast<WidgetType>(-42));

9 . 4

Copyright Jason Turner @le�icus emptycrate.com/idocpp

A Factory Function

Easy or Hard to use wrong?

1
2
3
4

enum class WidgetType {
 Slider = 0,
 Button = 1
};

1 [[nodiscard]] std::unique_ptr<Widget> make_widget(WidgetType type);

1 auto widget = make_widget(static_cast<WidgetType>(-42));

What about error handling?

9 . 4

Copyright Jason Turner @le�icus emptycrate.com/idocpp

A Factory Function

Easy or Hard to use wrong?

1
2
3
4

enum class WidgetType {
 Slider = 0,
 Button = 1
};

1 [[nodiscard]] std::unique_ptr<Widget> make_widget(WidgetType type);

1 auto widget = make_widget(static_cast<WidgetType>(-42));

What about error handling?
Is it possible to fail to create a Widget?

9 . 4

Copyright Jason Turner @le�icus emptycrate.com/idocpp

A Factory Function

Easy or Hard to use wrong?

1
2
3
4

enum class WidgetType {
 Slider = 0,
 Button = 1
};

1 [[nodiscard]] std::unique_ptr<Widget> make_widget(WidgetType type);

1 auto widget = make_widget(static_cast<WidgetType>(-42));

What about error handling?
Is it possible to fail to create a Widget?
Should it throw an exception?

9 . 4

Copyright Jason Turner @le�icus emptycrate.com/idocpp

A Factory Function

Easy or Hard to use wrong?

1
2
3
4

enum class WidgetType {
 Slider = 0,
 Button = 1
};

1 [[nodiscard]] std::unique_ptr<Widget> make_widget(WidgetType type);

1 auto widget = make_widget(static_cast<WidgetType>(-42));

What about error handling?
Is it possible to fail to create a Widget?
Should it throw an exception?
Is a nullptr return an error condition?

9 . 4

Copyright Jason Turner @le�icus emptycrate.com/idocpp

A Factory Function

Easy or Hard to use wrong?

1
2
3
4

enum class WidgetType {
 Slider = 0,
 Button = 1
};

1 [[nodiscard]] std::unique_ptr<Widget> make_widget(WidgetType type);

1 auto widget = make_widget(static_cast<WidgetType>(-42));

What about error handling?
Is it possible to fail to create a Widget?
Should it throw an exception?
Is a nullptr return an error condition?

We’ll come back to this in a minute.

9 . 4

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Never Return a Raw Pointer

10 . 1

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Never Return a Raw Pointer

10 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Never Return a Raw Pointer
It simply raises too many questions. Who owns it? Who deletes it? Is it a
singleton global?

10 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Never Return a Raw Pointer
It simply raises too many questions. Who owns it? Who deletes it? Is it a
singleton global?
Consider owning_ptr , non_owning_ptr or some kind of wrapper to
document intent, if you must.

10 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Have a Consistent Error
Handling Policy

11 . 1

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Consistent Error Handling

11 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Consistent Error Handling
Use one consistent method of reporting errors in your library

11 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Consistent Error Handling
Use one consistent method of reporting errors in your library
Strongly avoid out-of-band error reporting (get_last_error() or errno)

11 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Consistent Error Handling
Use one consistent method of reporting errors in your library
Strongly avoid out-of-band error reporting (get_last_error() or errno)
Make errors impossible to ignore (no returning an error code!)

11 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Consistent Error Handling
Use one consistent method of reporting errors in your library
Strongly avoid out-of-band error reporting (get_last_error() or errno)
Make errors impossible to ignore (no returning an error code!)
Never use std::optional<> to indicate an error condition. (it does not
convey a reason, and the reason becomes out of bound).

11 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Consistent Error Handling
Use one consistent method of reporting errors in your library
Strongly avoid out-of-band error reporting (get_last_error() or errno)
Make errors impossible to ignore (no returning an error code!)
Never use std::optional<> to indicate an error condition. (it does not
convey a reason, and the reason becomes out of bound).
Consider std::expected<> (C++23) or similar

11 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Summary So Far

12 . 1

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Summary So Far
Use better naming
Use [[nodiscard]] (with reasons) liberally
Use noexcept to help indicate what kind of error handling is being used

12 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Summary So Far
Use better naming
Use [[nodiscard]] (with reasons) liberally
Use noexcept to help indicate what kind of error handling is being used
Never return a raw pointer

12 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Summary So Far
Use better naming
Use [[nodiscard]] (with reasons) liberally
Use noexcept to help indicate what kind of error handling is being used
Never return a raw pointer
Provide consistent, impossible to ignore error handling with in-band
reporting of what went wrong

12 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Humble fopen Function

Easy or Hard to use wrong? Why?

1 FILE *fopen(const char *pathname, const char *mode);

12 . 3

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Humble fopen Function

Easy or Hard to use wrong? Why?

1 FILE *fopen(const char *pathname, const char *mode);

How is error handling done?

12 . 3

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Humble fopen Function

Easy or Hard to use wrong? Why?

1 FILE *fopen(const char *pathname, const char *mode);

How is error handling done?
What happens if we drop the return value?

12 . 3

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Humble fopen Function

Easy or Hard to use wrong? Why?

1 FILE *fopen(const char *pathname, const char *mode);

How is error handling done?
What happens if we drop the return value?
What is the format for mode ?

12 . 3

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Humble fopen Function

Easy or Hard to use wrong? Why?

1 FILE *fopen(const char *pathname, const char *mode);

How is error handling done?
What happens if we drop the return value?
What is the format for mode ?
What happens if I call fopen("w", "/my/file/path") ?

12 . 3

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Humble fopen Function

Easy or Hard to use wrong? Why?

1 FILE *fopen(const char *pathname, const char *mode);

How is error handling done?
What happens if we drop the return value?
What is the format for mode ?
What happens if I call fopen("w", "/my/file/path") ?
What happens if I call fopen("/my/file/path", 0) ?

12 . 3

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Humble fopen Function

How would you rewrite this?

1 FILE *fopen(const char *pathname, const char *mode);

12 . 4

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Humble fopen Function

How would you rewrite this?

1 FILE *fopen(const char *pathname, const char *mode);

1
2
3

using FilePtr = std::unique_ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const char *pathname, const char *mode);

12 . 4

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Humble fopen Function

Easy or Hard to use wrong?

1
2
3

using FilePtr = std::unique_ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const char *pathname, const char *mode);

12 . 5

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Humble fopen Function

Easy or Hard to use wrong?

1
2
3

using FilePtr = std::unique_ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const char *pathname, const char *mode);

Avoid easily swappable parameters:
1
2
3
4

using FilePtr = std::unique_ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const std::filesystem::path &path,
 std::string_view mode); https://godbolt.org/z/rb7TvhGc9

12 . 5

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Avoid Easily Swappable
Parameters

13 . 1

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Avoid Easily Swappable Parameters

13 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Avoid Easily Swappable Parameters
Two (or more) parameters beside each other of the same type are easy
to swap.

13 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Avoid Easily Swappable Parameters
Two (or more) parameters beside each other of the same type are easy
to swap.
clang-tidy has [bugprone-easily-swappable-parameters]

13 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Humble fopen Function

Easy or Hard to use wrong?

1
2
3
4

using FilePtr = std::unique_ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const std::filesystem::path &path,
 std::string_view mode); https://godbolt.org/z/rb7TvhGc9

13 . 3

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Humble fopen Function

Easy or Hard to use wrong?

1
2
3
4

using FilePtr = std::unique_ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const std::filesystem::path &path,
 std::string_view mode); https://godbolt.org/z/rb7TvhGc9

1
2

// Unfortunately this still compiles.
auto file = fopen("rw+", "/my/file");

13 . 3

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Humble fopen Function

What is the fundamental problem here?

1
2
3
4

using FilePtr = std::unique_ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const std::filesystem::path &path,
 std::string_view mode); https://godbolt.org/z/rb7TvhGc9

13 . 4

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Humble fopen Function

What is the fundamental problem here?

1
2
3
4

using FilePtr = std::unique_ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const std::filesystem::path &path,
 std::string_view mode); https://godbolt.org/z/rb7TvhGc9

1
2
3
4
5
6
7
8
9

// simplified
namespace std {
 namespace filesystem {
 path(string_type&& source, format fmt=auto_format);
 }
 struct string_view {
 string_view(const char *);
 };
} https://godbolt.org/z/z6G5z3s4s

13 . 4

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Humble fopen Function

What is the fundamental problem here?

1
2
3
4

using FilePtr = std::unique_ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const std::filesystem::path &path,
 std::string_view mode); https://godbolt.org/z/rb7TvhGc9

1
2
3
4
5
6
7
8
9

// simplified
namespace std {
 namespace filesystem {
 path(string_type&& source, format fmt=auto_format);
 }
 struct string_view {
 string_view(const char *);
 };
} https://godbolt.org/z/z6G5z3s4s

Implicit conversions.

13 . 4

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Avoid Implicit Conversions /
Use Strong Types

14 . 1

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Avoid Implicit Conversions / Use Strong
Types

14 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Avoid Implicit Conversions / Use Strong
Types

std::filesystem::path and std::string_view appear to be strongly
typed but are not

14 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Avoid Implicit Conversions / Use Strong
Types

std::filesystem::path and std::string_view appear to be strongly
typed but are not
Implicit conversions between const char * , string , string_view , and
path break type safety

14 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Avoid Implicit Conversions / Use Strong
Types

std::filesystem::path and std::string_view appear to be strongly
typed but are not
Implicit conversions between const char * , string , string_view , and
path break type safety
Conversion operators and single parameter constructors (including
variadic and ones with default parameters) should be explicit

14 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Humble fopen Function

Assuming std::filesystem::path and std::string_view are the most
correct types for this use case, can we make this better?

1
2
3
4

using FilePtr = std::unique_ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const std::filesystem::path &path,
 std::string_view mode); https://godbolt.org/z/rb7TvhGc9

14 . 3

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Humble fopen Function

Assuming std::filesystem::path and std::string_view are the most
correct types for this use case, can we make this better?

1
2
3
4

using FilePtr = std::unique_ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const std::filesystem::path &path,
 std::string_view mode); https://godbolt.org/z/rb7TvhGc9

1 void fopen(const auto &, const auto &) = delete;

14 . 3

Copyright Jason Turner @le�icus emptycrate.com/idocpp

=delete Problematic
Overloads

15 . 1

Copyright Jason Turner @le�icus emptycrate.com/idocpp

=delete Problematic Overloads

15 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

=delete Problematic Overloads
Any function can be =delete d.

15 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

=delete Problematic Overloads
Any function can be =delete d.
If you =delete a template, it will become the match for any non-exact
parameters, and prevent implicit conversions

15 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Summary So Far

16 . 1

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Summary So Far
Use better naming
Use [[nodiscard]] (with reasons) liberally
Never return a raw pointer
Use noexcept to help indicate what kind of error handling is being used
Provide consistent, impossible to ignore error handling with in-band
reporting of what went wrong

16 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Summary So Far
Use better naming
Use [[nodiscard]] (with reasons) liberally
Never return a raw pointer
Use noexcept to help indicate what kind of error handling is being used
Provide consistent, impossible to ignore error handling with in-band
reporting of what went wrong
Use stronger types

16 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Summary So Far
Use better naming
Use [[nodiscard]] (with reasons) liberally
Never return a raw pointer
Use noexcept to help indicate what kind of error handling is being used
Provide consistent, impossible to ignore error handling with in-band
reporting of what went wrong
Use stronger types
Avoid default conversions

16 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Summary So Far
Use better naming
Use [[nodiscard]] (with reasons) liberally
Never return a raw pointer
Use noexcept to help indicate what kind of error handling is being used
Provide consistent, impossible to ignore error handling with in-band
reporting of what went wrong
Use stronger types
Avoid default conversions
(Sparingly) delete problematic overloads / prevent conversions

16 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Backing Up a Bit

17 . 1

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Making The Factory a Bit Better
With what we now have, can we make this better / harder to use wrong?

1 [[nodiscard]] std::unique_ptr<Widget> make_widget(int widget_type);

17 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Making The Factory a Bit Better
With what we now have, can we make this better / harder to use wrong?

1 [[nodiscard]] std::unique_ptr<Widget> make_widget(int widget_type);

Depending on context, we might be able to use stronger typing to make
our factory better:

1
2
3

template<typename WidgetType>
[[nodiscard]] WidgetType make_widget()
 requires (std::is_base_of_v<Widget, WidgetType>);

17 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Humble fopen Function
1
2
3

using FilePtr = std::unique_ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const char *pathname, const char *mode);

17 . 3

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Humble fopen Function
1
2
3

using FilePtr = std::unique_ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const char *pathname, const char *mode);

Are pathname and mode optional?

17 . 3

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Humble fopen Function
1
2
3

using FilePtr = std::unique_ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const char *pathname, const char *mode);

Are pathname and mode optional?
What happens if nullptr is passed to either of them?

17 . 3

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Humble fopen Function
1
2
3

using FilePtr = std::unique_ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const char *pathname, const char *mode);

Are pathname and mode optional?
What happens if nullptr is passed to either of them?
UB is invoked

17 . 3

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Humble fopen Function
1
2
3

using FilePtr = std::unique_ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const char *pathname, const char *mode);

Are pathname and mode optional?
What happens if nullptr is passed to either of them?
UB is invoked

Easy or Hard to use wrong (in this regard?)

17 . 3

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Only Pass Raw Pointers for
Single Optional Objects

18 . 1

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Only Pass Raw Pointers for Single Optional
Objects

1
2
3
4
5
6
7

#include <cassert>
#include <string>

void use_string(std::string * const * str) {
 assert(str != nullptr); // is str optional?
 // do things
} https://godbolt.org/z/8ed6b4rTj

18 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Only Pass Raw Pointers for Single Optional
Objects

1
2
3
4
5
6
7
8
9

#include <string>

void use_string(std::string * const * str) {
 if (str) { // is str optional?
 // do things
 } else {
 // do other things
 }
} https://godbolt.org/z/xMEdbvE59

18 . 3

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Only Pass Raw Pointers for Single Optional
Objects

If you pass a pointer, you must check it for nullptr .
1
2
3
4
5

#include <string>

void use_string(std::string const * const str) {
 puts(str->c_str()); // do not do, unsafe
} https://godbolt.org/z/4dx5oz1bz

18 . 4

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Prefer & Parameters For Non-Small, Non-
Trivial Objects

1
2
3
4
5
6
7
8
9

10

#include <string>

// non-trivial, pass by (const) reference
void use_string(const std::string &str) {
 puts(str.c_str());
}

void use_int(const int i) { // trivial and small, copy it
 // use i.
} https://godbolt.org/z/x36G1ssoc

18 . 5

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Don’t Pass Smart Pointers
Unless You Need to

Participate In The Lifetime

19 . 1

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Avoiding Passing Smart Pointers
(This is a much bigger discussion)

1
2
3
4
5
6
7
8
9

10

#include <string>
#include <memory>

// API usage is artificially limited
void use_string(const std::shared_ptr<const std::string> &str) {
 if (str) { // we don't care it's a
 // shared pointer, we're treating as a raw *!
 // use string
 }
} https://godbolt.org/z/W9E13eGxc

19 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Summary So Far

20 . 1

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Summary So Far
Use better naming
Use [[nodiscard]] (with reasons) liberally
Never return a raw pointer
Use noexcept to help indicate what kind of error handling is being used
Provide consistent, impossible to ignore error handling with in-band
reporting of what went wrong
Use stronger types
Avoid default conversions
(Sparingly) delete problematic overloads / prevent conversions

20 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Summary So Far
Use better naming
Use [[nodiscard]] (with reasons) liberally
Never return a raw pointer
Use noexcept to help indicate what kind of error handling is being used
Provide consistent, impossible to ignore error handling with in-band
reporting of what went wrong
Use stronger types
Avoid default conversions
(Sparingly) delete problematic overloads / prevent conversions
Avoid passing pointers (only to be used for single/optional objects)

20 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Summary So Far
Use better naming
Use [[nodiscard]] (with reasons) liberally
Never return a raw pointer
Use noexcept to help indicate what kind of error handling is being used
Provide consistent, impossible to ignore error handling with in-band
reporting of what went wrong
Use stronger types
Avoid default conversions
(Sparingly) delete problematic overloads / prevent conversions
Avoid passing pointers (only to be used for single/optional objects)
Avoid passing smart pointers

20 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

One Elephant Le� In This
Example

21 . 1

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Humble fopen Function

What is the possible set of inputs to mode ?

1
2
3
4

using FilePtr = std::unique_ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const std::filesystem::path &path,
 std::string_view mode); https://godbolt.org/z/rb7TvhGc9

21 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Humble fopen Function

What is the possible set of inputs to mode ?

1
2
3
4

using FilePtr = std::unique_ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const std::filesystem::path &path,
 std::string_view mode); https://godbolt.org/z/rb7TvhGc9

When parsing for individual flag characters in mode (i.e., the
characters preceding the “ccs” specification), the glibc
implementation of fopen() and freopen() limits the number of
characters examined in mode to 7 (or, in glibc versions before 2.14,
to 6, which was not enough to include possible specifications such
as "rb+cmxe"). The current implementation of fdopen() parses at
most 5 characters in mode.

21 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

We Can Always Count On
POSIX APIs For Interesting

Discussion

22 . 1

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Humble fopen Function

Easy or Hard to use wrong?

1
2
3
4

using FilePtr = std::unique_ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const std::filesystem::path &path,
 std::string_view mode); https://godbolt.org/z/rb7TvhGc9

22 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Humble fopen Function

Easy or Hard to use wrong?

1
2
3
4

using FilePtr = std::unique_ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const std::filesystem::path &path,
 std::string_view mode); https://godbolt.org/z/rb7TvhGc9

How do we fix this?

22 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Humble fopen Function

Easy or Hard to use wrong?

1
2
3
4

using FilePtr = std::unique_ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const std::filesystem::path &path,
 std::string_view mode); https://godbolt.org/z/rb7TvhGc9

How do we fix this?

Maybe it’s possible to make this some sort of compile-time type
checked set?

22 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Humble fopen Function

Easy or Hard to use wrong?

1
2
3
4

using FilePtr = std::unique_ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const std::filesystem::path &path,
 std::string_view mode); https://godbolt.org/z/rb7TvhGc9

How do we fix this?

Maybe it’s possible to make this some sort of compile-time type
checked set?
Maybe some bit flags would work?

22 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

The Humble fopen Function

Easy or Hard to use wrong?

1
2
3
4

using FilePtr = std::unique_ptr<FILE, decltype([](FILE *f) { fclose(f); })>;

[[nodiscard]] FilePtr fopen(const std::filesystem::path &path,
 std::string_view mode); https://godbolt.org/z/rb7TvhGc9

How do we fix this?

Maybe it’s possible to make this some sort of compile-time type
checked set?
Maybe some bit flags would work?
Maybe this is truly open ended and OS dependent and “stringly typed”
is the only option?

22 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Fuzz Your Interfaces

23 . 1

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Fuzz Your Interfaces
fuzzer - a tool that tests your API against a set of “random” inputs.

Should be run with something like address/undefined sanitizers
enabled
Uses your API in ways that you never would
Can be used with any API with creativity
Helps discover patterns of misuse internal to your API

23 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Final Summary

24 . 1

Copyright Jason Turner @le�icus emptycrate.com/idocpp 24 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Try to use your API incorrectly

24 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Try to use your API incorrectly
Use better naming

24 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Try to use your API incorrectly
Use better naming
Use [[nodiscard]] (with reasons) liberally

24 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Try to use your API incorrectly
Use better naming
Use [[nodiscard]] (with reasons) liberally
Never return a raw pointer

24 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Try to use your API incorrectly
Use better naming
Use [[nodiscard]] (with reasons) liberally
Never return a raw pointer
Use noexcept to help indicate the type of error handling

24 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Try to use your API incorrectly
Use better naming
Use [[nodiscard]] (with reasons) liberally
Never return a raw pointer
Use noexcept to help indicate the type of error handling
Provide consistent, impossible to ignore, in-band error handling

24 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Try to use your API incorrectly
Use better naming
Use [[nodiscard]] (with reasons) liberally
Never return a raw pointer
Use noexcept to help indicate the type of error handling
Provide consistent, impossible to ignore, in-band error handling
Use stronger types and avoid default conversions

24 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Try to use your API incorrectly
Use better naming
Use [[nodiscard]] (with reasons) liberally
Never return a raw pointer
Use noexcept to help indicate the type of error handling
Provide consistent, impossible to ignore, in-band error handling
Use stronger types and avoid default conversions
(Sparingly) delete problematic overloads / prevent conversions

24 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Try to use your API incorrectly
Use better naming
Use [[nodiscard]] (with reasons) liberally
Never return a raw pointer
Use noexcept to help indicate the type of error handling
Provide consistent, impossible to ignore, in-band error handling
Use stronger types and avoid default conversions
(Sparingly) delete problematic overloads / prevent conversions
Avoid passing pointers (only to be used for single/optional objects)

24 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Try to use your API incorrectly
Use better naming
Use [[nodiscard]] (with reasons) liberally
Never return a raw pointer
Use noexcept to help indicate the type of error handling
Provide consistent, impossible to ignore, in-band error handling
Use stronger types and avoid default conversions
(Sparingly) delete problematic overloads / prevent conversions
Avoid passing pointers (only to be used for single/optional objects)
Avoid passing smart pointers

24 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Try to use your API incorrectly
Use better naming
Use [[nodiscard]] (with reasons) liberally
Never return a raw pointer
Use noexcept to help indicate the type of error handling
Provide consistent, impossible to ignore, in-band error handling
Use stronger types and avoid default conversions
(Sparingly) delete problematic overloads / prevent conversions
Avoid passing pointers (only to be used for single/optional objects)
Avoid passing smart pointers
Limit your API as much as possible

24 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Try to use your API incorrectly
Use better naming
Use [[nodiscard]] (with reasons) liberally
Never return a raw pointer
Use noexcept to help indicate the type of error handling
Provide consistent, impossible to ignore, in-band error handling
Use stronger types and avoid default conversions
(Sparingly) delete problematic overloads / prevent conversions
Avoid passing pointers (only to be used for single/optional objects)
Avoid passing smart pointers
Limit your API as much as possible
Fuzz your API

24 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Make Your API Hard To Use
Wrong

25

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Oh, and Enable for constexpr
Unless You Have a Really

Good Reason Not To

26 . 1

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Jason Turner
Host of C++ Weekly https://www.youtube.com/c/le�icus1
Author

C++ Best Practices
OpCode, Copy and Reference, Object Lifetime Puzzlers
https://amzn.to/3xWh8Ox
https://leanpub.com/u/jason_turner

Developer
https://cppbestpractices.com
https://github.com/cpp-best-practices

Microso� MVP for C++ 2015-present

26 . 2

Copyright Jason Turner @le�icus emptycrate.com/idocpp

Jason Turner
Independent and available for training and code reviews

https://articles.emptycrate.com/idocpp

26 . 3

