
 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Johny’s Software Lab

The Performance Price of
Virtual Functions

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

About me
● Ivica Bogosavljevic - application performance specialist
● Professional focus is C/C++ application performance improvement:

○ Better algorithms
○ Better exploiting the underlying hardware
○ Better usage of the standard library
○ Better usage of programming language
○ Better usage of the operating system.

● Work as a an external expert
○ If your software is slow, I can help you make it faster

● Writer for software performance blog: Johny’s Software Lab - link in the footer
○ For all the people interested in software performance

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Introduction
● Virtual functions in C++

○ Enable flexibility
○ The basic component of OOP

● Virtual functions are slower than regular functions
● The performance price of virtual functions depends on several factors

○ Here we explain what are those factors

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

How virtual functions work?
● C++ standard doesn’t mandate implementation of virtual functions
● Most compilers, however, implement virtual functions in a similar manner

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

How virtual functions work - virtual tables

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

How virtual functions work - function calls

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Initial Analysis
● Virtual functions are more expensive than non-virtual functions

○ The virtual function’s address is not known at compile time
○ The program needs to look up the virtual function’s address at runtime
○ Virtual function’s address lookup is done through virtual table pointer

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Initial Analysis - experiment
● A vector of 20 million objects of the same type
● 20 million calls to the virtual function vs 20 million calls to the non-virtual

function

Virtual function call Non-virtual function call

Short and fast function 153 ms 126 ms

Long and slow function 32.090 ms 31.848 ms

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Initial Analysis - conclusion
● The results don’t look that bad
● There is a noticeable overhead for small function (18%).
● For the large function, the overhead is negligible
● But is this all there is to virtual functions?

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Vector of pointers
● To activate virtual function mechanism, you need to access the object through

a pointer or a reference
○ Objects need to be allocated on the heap (using new, malloc or smart pointers)

● Accessing objects on the heap can be very slow

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Vector of pointers

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Vector of pointers
● Accessing objects on the heap can be very slow

○ The reason are data cache misses
○ If objects are neighbors in memory, we can expect performance improvements
○ If objects are not neighbors in memory, we can expect slowdowns
○ If the neighboring pointers do not point to neighboring elements on the heap, we can expect

data cache misses

● There is no guarantee that the neighboring pointers will point to neighboring
objects in memory

○ As the program becomes bigger and more complex there is less and less chance that this will
happen

● Vector of objects is much better for the performance compared to vector of
pointers

○ The vector of objects doesn’t suffer from data cache misses

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Vector of pointers - experiment
● Vector of objects containing 20 million objects
● Another vector of pointers, pointer at location i points to an object at location i

○ This is the perfect ordering: neighboring pointers point to neighboring objects

● We measure the time needed to iterate through 20 million objects by following
the pointers in the vector of pointers

○ There are several iterations of the experiment
○ In each new iteration of the experiment, we shuffle the pointer vector a bit

■ Shuffling slows down the traversal a bit
■ We measure the runtime as a function of number of shuffles
■ One shuffle means swap pointer at position [0] with a pointer at position [rand(0,

vector_len)]

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Vector of pointers - results

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Vector of pointers - conclusion
● Memory layout is very important for program performance

○ Worst case is 7.5 times slower than the fastest case

● The slowdown isn’t related to virtual functions per se
○ The slowdown is related to the memory layout
○ Still, the main reason you want to use the vector of pointers to achieve polymorphism

● Alternatives to vector of pointers:
○ Use `std::variant` with `std::visitor`
○ Use polymorphic_vector - uses virtual dispatching, but doesn’t uses pointers. Downside is

increased memory consumption → google `polymorphic_vector`
○ Use per type vector (e.g. `boost::base_collection`), a very useful if you don’t need a specific

ordering in the vector

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Compiler Optimizations
● Compiler knows the address of non-virtual functions at compile time.

○ This means the compiler can inline the non-virtual function and avoid the function call

● Inlining saves a few instructions on the function call, but that is not all
● After inlining, the compiler can perform many other compiler optimizations,

e.g:
○ Move loop invariant code outside of the calling loop
○ Use special instructions that can process more than one data at a time in a process called

vectorization <- this can increase speed from 2 to 6 times.

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Compiler Optimizations - Example

double my_sqrt(double a) {

 if (debug && a < 0) {

 std::cerr << "Value " << a << "negative\n" ;

 }

 return std::sqrt(a);

}

void my_loop(int arr_len) {

 std::vector<double> in;

 std::vector<double> out;

 …

 for (int i = 0; i < out.size(); i++) {

 out[i] = my_sqrt(in [i]);

 }

}

void my_loop_inlined(int arr_len) {

 std::vector<double> in;

 std::vector<double> out;

 …

 if (debug) {

 for (int i = 0; i < out.size(); i++) {

 if (in[i] < 0) {

 std::cerr << "Value " << a <<

"negative\n" ;

 }

 out [i] = std::sqrt(in [i]);

 }

 } else {

 for (int i = 0; i < out.size(); i++) {

 out [i] = std::sqrt(in [i]);

 }

 }

}

Loop unswitching

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Compiler Optimizations - experiment
class object {

 protected:

 bool m_is_visible;

 unsigned int m_id;

 static unsigned int m_offset;

 public:

 ATTRNOINLINE

 bool is_visible() { return m_is_visible; }

 ATTRNOINLINE

 unsigned int get_id3() { return m_id + m_offset; };

};

// Test loop

for (int i = 0; i < arr_len; i++) {

 object* o = pv. get(i);

 if (o->is_visible()) {

 count += o- >get_id3();

 }

}

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Compiler Optimizations - results
● Measured the performance of

non-virtual function, inlined and
non-inlined.

// Test loop

for (int i = 0; i < arr_len; i++) {

 object* o = pv. get(i);

 if (o->is_visible()) {

 count += o- >get_id3();

 }

}

Vector 20M objects Non-inlined Inlined

Runtime 242 ms 136 ms

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Compiler Optimizations - conclusion
● Virtual functions inhibit compiler optimizations because they are essentially

not inlinable
● A solution for this is type based processing

○ Don’t mix the types, each type has its own container and its own loop
○ The compiler can inline small functions and perform the compiler optimizations
○ Already implemented in `boost::base_collection`
○ This approach is applicable if objects in the vector don’t have to be sorted

● The benefits of compiler optimization that happen due to inlining are very
case dependent

○ Some code profits a lot from compiler optimizations, other not so much
○ Smaller functions in principle benefit more

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Jump Destination Guessing
● To speed up computation, modern CPUs do a lot of guessing (technical term

is speculative execution)
● In the case of virtual function:

○ The CPU guesses which virtual function will get called
○ It starts executing the instructions belonging to the guessed virtual function

● If the guess is correct, this saves time
● If the guess is wrong, the CPU needs to cancel the effect of wrongly executed

instructions and start over
○ This costs time

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Jump Destination Guessing - experiment
● Three vector of 20 million objects

○ First vector is sorted by type: A, A, A, A, B, B, B, B, C, C, C, C, D, D, D, D
○ Types in vector in predictable fashion: A, B, C, D, A, B, C, D, A, B, C, D, A, B, C, D
○ Types in vector random: B, C, A, C, A, C, B, B, A, C, B, A.

● We measure time needed to call a small virtual function on the three types of
vectors

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Jump Destination Guessing - results

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Jump Destination Guessing - conclusion
● Types sorted in predictable manner -> the CPU can successfully predict the

address of the virtual function and this speeds up the computation
● If types are appear randomly , the CPU cannot guess successfully and

precious cycles are lost
○ A solution to this is again, type based processing
○ However, type based processing is not always usable

● The effect is mostly pronounced with short virtual functions

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Instruction Cache Evictions
● Modern CPUs rely on “getting to know” the instructions they are executing
● The code that has already been executed is hot code

○ Its instructions are in the instruction cache
○ Its branch predictors know the outcome of the branch (true/false)
○ Its jump predictors know the target of the jump

● The CPU is faster when executing hot code compared to executing cold code
● The CPU’s memory is limited

○ The code that is currently hot will eventually become cold unless executed frequently

● Virtual functions, especially large virtual functions where each object has a
different virtual function, mean that we are switching from one implementation to
another

○ The CPU is constantly switching between different implementations and is always running cold code

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Instruction Cache Evictions - experiment
● Measuring the effect of instruction cache eviction is the hardest, because it

depends on many factors
○ The number of different virtual function implementations - the bigger the number, the slower

the code
○ The number of executed instructions in the virtual functions - the bigger the number, the

slower the code
■ The size of virtual function correlates to the number of executed instructions, but they

are not the same
○ How sorted are the objects in the container (by type)

■ Best case is when they are sorted by type (AAABBBCCCDDD)
■ Worst case is when they are sorted by type in a round robin fashion (ABCDABCDABCD)

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Instruction Cache Evictions - experiment
● Four classes: rectangle, circle, line and monster
● Four implementations of long_virtual_functions
● The long_virtual_function consists of a for loop with a large if/elseif/.../else

inside it
● For measurements we use two vectors (20 million objects)

○ Elements of the vector sorted by type: AAABBBCCCDDD
○ Elements of the vector sorted by type in a round-robin fashion:ABCDABCDABCD

● We change the number of comparisons in a large if/elseif/.../else block and
compare the time needed to iterate the two vectors

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Instruction Cache Evictions - result

In the worst case,
the same function
took 7.5 seconds to
execute in the sorted
vector, and 12.3
seconds to execute
in the round-robin
vector

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Instruction Cache Eviction - conclusion
● In our example, the cold code was running at the speed of 0.6 of the speed of

the fast code
● The phenomenon is not related to the virtual functions themselves

○ E.g, it will happen if each instance has a pointer to a different function

● However, it is most likely to occur with large virtual functions on mixed-type
unsorted vectors with many different derived types

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Conclusion
● Virtual functions do not incur too much additional cost by themselves
● It is the environment where they run which determines their speed
● The hardware craves predictability: same type, same function, neighboring

virtual address
○ When this is true, the hardware run at its fastest
○ It’s difficult to achieve this with casual usage of virtual functions

● In game development, they use another paradigm instead of OOP called:
data-oriented design

○ One of its major parts is type based processing: each vector holds one type only
■ This eliminates all the problems related to virtual functions
■ However, this approach is not applicable everywhere

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Conclusion
● If you need to use virtual functions, bear in mind:

○ The number one factor that is responsible for bad performance are data cache misses
■ Avoiding vector of pointers on a hot path is a must!

○ Other factors also play their role, but to a lesser extend
○ With careful design, you can reap most benefit of virtual functions without incurring too much

additional cost

● Here are a few ideas to fix your code with virtual functions:
○ Arrangement of objects in memory is very important!
○ Try to make small functions non-virtual!

■ Most overhead of virtual functions comes from small functions, they cost more to call
than to execute

■ Try to keep objects in the vector sorted by type

 https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

The End
● Questions?
● Interested in C/C++ software performance? Subscribe:

○ Twitter: @johnysswlab
○ Linkedin: https://www.linkedin.com/company/johnysswlab/

● Your program is slow and you need help? Contact me!
○ ivica@johnysswlab.com
○ https://johnysswlab.com/consulting/

https://www.linkedin.com/company/johnysswlab/
mailto:ivica@johnysswlab.com
https://johnysswlab.com/consulting/

