=

The Hidden Performance Price
of Virtual Functions

IVICA BOGOSAVLJEVIC

The C++ Conference 2 2 September 12th-16th

About me

e |vica Bogosavljevic - application performance specialist

e Professional focus is C/C++ application performance improvement:
o Better algorithms

Better exploiting the underlying hardware

Better usage of the standard library

Better usage of programming language

Better usage of the operating system.

e \Work as a an external expert

o If your software is slow, | can help you make it faster

e \Writer for software performance blog: Johny’s Software Lab - link in the footer
o For all the people interested in software performance

O O O O

€. https://johnysswlab.com, ¥ @johnysswlab @ivica@johnysswlab.com

&
ok

e Virtual functions in C++
o Enable flexibility
o The basic component of OOP

e Virtual functions are slower than regular functions

e The performance price of virtual functions depends on several factors
o Here we explain what are those factors

Introduction

€. https://johnysswlab.com, ¥’ @johnysswlab @ ivica@johnysswlab.com

G
ok

e (C++ standard doesn’t mandate implementation of virtual functions
e Most compilers, however, implement virtual functions in a similar manner

How virtual functions work?

€. https://johnysswlab.com, Y @johnysswlab ivica@johnysswlab.com

How virtual functions work - virtual tables

VTABLES:

Objects:
array of Wind object
Instrument vptr e

&Wind:: play

/

2&wind:: what

pointers A[]

&Wind:: adjust

Percussion object
vptr e

| _—w| &Percu ssion::play

&Percussion::what

&Percussion::adjust

/
[g

Wik

Stringed object
vptr e

|| &Stringed::play

&Stringed: : what

&Stringed:: adjust

Brass object

—

vptr

&Brass::play

. https://johnysswlab.com,

@johnysswlab

&Brass: :what

&Wind:: adjust

ivica@johnysswlab.com

fas
v How virtual functions work - function calls

Instrument Brass VTABLE:
pointer Brass object__ ¥ ¢ [0]| &Brass::.play
VDt | ® [1][@Brass what

pLr & ®
o—=[2]| &wind.: adjust

i, https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

N Initial Analysis

e Virtual functions are more expensive than non-virtual functions
o The virtual function’s address is not known at compile time
o The program needs to look up the virtual function’s address at runtime
o Virtual function’s address lookup is done through virtual table pointer

€. https://johnysswlab.com, ¥’ @johnysswlab ~ivica@johnysswlab.com

N Initial Analysis - experiment

e A vector of 20 million objects of the same type

e 20 million calls to the virtual function vs 20 million calls to the non-virtual

function

Virtual function call

Non-virtual function call

Short and fast function

153 ms

126 ms

Long and slow function

32.090 ms

31.848 ms

< https://johnysswlab.com,

Y @johnysswlab

<)ivica@johnysswlab.com

&
ok

Initial Analysis - conclusion

The results don'’t look that bad

There is a noticeable overhead for small function (18%).
For the large function, the overhead is negligible

But is this all there is to virtual functions?

€. https://johnysswlab.com, Y @johnysswlab <)ivica@johnysswlab.com

Vector of pointers

e To activate virtual function mechanism, you need to access the object through

a pointer or a reference
o Objects need to be allocated on the heap (using new, malloc or smart pointers)

e Accessing objects on the heap can be very slow

€. https://johnysswlab.com, ¥’ @johnysswlab ~Jivica@johnysswlab.com

N
X

&0

Optimal layout

Vector of pointers

child_class1

child_class1

S T

std::vector<base_class*>

Non-optimal layout

child_class3

std::vector<base_class*>

child_class2

child_class2

child_class2

child_class1

child_class2

€. https://johnysswlab.com, Y @johnysswlab

ivica@johnysswlab.com

child_class3

child_class1

Y Vector of pointers

e Accessing objects on the heap can be very slow
o The reason are data cache misses

o If objects are neighbors in memory, we can expect performance improvements
o If objects are not neighbors in memory, we can expect slowdowns
O

If the neighboring pointers do not point to neighboring elements on the heap, we can expect
data cache misses

e There is no guarantee that the neighboring pointers will point to neighboring
objects in memory

o As the program becomes bigger and more complex there is less and less chance that this will
happen

e \ector of objects is much better for the performance compared to vector of

pointers
o The vector of objects doesn’t suffer from data cache misses

€. https://johnysswlab.com, ¥ @johnysswlab @ivica@johnysswlab.com

Vector of pointers - experiment

e \ector of objects containing 20 million objects
e Another vector of pointers, pointer at location / points to an object at location i

o This is the perfect ordering: neighboring pointers point to neighboring objects

e \We measure the time needed to iterate through 20 million objects by following

the pointers in the vector of pointers
o There are several iterations of the experiment
o In each new iteration of the experiment, we shuffle the pointer vector a bit
Shuffling slows down the traversal a bit
We measure the runtime as a function of number of shuffles
One shuffle means swap pointer at position [0] with a pointer at position [rand(0,
vector_len)]

€. https://johnysswlab.com, ¥ @johnysswlab @ ivica@johnysswlab.com

Vector of pointers - results

How swapping of pointers in an array influences the speed of access

Runtime virtual function

1.5K
8 (ms)
‘wg Runtime non-virtual
8 1K @ function (ms)
w
5
()
E 500
=
2
o
0

0 1K 4K 16K 64K 256K ™ 4M 16M

Number of swapped pointers

€. https://johnysswlab.com, ¥ @johnysswlab @ivica@johnysswlab.com

¥ Vector of pointers - conclusion

e Memory layout is very important for program performance
o Worst case is 7.5 times slower than the fastest case
e The slowdown isn’t related to virtual functions per se
o The slowdown is related to the memory layout
o Still, the main reason you want to use the vector of pointers to achieve polymorphism
e Alternatives to vector of pointers:
o Use ‘std::variant’ with “std::visitor’
o Use polymorphic_vector - uses virtual dispatching, but doesn’t uses pointers. Downside is

increased memory consumption — google "polymorphic_vector
o Use per type vector (e.g. "boost::base_collection’), a very useful if you don’t need a specific

ordering in the vector

€. https://johnysswlab.com, ¥’ @johnysswlab @ ivica@johnysswlab.com

Compiler Optimizations

e Compiler knows the address of non-virtual functions at compile time.

o This means the compiler can inline the non-virtual function and avoid the function call

e Inlining saves a few instructions on the function call, but that is not all
e After inlining, the compiler can perform many other compiler optimizations,

e.g:
o Move loop invariant code outside of the calling loop
o Use special instructions that can process more than one data at a time in a process called

vectorization <- this can increase speed from 2 to 6 times.

€. https://johnysswlab.com, ¥’ @johnysswlab @ ivica@johnysswlab.com

Compiler Optimizations - Example

void my loop(int arr len) { void my loop inlined(int arr len) {
std::vector<double> in; std::vector<double> in;
std::vector<double> out; std::vector<double> out;
for (int i = 0; i < out.size(); i++) { if (debug) {
out [1] = my sqrt(in [i]); for (int 1 = 0; 1 < out.size(); i++) {
} if (in[i] < 0) {
} std::cerr << "Value " << a <<
Loop unswitching "negativein® ;
}
out [1] = std::sqgrt(in [1]);

double my sqgrt (double a) {
}

} else {

if (debug && a < 0) {
std::cerr << "Value " << a << "negative\n";
for (int 1 = 0; 1 < out.size(); 1i++) {

}

return std::sqrt(a);

out [1] std::sqgrt(in [1]);

}

https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

"V Compiler Optimizations - experiment

class object {

protected: for (int i = 0; 1 < arr len; i++) |

bool m is visible; object* o = pv.get (i);

unsigned int m id; if (o->is visible ()) {

static unsigned int m offset; count += o->get_id3 ();

public:

ATTRNOINLINE I
bool is visible () { return m is visible; }

ATTRNOINLINE

unsigned int get 1d3 () { return m id + m offset; };

. https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

/\b

Compiler Optimizations - results

e Measured the performance of

. . I for (int i = 0; 1 < arr len; i++) |
non-virtual function, inlined and Sbiectt o = pyv. get (1)
non-inlined. if (o->is visible ()) |{

count += o- >get 1id3();

Vector 20M objects Non-inlined Inlined

Runtime 242 ms 136 ms

. https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

Compiler Optimizations - conclusion

e \irtual functions inhibit compiler optimizations because they are essentially

not inlinable

e A solution for this is type based processing

Don’t mix the types, each type has its own container and its own loop

The compiler can inline small functions and perform the compiler optimizations
Already implemented in "boost::base_collection’

o This approach is applicable if objects in the vector don’t have to be sorted

e The benefits of compiler optimization that happen due to inlining are very
case dependent

o Some code profits a lot from compiler optimizations, other not so much
o Smaller functions in principle benefit more

o O O

€. https://johnysswlab.com, ¥’ @johnysswlab ~ivica@johnysswlab.com

Jump Destination Guessing

e To speed up computation, modern CPUs do a lot of guessing (technical term

is speculative execution)

e |n the case of virtual function:

o The CPU guesses which virtual function will get called
o It starts executing the instructions belonging to the guessed virtual function

e |[f the guess is correct, this saves time
e |[f the guess is wrong, the CPU needs to cancel the effect of wrongly executed

instructions and start over
o This costs time

€. https://johnysswlab.com, ¥’ @johnysswlab ~ivica@johnysswlab.com

Jump Destination Guessing - experiment

e Three vector of 20 million objects
o First vector is sorted by type: A,A,A,A,B,B,B,B,C,C,C,C,D,D,D,D
o Types in vector in predictable fashion: A, B, C, D, A, B, C,D,A,B,C,D,A,B,C,D
o Types in vector random: B, C,A, C,A,C,B,B, A, C, B,A.

e \Ve measure time needed to call a small virtual function on the three types of
vectors

€. https://johnysswlab.com, Y @johnysswlab ivica@johnysswlab.com

U
"&%E Jump Destination Guessing - results
Performance of virtual functions depending on the sorting type

500
400
300

200

Runtime (ms)

100

Sorted by type Sorted in a round-robin fashion Unsorted

€ https://johnysswlab.com, ¥ @johnysswlab ivica@johnysswlab.com

<

Jump Destination Guessing - conclusion

e Types sorted in predictable manner -> the CPU can successfully predict the
address of the virtual function and this speeds up the computation
e If types are appear randomly , the CPU cannot guess successfully and

precious cycles are lost

o Asolution to this is again, type based processing
o However, type based processing is not always usable

e The effect is mostly pronounced with short virtual functions

€. https://johnysswlab.com, Y @johnysswlab ~<)ivica@johnysswlab.com

Instruction Cache Evictions

Modern CPUs rely on “getting to know” the instructions they are executing

The code that has already been executed is hot code

o lts instructions are in the instruction cache
o lIts branch predictors know the outcome of the branch (true/false)
o Its jump predictors know the target of the jump

The CPU is faster when executing hot code compared to executing cold code

The CPU’s memory is limited
o The code that is currently hot will eventually become cold unless executed frequently

Virtual functions, especially large virtual functions where each object has a
different virtual function, mean that we are switching from one implementation to

another
o The CPU is constantly switching between different implementations and is always running cold code

€. https://johnysswlab.com, ¥ @johnysswlab @rivica@johnysswlab.com

Y0 Instruction Cache Evictions - experiment

e Measuring the effect of instruction cache eviction is the hardest, because it

depends on many factors
o The number of different virtual function implementations - the bigger the number, the slower
the code
o The number of executed instructions in the virtual functions - the bigger the number, the
slower the code
m The size of virtual function correlates to the number of executed instructions, but they
are not the same
o How sorted are the objects in the container (by type)
m Best case is when they are sorted by type (AAABBBCCCDDD)
m Worst case is when they are sorted by type in a round robin fashion (ABCDABCDABCD)

€. https://johnysswlab.com, ¥’ @johnysswlab ~Jivica@johnysswlab.com

Instruction Cache Evictions - experiment

Four classes: rectangle, circle, line and monster

Four implementations of long _virtual functions

The long virtual function consists of a for loop with a large if/elseif/.../else
inside it

For measurements we use two vectors (20 million objects)

o Elements of the vector sorted by type: AAABBBCCCDDD
o Elements of the vector sorted by type in a round-robin fashion:ABCDABCDABCD

We change the number of comparisons in a large if/elseif/.../else block and
compare the time needed to iterate the two vectors

€. https://johnysswlab.com, ¥’ @johnysswlab ~Jivica@johnysswlab.com

"0 Instruction Cache Evictions - result

Relative performance difference between the sorted and round-robin vector
In the worst case,

= .
5 the same function
o ™ took 7.5 seconds to
e . e 1 execute in the sorted
$E " vector, and 12.3
S 5 g
32 \ seconds to execute
52 o8 N\ in the round-robin
2 £ —
53 \ vector
&o 07 N
2 . e
5 N i)
7] / \‘-_,_‘,—'-’f
_. -
E 06 s
’g‘ 0 20 40 60 80 100

Number of if clauses in the function

. https://johnysswlab.com, @johnysswlab ivica@johnysswlab.com

1“1 Instruction Cache Eviction - conclusion

e In our example, the cold code was running at the speed of 0.6 of the speed of

the fast code

e The phenomenon is not related to the virtual functions themselves
o E.qg, it will happen if each instance has a pointer to a different function

e However, it is most likely to occur with large virtual functions on mixed-type
unsorted vectors with many different derived types

€. https://johnysswlab.com, Y @johnysswlab ~<)ivica@johnysswlab.com

" Conclusion

e Virtual functions do not incur too much additional cost by themselves
e It is the environment where they run which determines their speed
e The hardware craves predictability: same type, same function, neighboring

virtual address

o When this is true, the hardware run at its fastest
o It's difficult to achieve this with casual usage of virtual functions

e In game development, they use another paradigm instead of OOP called:

data-oriented design

o One of its major parts is type based processing: each vector holds one type only
m This eliminates all the problems related to virtual functions
m However, this approach is not applicable everywhere

€. https://johnysswlab.com, ¥ @johnysswlab @ivica@johnysswlab.com

Conclusion

e If you need to use virtual functions, bear in mind:

o The number one factor that is responsible for bad performance are data cache misses
m Avoiding vector of pointers on a hot path is a must!
o Other factors also play their role, but to a lesser extend
o With careful design, you can reap most benefit of virtual functions without incurring too much
additional cost

e Here are a few ideas to fix your code with virtual functions:

o Arrangement of objects in memory is very important!
o Try to make small functions non-virtual!
m Most overhead of virtual functions comes from small functions, they cost more to call
than to execute
m [ry to keep objects in the vector sorted by type

€. https://johnysswlab.com, ¥ @johnysswlab @ivica@johnysswlab.com

('5' The End

M

e Questions?

e Interested in C/C++ software performance? Subscribe:
o Twitter: @johnysswlab
o Linkedin: https://www.linkedin.com/company/johnysswlab/

e Your program is slow and you need help? Contact me!

o ivica@johnysswlab.com
o https://johnysswlab.com/consulting/

€. https://johnysswlab.com, ¥ @johnysswlab @ivica@johnysswlab.com

https://www.linkedin.com/company/johnysswlab/
mailto:ivica@johnysswlab.com
https://johnysswlab.com/consulting/

