Back To Basics
RAII

ANDRE KOSTUR

The C++ Conference 2 2 September 12th-16th

Agenda

What is a “Resource”

What issues do we have handling Resources
RAIl to manage resources

Examples in the Standard

Implementing a RAIl class

Copyright © 2022 Andre Kostur <andre@kostur.net>

Resources

A resource in C++ is some facility or concept that you gain access to by a
statement or expression, and you release or dispose of that facility or concept
by some other statement or expression.

Copyright © 2022 Andre Kostur <andre@kostur.net>

Common Resources

Resource Acquire Dispose
Memory p = new T; delete p;
POSIX File fp = fopen(“filename”, fclose (fp) ;
\\r//) ;
Joinable threads | pthread create(&p, NULL, pthread join (p,
fn, NULL) ; &retvVal) ;
Mutex locking pthread mutex lock (&mut); pthread mutex unlock(

&mut) ;

Copyright © 2022 Andre Kostur <andre@kostur.net>

Resource Usage [ssues

o Leak
e Use-after-disposal
e Double-disposal

We'll use a mutex as the example resource.

Copyright © 2022 Andre Kostur <andre@kostur.net>

Sample Function

bool fn(std::mutex & someMutex, SomeDataSource & src) {

someMutex.lock() ;
BufferClass buffer;
src.readIntoBuffer (buffer);
buffer.display();

return true;

Copyright © 2022 Andre Kostur <andre@kostur.net>

Sample Function

bool fn(std::mutex & someMutex, SomeDataSource & src) {
someMutex. lock () ; // Acquire a lock on the mutex
BufferClass buffer;
src.readIntoBuffer (buffer);
buffer.display();

return true;

Copyright © 2022 Andre Kostur <andre@kostur.net>

Sample Function

bool fn(std::mutex & someMutex, SomeDataSource & src) {
someMutex.lock () ;
BufferClass buffer;
src.readIntoBuffer (buffer);

buffer.display();
return true; // We didn’t unlock the mutex!

Copyright © 2022 Andre Kostur <andre@kostur.net>

Sample Function

bool fn(std::mutex & someMutex, SomeDataSource & src) {
someMutex.lock () ;
BufferClass buffer;
src.readIntoBuffer (buffer);
buffer.display();
someMutex.unlock () ; // Unlock the mutex

return true;

}

Fixed. Now the mutex is correctly unlocked. But, we're not done.

Copyright © 2022 Andre Kostur <andre@kostur.net>

Sample Function

bool fn(std::mutex & someMutex, SomeDataSource & src)
someMutex.lock() ;
BufferClass buffer;
if (not src.readIntoBuffer (buffer)) {
return false;
}
buffer.display();
someMutex.unlock () ;

return true;

Copyright © 2022 Andre Kostur <andre@kostur.net>

{

10

Sample Function

bool fn(std::mutex & someMutex, SomeDataSource & src)

someMutex.lock() ;

BufferClass buffer;

if (not src.readIntoBuffer (buffer)) {
someMutex.unlock () ;
return false;

}

buffer.display();

someMutex.unlock () ;

return true;

Copyright © 2022 Andre Kostur <andre@kostur.net>

{

11

Sample Function

bool fn(std::mutex & someMutex, SomeDataSource & src) {

someMutex. lock () ;

BufferClass buffer;

if (not src.readIntoBuffer (buffer)) { // Throws an exception!
someMutex.unlock () ;
return false;

}

buffer.display();

someMutex.unlock () ;

return true;

Copyright © 2022 Andre Kostur <andre@kostur.net>

12

Sample Function

bool fn(std::mutex & someMutex, SomeDataSource & src) {

someMutex.lock () ;
try {
BufferClass buffer;
if (not src.readIntoBuffer (buffer))
someMutex.unlock () ;
return false;

}
buffer.display () ;

{ // Throws an exception!

} catch (...) { someMutex.unlock(); throw; }

someMutex.unlock () ;

return true;

} Copyright © 2022 Andre Kostur <andre@kostur.net>

13

(+ Object Lifetimes

Objects have a defined beginning of life, and end of life. Both of those events
have code which will automatically run: namely, constructors and destructors.

Copyright © 2022 Andre Kostur <andre@kostur.net>

14

RAI

Resource Acquisition Is Initialization

In the purest sense of the term, this is the idiom where resource acquisition is
done in the constructor of an “RAll class”, and resource disposal is done in the
destructor of an “RAIl class”.

Copyright © 2022 Andre Kostur <andre@kostur.net>

15

Ownership

An RAIl class is said to “own” the resource. Itis responsible for cleaning up
that resource at the appropriate time.

Copyright © 2022 Andre Kostur <andre@kostur.net>

16

RAIl Example: std::lock_guard

std::lock guard isthe standard RAIll class to lock a single mutex during its
construction, and unlock it during destruction.

Copyright © 2022 Andre Kostur <andre@kostur.net>

17

Sample Function

bool fn(std::mutex & someMutex, SomeDataSource & src)
someMutex.lock () ;

try {
BufferClass buffer;
if (not src.readIntoBuffer (buffer)) {

someMutex.unlock () ;
return false;
}
buffer.display() ;
} catch (...) { someMutex.unlock(); throw; }
someMutex.unlock () ;

return true;

} Copyright © 2022 Andre Kostur <andre@kostur.net>

{

18

Sample Function

bool fn(std::mutex & someMutex, SomeDataSource & src)

std::lock guard lock{someMutex}; // Acquire
try {

BufferClass buffer;

if (not src.readIntoBuffer (buffer)) {

someMutex.unlock () ;
return false;
}
buffer.display() ;
} catch (...) { someMutex.unlock(); throw; }
someMutex.unlock () ;

return true;

} Copyright © 2022 Andre Kostur <andre@kostur.net>

19

Sample Function

bool fn(std::mutex & someMutex, SomeDataSource & src)
std::lock guard lock{someMutex};

try {
BufferClass buffer;
if (not src.readIntoBuffer (buffer)) {

someMutex.unlock(); // No longer necessary
return false;
}
buffer.display() ;
} catch (...) { someMutex.unlock(); throw; }
someMutex.unlock () ;

return true;

} Copyright © 2022 Andre Kostur <andre@kostur.net>

{

20

Sample Function

bool fn(std::mutex & someMutex, SomeDataSource & src)

std::lock guard lock{someMutex};

try {
BufferClass buffer;
if (not src.readIntoBuffer (buffer)) {

return false;
}
buffer.display();
} catch (...) { someMutex.unlock(); throw; }
someMutex.unlock () ;

return true;

Copyright © 2022 Andre Kostur <andre@kostur.net>

{

21

Sample Function

bool fn(std::mutex & someMutex, SomeDataSource & src)

std::lock guard lock{someMutex};

try {
BufferClass buffer;
if (not src.readIntoBuffer (buffer)) {

return false;

}
buffer.display () ;

} catch (...) { throw; }
someMutex.unlock () ;

return true;

Copyright © 2022 Andre Kostur <andre@kostur.net>

{

22

Sample Function

bool fn(std::mutex & someMutex, SomeDataSource & src)
std::lock guard lock{someMutex};

try {
BufferClass buffer;
if (not src.readIntoBuffer (buffer)) {

return false;

}
buffer.display () ;

} catch (...) { throw; }

return true;

Copyright © 2022 Andre Kostur <andre@kostur.net>

{

23

Final Sample Function

bool fn(std::mutex & someMutex, SomeDataSource & src)
std::lock guard lock{someMutex};

BufferClass buffer;
if (not src.readIntoBuffer (buffer)) {

return false;

}
buffer.display () ;

return true;

Copyright © 2022 Andre Kostur <andre@kostur.net>

{

24

Storage durations

So far we've only talked about automatic storage duration variables.

RAIl works with any of the C++ object lifetimes.

volid SomeClass::fn () {
auto worker{std::jthread{[]{ /* do something */ }}};
m vec.push back(std::move (worker));

Copyright © 2022 Andre Kostur <andre@kostur.net>

25

RAIl Example: std::unique_ptr

std: :unique ptr isthe standard RAIll class to hold a pointer, and dispose of
it during destruction. By default, this corresponds to new and delete.

Copyright © 2022 Andre Kostur <andre@kostur.net>

26

RAIl Example: std::shared _ptr

The managed resource doesn’t even have to be a simple acquire/dispose pair.

std: :shared ptr represents a reference-counted shared pointer.

Copyright © 2022 Andre Kostur <andre@kostur.net>

27

Other Standard RAII classes

Some other Standard RAIl classes:

e std::unique lock:a more sophisticated std: :lock guard, butyou
can unlock and relock it during its lifespan, and other more sophisticated
things

e std::jthread: manages a joinable thread, and will automatically join to
the thread during destruction

e std::fstream:opensand closes the files

Copyright © 2022 Andre Kostur <andre@kostur.net>

28

Reclaim Responsibility

RAII classes may provide ways to get direct access to the enclosed resource.

RAII classes may even provide ways to break the resource out of the RAIl class
altogether.

Copyright © 2022 Andre Kostur <andre@kostur.net>

29

Solves the problems?

e Leaks?

o Yes. Automatic storage durations, can't forget to dispose
e Use-after-disposal?

o Yes. Local variable has gone out of scope

e Double-disposal?
o Yes. Local variables don’t go out of scope twice.

Copyright © 2022 Andre Kostur <andre@kostur.net>

30

Nat a Panacea

There are other failure modes that RAIl is not intended to solve:

e Resource loops
e Deadlocks

Copyright © 2022 Andre Kostur <andre@kostur.net>

i1

Implementing a RAIl class

If the resource that you are trying to wrap is represented as a pointer already,
then you do not have to implement your own RAIl class. std: :unique ptris
likely already able to manage the pointer for you.

Copyright © 2022 Andre Kostur <andre@kostur.net>

32

Custom Disposal method

Let's assume that we want to manage a normal FILE.

FILE * fopen(const char * filename, const char * mode);
int fclose (FILE * stream);

Copyright © 2022 Andre Kostur <andre@kostur.net>

33

FILE unique_ptr

Now I'm going to present a little boilerplate to make using this a little easier.
First, a functor which will be used to dispose of the FILE handle:

struct file closer ({
voilid operator () (FILE * stream) const { fclose(stream); }

b
Then, a using declaration to make my new RAll type:

using cfile = std::unique ptr<FILE, file closer>;

Copyright © 2022 Andre Kostur <andre@kostur.net> 34

FILE unique_ptr (C+20)

Or: in C++20 you can more simply do:

using cfile

std::unique ptr<FILE,
decltype ([] (FILE * fp){ fclose(fp):

Copyright © 2022 Andre Kostur <andre@kostur.net>

1) >

35

Acquiring a file_handle

It would probably be nice if we wrote a factory function to help with opening
files:

auto make cfile(char const * filename, char const * mode) {
FILE * stream{fopen(filename, mode) };
1f (not stream) {

throw std::runtime exception{ “Failed to open file” };
}

return cfile{stream};

Copyright © 2022 Andre Kostur <andre@kostur.net>

36

Using the file_handle

Now we can put this all together:

volid fn () {

auto file{make file(“filename.txt”, “w”)};

fprintf (file.get (), "“Data for the file”);

Copyright © 2022 Andre Kostur <andre@kostur.net>

37

Shared resource handle

std: :shared ptr has a similar custom disposal method mechanism. The
same techniques we just talked about applies here, with the added feature
that you have a reference-counted resource.

Copyright © 2022 Andre Kostur <andre@kostur.net>

38

Writing your own RAII class

When writing your own RAll class, there are some design questions that you
will need to ask

Copyright © 2022 Andre Kostur <andre@kostur.net>

39

|s there a valid default acquisition?

e Provide a default constructor to set that up.

e Does not preclude an empty state as well.

e Destructor may need to understand that the resource was released
“early”

Copyright © 2022 Andre Kostur <andre@kostur.net>

40

|s there a valid “empty” state/

e Example:nullptr for std::unique ptr

e Perhaps provide a default constructor to set that up instead of (perhaps)
a default acquisition

e Ensure that your destructor will do the right thing for an empty resource

Copyright © 2022 Andre Kostur <andre@kostur.net>

4]

|s adopting a resource allowed?

e Provide a single parameter constructor (probably explicit) to set that up.

e Does not preclude an empty state as well.

e Destructor may need to understand that the resource was released
“early”

Copyright © 2022 Andre Kostur <andre@kostur.net>

42

Copyable?

e Ifnot,= delete your copy constructor, and your copy assignment
operator
e For example, std: :shared ptriscopyable, std: :unique ptr is not.

Copyright © 2022 Andre Kostur <andre@kostur.net>

43

Movahle?

e Ifnot, = delete your move constructor, and your move assignment
Operator

e Both std::shared ptr and std::unique ptr are movable.
std: :scoped lockis not.

Copyright © 2022 Andre Kostur <andre@kostur.net>

44

Access underlying representation?

e Providea .get () or .native handle () method to get the raw
representation
e std::jthreadhasone, std: :scoped lock does not

Copyright © 2022 Andre Kostur <andre@kostur.net>

43

Hide the underlying representation?

Provide public member functions to expose the functionality desired

without exposing the representation
You may still want to allow access to the underlying representation for

cases you haven’'t considered

Copyright © 2022 Andre Kostur <andre@kostur.net>

46

Dependent Resources

e Provide acquisition functions which returns another RAIl class instance to
manage that dependent resource

Copyright © 2022 Andre Kostur <andre@kostur.net>

47

Release the resource?

e Providea .release () method to get the raw representation and release
control
e Markthe .release () method as [[nodiscard]]

Copyright © 2022 Andre Kostur <andre@kostur.net>

48

Example RAII class

template <class Mutex>
class unique unlock {

public:
explicit unique unlock(std::unique lock<Mutex> & p lock)

lock(p lock) { lock.unlock(); }
// Delete the copy and move constructors and assignment
// operators
~unique unlock () { lock.lock(); }

private:
std::unique lock<Mutex> & lock;

s

Copyright © 2022 Andre Kostur <andre@kostur.net>

49

Example RAII class usage

std: :mutex mut;

volid fn () {
std::unique lock ul{mut};
// Do some work protected by the mutex

{

unique unlock unl{ul};
// Do some work not protected by the mutex

}

// Do some more work protected by the mutex again

Copyright © 2022 Andre Kostur <andre@kostur.net>

30

Core Guidelines on Scope

Since RAIl and object lifetime is so intimately intertwined, some Core
Guidelines that apply:

R: Resource management

ES.5: Keep scopes small

ES.20: Always initialize an object

ES.21: Don't introduce a variable (or constant) before you need to use it

ES.22: Don't declare a variable until you have a value to initialize it with

Copyright © 2022 Andre Kostur <andre@kostur.net>

11

QUA

RAIl: Resource Acquisition Is Initialization

Acquire the resource during construction, or take possession of a resource.

Dispose of the resource during destruction.

Andre Kostur
andre@kostur.net
@AndreKostur

Copyright © 2022 Andre Kostur <andre@kostur.net>

pl4

mailto:andre@kostur.net

