
1

Cross-Building Strategies in the
Age of C++ Package Managers

Luis Caro Campos

ARM ubiquity

● Porting apps and libraries to run on ARM-based systems is very popular these
days

Smartphones NVIDIA Jetson, Raspberry Pi Apple Silicon Windows/ARM64

3

ARM ubiquity

● Porting apps and libraries to run on ARM-based systems is very popular these
days

Smartphones NVIDIA Jetson, Raspberry Pi Apple Silicon Windows/ARM64

● But most development still happens on x86_64 machines

4

Starting point

├── MyProject

│ └── src

│ ├── source.cpp

│ ├── CMakeLists.txt

MyProject

Project already builds for:
● Linux x86_64
● Windows x86_64
● macOS x86_64

5

Starting point

├── MyProject

│ └── src

│ ├── source.cpp

│ ├── CMakeLists.txt

MyProject

Project already builds for:
● Linux x86_64
● Windows x86_64
● macOS x86_64

Want to target:
● Linux 64-bit ARMv8

(AArch64)

Dependencies

6

How do we approach this?

● If we have the option, we can build natively on the target device
○ E.g. Raspberry Pi 4 + Ubuntu 22.04

├── MyProject

│ └── src

│ ├── source.cpp

│ ├── CMakeLists.txt

MyProject

Dependencies

Native toolchain Built artifacts

+

7

How do we approach this? (cont’d)

● Another possibility is cross building

├── MyProject

│ └── src

│ ├── source.cpp

│ ├── CMakeLists.txt

MyProject

+

Dependencies

Native toolchain Built artifacts

Cross build toolchain Built artifacts

e.g, on Linux/AArch64

e.g. on Linux/x86_64

AArch64 binaries

AArch64 binaries

8

How do we approach this? (cont’d)

● Another possibility is cross building

├── MyProject

│ └── src

│ ├── source.cpp

│ ├── CMakeLists.txt

MyProject

+

Dependencies

Native toolchain Built artifacts

Cross build toolchain Built artifacts

e.g, on Linux/AArch64

e.g. on Linux/x86_64

AArch64 binaries

AArch64 binaries

Should be exactly the
same!

9

Why cross build?

No native toolchain

Compile times

IDE

● On some devices, a native toolchain is not provided,
e.g.: mobile devices, or some embedded devices without
a compiler or terminal access

● On low-power devices compile times can be significantly
slower than on a typical desktop-grade machine

● Some vendors provide specialised software to develop
on, which may require us to port our existing project’s
build system to a new tool. If we can invoke the tools in
the toolchain directly, we may choose to retain our
existing build system. 10

Why cross build?

Hardware availability

Continuous integration

● We may want to get a head-start on porting our
application to a new platform

● Supply-chain constraints: we may have to wait for months
for a device

● We may already have a project fully ported - and would
like to test that building works on CI and generate
binaries for the target platform

● Configuring a target device as a build agent could be
challenging (or too slow)

11

Cross-building challenges

● For the simplest cases, most build systems will accept a different compiler
and “just work” - being completely agnostic to the platform the compiler is
targetting

12

Cross-building challenges

● For the simplest cases, most build systems will accept a different compiler
and “just work” - being completely agnostic to the platform the compiler is
targetting

● In other cases…

13

Cross-building challenges (cont’d)

14

Cross-building challenges (cont’d)

15

Dependencies
ISO C++ Developer Survey 2022 - “Developer frustrations”

16

Getting started

├── MyProject

│ └── src

│ ├── source.cpp

│ ├── CMakeLists.txt

MyProject

Dependencies

17

Getting started

├── MyProject

│ └── src

│ ├── source.cpp

│ ├── CMakeLists.txt

MyProject

Dependencies

Cross-build toolchain

● Compiler
● Linker, assembler, …
● C Library
● …

18

Cross-building terminology

GNU convention:

● Build - The machine we are building on
● Host - The machine we are building for
● Target - In the context of building a compiler, the machine that compiler

produces code for - (not the topic of this talk)

19

Cross-building terminology

GNU convention:

● Build - The machine we are building on
● Host - The machine we are building for
● Target - In the context of building a compiler, the machine that compiler produces

code for - (not the topic of this talk)

Different tools use different conventions:

● Conan: same as GNU convention (build and host)
● vcpkg:

○ “Host” - the machine we are building on
○ “Target” - the machine we are building for

● CMake:
○ `CMAKE_HOST_XXX`: variables relevant to the machine CMake is running on.

20

Cross-building terminology

GNU convention:

● Build - The machine we are building on
● Host - The machine we are building for
● Target - In the context of building a compiler, the machine that compiler produces

code for - (not the topic of this talk)

Different tools use different conventions:

● Conan: same as GNU convention (build and host)
● Vcpkg:

○ “Host” - the machine we are building on
○ “Target” - the machine we are building for

● CMake:
○ `CMAKE_HOST_XXX`: variables relevant to the machine CMake is running on.

Different
meaning!

21

Our goal
We may already be using a C++ package manager to handle our dependencies:

conan install ..
cmake .. -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake

cmake -B build -S .
-DCMAKE_TOOLCHAIN_FILE=~/vcpkg/scripts/buildsystems/vcpkg.cmakevcpkg

22

Our goal
We may already be using a C++ package manager to handle our dependencies:

conan install ..
cmake .. -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake

conan install .. --profile:host linux-aarch64 --profile:build default
cmake .. -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake

cmake -B build -S .
-DCMAKE_TOOLCHAIN_FILE=~/vcpkg/scripts/buildsystems/vcpkg.cmakevcpkg

vcpkg
cmake -B build -S .
-DCMAKE_TOOLCHAIN_FILE=~/vcpkg/scripts/buildsystems/vcpkg.cmake \
-DVCPKG_TARGET_TRIPLET=arm64-linux
-DVCPKG_TARGET_TRIPLET=arm64-linux-DVCPKG_TARGET_TRIPLET=arm64-linux 23

Building dependencies: the compiler

We need to tell the build systems to use the compiler in our toolchain.

● Agnostic build systems (simplest case) - only need to know which compiler to
use, e.g.

○ GCC on Linux
■ CC=aarch64-linux-gnu-gcc
■ CXX=aarch64-linux-gnu-g++

○ Apple’s clang is already a full-fledged cross-compiler:
■ -arch arm64
■ -arch x86_64

○ On Windows with MSVC:
■ vcvarsall.bat x64_arm64 (Command line)
■ cmake -G "Visual Studio 16 2019" -A ARM64

24

Building dependencies: the compiler (cont’d)

● Very common case - the build system needs to be aware that we are in a
cross-building scenario:

○ GNU Build system (Autotools) need to be passed the “triplets” during the configure stage
■ --build: x86_64-pc-linux-gnu
■ --host: aarch64-pc-linux-gnu

○ CMake:
■ CMAKE_SYSTEM_NAME is set manually
■ CMAKE_SYSTEM_PROCESSOR (optionally set)

● In these cases the build system may perform tasks differently when it is aware
that is cross-building

25

Strategy: Leverage the package manager to specify the compiler

● Both Conan and vcpkg allow passing custom options to underlying build
systems (CMake, Makefiles, Meson, …)

○ Conan: Custom configuration inside Profiles
○ vcpkg: special variables in custom triplet files

[settings]
arch=armv8
build_type=Release
compiler=apple-clang
compiler.cppstd=17
compiler.libcxx=libc++
compiler.version=13
os=Macos

Conan Build profile:
macos-arm-native

26

Strategy: Leverage the package manager to specify the compiler

● Both Conan and vcpkg allow passing custom options to underlying build
systems (CMake, Makefiles, Meson, …)

○ Conan: Custom configuration inside Profiles
○ vcpkg: special variables in custom triplet files

[settings]
arch=armv8
build_type=Release
compiler=apple-clang
compiler.cppstd=17
compiler.libcxx=libc++
compiler.version=13
os=Macos

[settings]
arch=x86_64
build_type=Release
compiler=apple-clang
compiler.cppstd=17
compiler.libcxx=libc++
compiler.version=13
os=Macos

[conf]
tools.cmake.cmaketoolchain:system_name="Darwin"
tools.cmake.cmaketoolchain:system_processor="x86_64"

tools.build:cflags=["-arch x86_64"]
tools.build:cflags=["-arch x86_64"]
tools.build:sharedlinkflags=["-arch x86_64"]
tools.build:exelinkflags=["-arch x86_64"]

tools.apple:sdk_path=/path/to/MacOSX.sdkConan Build profile:
macos-arm-native Conan Host profile: macos-x86_64-cross 27

Building ZLIB, macOS example
conan create . --version=1.2.12 --profile:host=macos-arm-native --profile:build=macos-arm-native -o "zlib*:shared=True"

Native build

28

Building ZLIB, macOS example
conan create . --version=1.2.12 --profile:host=macos-arm-native --profile:build=macos-arm-native -o "zlib*:shared=True"

conan create . --version=1.2.12 --profile:host=macos-x86_64-cross --profile:build=macos-arm-native -o "zlib*:shared=True"

Cross build

29

(venv-conan2) % conan list packages zlib/1.2.12#latest
Local Cache:
 zlib/1.2.12#b76db676bd992afa93dd18a675323942:24612164eb0760405fcd237df0102e554ed1cb2f
 settings:
 arch=x86_64
 build_type=Release
 compiler=apple-clang
 compiler.version=13
 os=Macos
 options:
 shared=True
 zlib/1.2.12#b76db676bd992afa93dd18a675323942:a3c9d80d887539fac38b81ff8cd4585fe42027e0
 settings:
 arch=armv8
 build_type=Release
 compiler=apple-clang
 compiler.version=13
 os=Macos
 options:
 shared=True

Building ZLIB, macOS example
conan create . --version=1.2.12 --profile:host=macos-arm-native --profile:build=macos-arm-native -o "zlib*:shared=True"

conan create . --version=1.2.12 --profile:host=macos-x86_64-cross --profile:build=macos-arm-native -o "zlib*:shared=True"

30

(venv-conan2) % conan list packages zlib/1.2.12#latest
Local Cache:
 zlib/1.2.12#b76db676bd992afa93dd18a675323942:24612164eb0760405fcd237df0102e554ed1cb2f
 settings:
 arch=x86_64
 build_type=Release
 compiler=apple-clang
 compiler.version=13
 os=Macos
 options:
 shared=True
 zlib/1.2.12#b76db676bd992afa93dd18a675323942:a3c9d80d887539fac38b81ff8cd4585fe42027e0
 settings:
 arch=armv8
 build_type=Release
 compiler=apple-clang
 compiler.version=13
 os=Macos
 options:
 shared=True

Building ZLIB, macOS example
conan create . --version=1.2.12 --profile:host=macos-arm-native --profile:build=macos-arm-native -o "zlib*:shared=True"

conan create . --version=1.2.12 --profile:host=macos-x86_64-cross --profile:build=macos-arm-native -o "zlib*:shared=True"

% lipo -detailed_info libz.dylib
input file libz.dylib is not a fat file
Non-fat file: libz.dylib is architecture:
arm64

% lipo -detailed_info libz.dylib
input file libz.dylib is not a fat file
Non-fat file: libz.dylib is architecture:
x86_64

31

Strategy 2: Package your compiler toolchain up
● There are cases where we are given a pre-existing compiler toolchain.

For example Linux:

[settings]
arch=x86_64
build_type=Release
compiler=gcc
compiler.cppstd=gnu17
compiler.libcxx=libstdc++11
compiler.version=11
os=Linux

Conan Build profile:
linux-x86_64-native

32

Strategy 2: Package your compiler toolchain up
● There are cases where we are given a pre-existing compiler toolchain.

For example Linux:

[settings]
arch=x86_64
build_type=Release
compiler=gcc
compiler.cppstd=gnu17
compiler.libcxx=libstdc++11
compiler.version=11
os=Linux

Conan Build profile:
linux-x86_64-native

[settings]
arch=armv8
build_type=Release
compiler=gcc
compiler.cppstd=gnu17
compiler.libcxx=libstdc++11
compiler.version=10
os=Linux

[tool_requires]
gcc-rpi4-aarch64/10.3

Conan Host profile:
linux-aarch64-cross

33

Strategy: Package your compiler toolchain up (cont’d)

● The package defines the
variables understood by
different build systems

● It will contain a pre-existing
binary package

 def package_info(self):

 self.buildenv_info.append_path("PATH", os.path.join(self.package_folder, "bin"))

 vars = {

 "CC": "aarch64-linux-gnu-gcc",

 "CXX": "aarch64-linux-gnu-g++",

 "LD": "aarch64-linux-gnu-ld",

 "AS": "aarch64-linux-gnu-as",

 "AR": "aarch64-linux-gnu-ar",

 "RANLIB": "aarch64-linux-gnu-ranlib"

 }

 for env_var, value in vars.items():

 app_path = os.path.join(self.package_folder, "bin", f"{value}")

 self.buildenv_info.define(env_var, app_path)

 # Cause the variables needed to be consumed by the CMakeToolchain generator downstream

 self.conf_info.define("tools.cmake.cmaketoolchain:system_name", "Linux")

 self.conf_info.define("tools.cmake.cmaketoolchain:system_processor", "aarch64")

34

Library-only packages

libz.so

[settings]
arch=armv8
build_type=Release
compiler=gcc
compiler.cppstd=gnu17
compiler.libcxx=libstdc++11
compiler.version=10
os=Linux

[tool_requires]
gcc-rpi4-aarch64/10.3

zlib:
conanfile.py cross-build

linux-aarch64-cross

x86_64
workstation

35

Library-only packages

libz.so

[settings]
arch=armv8
build_type=Release
compiler=gcc
compiler.cppstd=gnu17
compiler.libcxx=libstdc++11
compiler.version=10
os=Linux

[tool_requires]
gcc-rpi4-aarch64/10.3

zlib:
conanfile.py cross-build

[settings]
arch=armv8
build_type=Release
compiler=gcc
compiler.libcxx=libstdc++11
compiler.version=10
os=Linux

zlib:
conanfile.py

linux-aarch64-cross

linux-aarch64-native

Native build

x86_64
workstation

Raspberry Pi 4

36

Library-only packages

libz.so

[settings]
arch=armv8
build_type=Release
compiler=gcc
compiler.cppstd=gnu17
compiler.libcxx=libstdc++11
compiler.version=10
os=Linux

[tool_requires]
gcc-rpi4-aarch64/10.3

zlib:
conanfile.py cross-build

[settings]
arch=armv8
build_type=Release
compiler=gcc
compiler.libcxx=libstdc++11
compiler.version=10
os=Linux

zlib:
conanfile.py

linux-aarch64-cross

linux-aarch64-native

Native build

x86_64
workstation

Raspberry Pi 4 What was the “build” profile
for?

37

Executable dependencies

├── MyProject

│ └── src

│ ├── source.cpp

│ ├── CMakeLists.txt

MyProject

LIB

EXE

LIB

LIB

LIB

Dependencies

● Some of the dependencies required
during the build process are
executables

● These must be able to run on the
machine performing the build

38

Executable dependencies

├── MyProject

│ └── src

│ ├── source.cpp

│ ├── CMakeLists.txt

MyProject

LIB

EXE

LIB

LIB

LIB

Dependencies

● Some of the dependencies required
during the build process are
executables

● These must be able to run on the
machine performing the build

Build:
● Machine doing the

build

39

Executable dependencies

├── MyProject

│ └── src

│ ├── source.cpp

│ ├── CMakeLists.txt

MyProject

LIB

EXE

LIB

LIB

LIB

Dependencies

● Some of the dependencies required
during the build process are
executables

● These must be able to run on the
machine performing the build

Host:
● Machine compiled

code will run on

Build:
● Machine doing the

build

40

Strategy: requirements for build-time executables

{
 "name": "contoso-http-library",
 "version-string": "1.0.0",
 "dependencies": [
 "contoso-core-library",
 {
 "name": "contoso-code-generator",
 "host": true
 },
 {
 "name": "contoso-build-system",
 "host": true
 }
]
}

class MyPkg(ConanFile):

 requires = "opencv/3.4.17", "zlib/1.2.12"

 tool_requires = "tool_foo/1.9", "tool_bar/8.7"

vcpkg
conan install . \
--profile:host=macos-x86_64-cross \
--profile:build=macos-arm-native

41

Library and executable combos
EXE

LIB

● So far we have seen packages with:
○ Only executables (“build context”)
○ Only libraries (“host context”)

● But there’s situations where executables are tightly
coupled with libraries, e.g.

○ Protobuf compiler and libprotobf
○ Qt tools (moc, uic, …) and Qt libraries

42

Library and executable combos
EXE

LIB

● So far we have seen packages with:
○ Only executables (“build context”)
○ Only libraries (“host context”)

LIB
EXE

LIB
EXE

● But there’s situations where executables are tightly
coupled with libraries, e.g.

○ Protobuf compiler and libprotobf
○ Qt tools (moc, uic, …) and Qt libraries

43

Strategy: same requirement in both contexts

LIB
EXE

LIB
EXE

class MyPkg(ConanFile):

 requires = "protobuf/21.1"

 tool_requires = "protobuf/21.1"

44

Strategy: same requirement in both contexts

LIB
EXE

LIB
EXE

class MyPkg(ConanFile):

 requires = "protobuf/21.1"

 tool_requires = "protobuf/21.1"

conan install . --profile:build=macos-arm-native --profile:host=macos-x86_64-cross

-------- Computing necessary packages --------
Requirements
 protobuf/21.1:61fd152983603f73eb14ba2d71fee3169a0f586a - Cache
Build requirements
 protobuf/21.1:7253508f17f424e6fa69e70030cbeac2c8dec086- Cache

45

Strategy: split packages for executable and library

LIB
EXE

LIB
EXE

protobuf x86_64

protobuf arm64

ARM x86_64 46

Strategy: split packages for executable and library

LIB
EXE

LIB
EXE

protobuf x86_64

protobuf arm64

EXE EXE protobuf-compiler

ARM x86_64 47

Strategy: split packages for executable and library

LIB
EXE

LIB
EXE

protobuf x86_64

protobuf arm64

EXE EXE

LIB

protobuf-compiler

libprotobufLIB

ARM x86_64 48

Strategy: split packages for executable and library

LIB
EXE

LIB
EXE

protobuf x86_64

protobuf arm64

EXE EXE protobuf-compiler

libprotobuf

class MyPkg(ConanFile):

 requires = "libprotobuf/21.1"

 tool_requires = "protobuf-compiler/21.1"

ARM x86_64

LIBLIB

49

Split packages for executables and libraries (cont’d)

● Debian systems support multiarch since the i386 / amd64 days
● Cross building is possible since the build tools (compiler, linker,

CMake…) are aware of the multiple per-architecture library
directories

50

Cross-arch tooling

● A special corner case of “library and executable combo”
● Where an executable (running on the build machine) may use libraries for the

host architecture. Examples:
○ The linker (part of the compiler toolchain) runs on x86_64, but it takes compiled arm64

libraries as input
○ The CUDA compiler (nvcc) - running in the build context, needs the libraries from the host

context as inputs
○ Qt tools (moc, uic, …)

LIB

EXE

ARM x86_64

LIB

51

Cross-arch tooling (cont’d)

How do we package this? A potential solution

LIB

EXE

LIB

LIB LIB

EXE

“Build context
when on
x86_64”

“Build context
when on arm64”

⚠ Downside: we need to conditionally set which set of libraries to use

depending on the context
52

Cross-arch tooling (cont’d) - An alternative

EXE EXE

LIBLIB

xxx-toolchain-tools

xxx-toolchain-libs

class MyPkg(ConanFile):

 requires = "xxx-toolchain-libs/11.4"

 tool_requires = "xxx-toolchain-tools/11.4"

ARM x86_64

Only possible if the
executables give us a
way of overriding the
libraries location

53

“Sysroot” and system libraries on Linux

Cross-build
toolchain

Root
filesystem

--sysroot=

● For some target devices, we may be provided with a reference root
filesystem.

● The toolchain may contain only C/C++ headers and runtime
● The root filesystem contains all “OS-level” system libraries
● On some systems, all are part of the same toolchain: e.g macOS, QNX

54

“Sysroot” on embedded Linux - caveats

● On embedded Linux, a number of arbitrary libraries can be contained in the
reference root filesystem - these are dependencies too!

○ Potential for problems if we independently package libraries that may also have copies
inside the root filesystem

● Passing --sysroot to the compiler and linker will re-root the search for
implicitly linked libraries in the direction of the sysroot

○ We need to make sure that binutils and glibc of the toolchain are compatible with the versions
in the reference root filesystem (and the device itself)

● Defining CMAKE_SYSROOT also causes CMake to re-root its search logic
○ This may cause issues if the root filesystem has libraries that we also have in the package

manager - and requires some care!
○ To avoid issues, if a library is part of the system (and is present in the root filesystem), do not

consume it from the C++ package manager.

55

Strategy: package the root filesystem

EXE

LIB

Compiler toolchain

Root filesystem

 def package_info(self):

 self.conf_info.define("tools.build:cflags", f"--sysroot={self.package_folder}")

 self.conf_info.define("tools.build:cxxflags", f"--sysroot={self.package_folder}")

 self.conf_info.define("tools.build:sharedlinkflags", f"--sysroot={self.package_folder}")

 self.conf_info.define("tools.build:exelinkflags", f"--sysroot={self.package_folder}")

[settings]
arch=armv8
build_type=Release
compiler=gcc
compiler.cppstd=gnu17
compiler.libcxx=libstdc++11
compiler.version=10
os=Linux

[tool_requires]
gcc-rpi4-aarch64/10.3
rpi4-sysroot/22.04

Conan Host profile:
linux-aarch64-cross

56

Ready to build our own code!

├── MyProject

│ └── src

│ ├── source.cpp

│ ├── CMakeLists.txt

MyProject

Dependencies

Cross-build toolchain

● Compiler
● Linker, assembler, …
● C Library
● …

Root
filesystem

LIB

EXE

LIB

LIB

LIB

57

Ready to build our own code!

├── MyProject

│ └── src

│ ├── source.cpp

│ ├── CMakeLists.txt

MyProject

Dependencies

Cross-build toolchain

● Compiler
● Linker, assembler, …
● C Library
● …

Root
filesystem

LIB

EXE

LIB

LIB

LIB

58

Closing remarks

● We can leverage the power of modern C++ package managers to handle our
project’s dependencies when cross-building

○ Retaining our existing workflows
○ If feasible, the same project can be built natively or cross-built from a different machine

offloading the heavy lifting to the package manager
● Cross-building is a dependency problem: compiler, linker and build system

need to find libraries in different places than the default paths
○ This is already how Conan and vcpkg work

● Dependencies are easy to handle if they are library-only or executable only
● There are more complexities around executables that are tightly coupled with

libraries
○ But can be overcome, and this can be a one-time effort

59

Thank you

60

Any questions?

61

