=

Cross-Building Strategies in the
Age of C++ Package Managers

LUIS CARO CAMPOS

@ The C++ Conference 2 2 September 12th-16th

Cross-Building Strategies in the
Age of C++ Package Managers

Luis Caro Campos

= { =)

aaaaaaaaaaaaaaaaaaaaa

ARM ubiquity

e Porting apps and libraries to run on ARM-based systems is very popular these

days

Smartphones NVIDIA Jetson, Raspberry Pi Apple Silicon Windows/ARM64

ARM ubiquity

e Porting apps and libraries to run on ARM-based systems is very popular these

days
Smartphones NVIDIA Jetson, Raspberry Pi Apple Silicon Windows/ARM64

e But most development still happens on x86_64 machines

Starting point

— MyProject
| L— src

| — source.cpp
| — CMakeLists.txt

MyProject

Project already builds for:
e Linux x86_64
e Windows x86_64
e macOS x86_64

Starting point

— MyProject
| L— src

| — source.cpp
| — CMakeLists.txt

__

MyProject

Project already builds for:

e Linux x86_64
e Windows x86_64
e macOS x86_64

Want to target:
e Linux 64-bit ARMv8
(AArch64)

[Dependencies]

o

How do we approach this?

e If we have the option, we can build natively on the target device
o | E.g. Raspberry Pi 4 + Ubuntu 22.04

:_ “I“V_Pr:ii"t —[Native toolchain]—[Built artifacts

| — source.cpp
| |— CMakelists.txt

MyProject

How do we approach this? (cont'd)

e Another possibility is cross building

:_ “E“:J:Ct —[Native toolchain]—[Built artifacts

| — source.cpp
| — CMakeLists.txt e.g, on Linux/AArch64 AArch64 binaries

MyProject

_______________ @ —‘ Cross build toolchain }—‘ Built artifacts

AArch64 binaries

)
9]
§®;
9]
>
o
[©)
>
0,
o)
7

e.g. on Linux/x86_64

How do we approach this? (cont'd)

e Another possibility is cross building

:_ “E“:J:Ct —[Native toolchain]—[Built artifacts

| — source.cpp
| — CMakeLists.txt e.g, on Linux/AArch64 AArch64 binaries

Should be exactly the
MyProject samel

_______________ @ —‘ Cross build toolchain }—‘ Built artifacts

AArch64 binaries

)
9]
§®;
9]
>
o
[©)
>
0,
o)
7

e.g. on Linux/x86_64

Why cross build?

No native toolchain

O

Compile times

IDE

On some devices, a native toolchain is not provided,
e.g.: mobile devices, or some embedded devices without
a compiler or terminal access

On low-power devices compile times can be significantly
slower than on a typical desktop-grade machine

Some vendors provide specialised software to develop
on, which may require us to port our existing project’s
build system to a new tool. If we can invoke the tools in
the toolchain directly, we may choose to retain our
existing build system.

10

Why cross build?

ﬁ .

Hardware availability

Continuous integration

We may want to get a head-start on porting our
application to a new platform

Supply-chain constraints: we may have to wait for months
for a device

We may already have a project fully ported - and would
like to test that building works on Cl and generate
binaries for the target platform

Configuring a target device as a build agent could be
challenging (or too slow)

11

Cross-building challenges

e Forthe simplest cases, most build systems will accept a different compiler
and “just work” - being completely agnostic to the platform the compiler is
targetting

12

Cross-building challenges

e Forthe simplest cases, most build systems will accept a different compiler
and “just work” - being completely agnostic to the platform the compiler is

targetting
e |n other cases...

Current Cross Compile Tutorial for RPI14?77??
Tue Apr 13,2021 6:55 pm

I'm about to give up after 3 days of compiler hell..

Start with two rpi to get distcc working. Leave it in "basic" mode with zeroconf. Next, replace "gcc" with a dummy
compiler stub (eg: gcc920,g++920) then get it working with that. That done, build your arm-cross within your VM

and hack on those stubs within it and fiddle with the VM distcc because by default it may not find it (my gcc920
etc is not in distcc "PATH"). Correctly configured the rpi will automatically find the VM if it's running. Multiple
VM's can be implemented simply by cloning the VM and changing its hostname.

13

Cross-building challenges (cont’'d)

& Cross compiling in jetson nano

Home > M Autonomous Machines M Jetson & Embedded Systems M Jetson TX2 tensorrt

2061561301

| want to build the cross compiling environment in the ubuntu linux system. |
build the tensorRT cross compiling environment.When i watch the NVIDIA TE
say(web: Sample Support Guide :: NVIDIA Deep Learning TensorRT Document

14

Cross-building challenges (cont’'d)

& Cross compiling in jetson nano

Home > M Autonomous Machines M Jetson & Embedded Systems M Jetson TX2 tensorrt

2061561301

| want to build the cross compiling environment in the ubuntu linux system. |
build the tensorRT cross compiling environment.When i watch the NVIDIA TE
say(web: Sample Support Guide :: NVIDIA Deep Learning TensorRT Document

AastalLLL U Moderator
Hi,

Since TensorRTn much more packages than a CUDA app.
We usually recommend users compile it on the Jetson directly.

15

Dependencies

ISO C++ Developer Survey 2022 - “Developer frustrations”

=

2022 Annual C++ Developer Survey "Lite"

Managing libraries my application depends on

Build times

Setting up a continuous integration pipeline from scratch
(automated builds, tests, ...)

Setting up a development environment from scratch
(compiler, build system, IDE, ...)

Concurrency safety: Races, deadlocks, performance
bottlenecks

Managing CMake projects

Debugging issues in my code

MAJOR
PAIN
POINT

47.63%
563

43.94%
515

33.73%
394

27.83%
329

25.04%
293

29.34%
343

17.85%
209

MINOR
PAIN
POINT

34.77%
411

38.65%
453

40.75%
476

42.98%
508

46.67%
546

38.15%
446

54.57%
639

NOT A
SIGNIFICANT
ISSUE FOR ME

17.60%
208

17.41%
204

25.51%
298

29.19%
345

28.29%
331

32.51%
380

27.58%
323

TOTAL

1,182

1472

1,168

1,182

13170

1,169

1471

WEIGHTED
AVERAGE

2.30

2.27

2.08

1.99

1.97

1.97

1.90

16

Getting started . \

I 1
| P :
— MyProject i \) ;
| s : P :
| — source.cpp : i
| — CMakelists.txt i i

[Dependencies]

/7

Getting started

— MyProject
| L— src

| — source.cpp
| — CMakeLists.txt

__

MyProject

i)

i S
— H—

i ~—

i [Dependencies]
Compiler

Linker, assembler, ...

C Library

/7

18

Cross-building terminology

GNU convention:

e Build - The machine we are building on
e Host - The machine we are building for

(not the topic of this talk)

19

Cross-building terminology

GNU convention:

e Build - The machine we are building on
e Host - The machine we are building for

(not the topic of this talk)
Different tools use different conventions:

e Conan: same as GNU convention (build and host)
e vcpkg:

o “Host” - the machine we are building on

o “Target” - the machine we are building for

e CMake:
o 'CMAKE_HOST_XXX': variables relevant to the machine CMake is running on.

20

Cross-building terminology

GNU convention:

e Build - The machine we are building on
e |(Host ~The machine we are building for

(not the topic

Different tools use different conventions:

Different

e Conan: same as GNU convention (build and host) ent
meaning!

e Vcpkg:

o | “Host’|-the-machine we are building on
o “Target” - the machine we are building for
e CMake:
o 'CMAKH_HOST | XXX': variables relevant to the machine CMake is running on.

21

Our goal
We may already be using a C++ package manager to handle our dependencies:

| ’-'T conan install ..
cmake .. -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake

cmake -B build -S .

vepkg ~DCMAKE_TOOLCHAIN_FILE=~/vcpkg/scripts/buildsystems/vcpkg.cmake

22

Our goal
We may already be using a C++ package manager to handle our dependencies:

| ’-'T conan install ..

¢ cmake .. -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake
vepk cmake -B build -S .
PKg -DCMAKE_TOOLCHAIN_FILE=~/vcpkg/scripts/buildsystems/vcpkg.cmake
on® conan install .. |--profile:host linux-aarch64 --profile:build default
: T cmake .. -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake

cmake -B build -S .
vcpkg -DCMAKE_TOOLCHAIN_FILE=~/vcpkg/scripts/buildsystems/vcpkg.cmake \
-DVCPKG_TARGET_TRIPLET=arm64-linux

23

Building dependencies: the compiler

We need to tell the build systems to use the compiler in our toolchain.

e Agnostic build systems (simplest case) - only need to know which compiler to

use, e.g.

o GCC on Linux
m CC=aarch64-linux-gnu-gcc
m CXX=aarch64-linux-gnu-g++

o Apple’s clang is already a full-fledged cross-compiler:
m -arch armé4
m -arch x86_64

o On Windows with MSVC:
m vcvarsall.bat x64_armé64 (Command line)
m cmake -G "Visual Studio 16 2019" -A ARM64

24

Building dependencies: the compiler (cont’'d)

e \ery common case - the build system needs to be aware that we are in a

cross-building scenario:
o GNU Build system (Autotools) need to be passed the “triplets” during the configure stage
m --build: x86_64-pc-linux-gnu
m --host:aarch64-pc-linux-gnu
o CMake:
m CMAKE_SYSTEM_NAME is set manually
m CMAKE_SYSTEM_PROCESSOR (optionally set)

e In these cases the build system may perform tasks differently when it is aware
that is cross-building

25

Strategy: Leverage the package manager to specify the compiler

Both Conan and vcpkg allow passing custom options to underlying build

systems (CMake, Makefiles, Meson, ...)
o Conan: Custom configuration inside Profiles
o vcpkg: special variables in custom triplet files

[settings]

arch=armv8
build_type=Release
compiler=apple-clang
compiler.cppstd=17
compiler.libcxx=1ibc++
compiler.version=13
os=Macos

Conan Build profile:
macos-arm-native

26

Strategy: Leverage the package manager to specify the compiler

e Both Conan and vcpkg allow passing custom options to underlying build

systems (CMake, Makefiles, Meson

)

o Conan: Custom configuration inside Pro
o vcpkg: special variables in custom triplé

[settings]
arch=armv8

[settings]

arch=x86_64
build_type=Release
compiler=apple-clang
compiler.cppstd=17
compiler.libcxx=1ibc++
compiler.version=13
os=Macos

build_type=Release
compiler=apple-clang
compiler.cppstd=17
compiler.libcxx=1ibc++
compiler.version=13
os=Macos

Conan Build profile:

[conf]
tools.cmake.cmaketoolchain:system_name="Darwin"

tools.cmake.cmaketoolchain:system_processor="x86_64"

tools.build:cflags=["-arch x86_64"]
tools.build:cflags=["-arch x86_64"]
tools.build:sharedlinkflags=["-arch x86_64"]
tools.build:exelinkflags=["-arch x86_64"]

tools.apple:sdk_path=/path/to/Mac0SX. sdk

macos-arm-native

Conan Host profile: nacos-x86_64-cross

27

Building ZLIB, macOS example

conan create . --version=1.2.12) --profile:host=macos-arm-native||-profile:build=macos-arm-native

10

"zlib*:shared=True"

[Native build

28

Building ZLIB, macOS example

conan create . --version=1.2.12 --profile:host=macos-arm-native||-profile:build=macos-arm-native {o "zlib*:shared=True"

conan create . --version=1.2.12 --profile:host=macos-x86_64-cross| --profile:build=macos-arm-native -o "zlib*:shared=True"

ECross build

29

Building ZLIB, macOS example

conan create . --version=1.2.12 --profile:host=macos-arm-native --profile:build=macos-arm-native -o "zlib*:shared=True"

conan create . --version=1.2.12 --profile:host=macos-x86_64-cross --profile:build=macos-arm-native -o "zlib*:shared=True"

(venv-conan2) % conan list packages zlib/1.2.12#latest

z1ib/1.2.12#b76db676bd992afa93dd18a675323942:24612164eb0760405fcd237df0102e554ed1cb2f
settings:
ar x86_64
X 2 aami - CERT
compiler=apple-clang

compiler.version=13
os=Macos
options:
shared=True
z1ib/1.2.12#b76db676bd992afa93dd18a675323942 :a3¢c9d80d887539fac38b81ff8cd4585fe42027e0
settings:
build type=Release
compiler=apple-clang
compiler.version=13
os=Macos
options:
shared=True

30

Building ZLIB, macOS example

conan create . --version=1.2.12 --profile:host=macos-arm-native --profile:build=macos-arm-native -o "zlib*:shared=True"

conan create . --version=1.2.12 --profile:host=macos-x86_64-cross --profile:build=macos-arm-native -o "zlib*:shared=True"

(venv-conan2) % conan list packages zlib/1.2.12#latest
z1ib/1.2.12#b76db676bd992afa93dd18a675323942:24612164eb08760405fcd237df0102e554ed1cb2f % llpO _detailed_info lledyllb
settings: input file libz.dvlib is not a fat file
Non-fat file: libz.dylib is architecture:
x86_64

options:

z1ib/1.2.12#b76db676bd992afa93dd18a675323942 :a3¢c9d80d887539fac38b81ff8cd4585fe42027e0
settings:

% lipo -detailed_info libz.dylib

input file libz.dylib is not a fat file
Non-fat file: libz.dylib is architecture:
armoe4

options:

Strategy 2: Package your compiler toolchain up

e There are cases where we are given a pre-existing compiler toolchain.
For example Linux:

[settings]

arch=x86_64
build_type=Release
compiler=gcc
compiler.cppstd=gnuil?7
compiler.libcxx=1ibstdc++11
compiler.version=11
os=Linux

Conan Build profile:
linux-x86_64-native

Strategy 2: Package your compiler toolchain up

There are cases where we are given a pre-existing compiler toolchain.

For example Linux:

[settings]

arch=x86_64
build_type=Release
compiler=gcc
compiler.cppstd=gnuil?7
compiler.libcxx=1ibstdc++11
compiler.version=11
os=Linux

Conan Build profile:
linux-x86_64-native

[settings]

arch=armv8
build_type=Release
compiler=gcc
compiler.cppstd=gnul?7
compiler.libcxx=1ibstdc++11
compiler.version=10
os=Linux

[tool_requires]
gcc-rpid4-aarch64/10.3

Conan Host profile:
linux-aarch64-cross

33

Strategy: Package your compiler toolchain up (cont’'d)

def package_info(self):
self.buildenv_info.append_path("PATH", os.path.join(self.package_folder, "bin"))
vars = {
"CC": "aarch64-linux-gnu-gcc",
"CXX": "aarch64-linux-gnu-g++",
"LD": "aarch64-linux-gnu-1d",
"AS": "aarch64-linux-gnu-as",
"AR": "aarch64-linux-gnu-ar",
"RANLIB": "aarch64-linux-gnu-ranlib"

for env_var, value in vars.items():
app_path = os.path.join(self.package_folder, "bin", f"{value}")

self.buildenv_info.define(env_var, app_path)

Cause the variables needed to be consumed by the CMakeToolchain generator downstream
self.conf_info.define("tools.cmake.cmaketoolchain:system_name", "Linux")

self.conf_info.define("tools.cmake.cmaketoolchain:system_processor"”, "aarch64")

The package defines the
variables understood by
different build systems

It will contain a pre-existing
binary package

34

Library-only packages

[settings]

arch=armv8
build_type=Release
compiler=gcc
compiler.cppstd=gnul7
compiler.libcxx=1ibstdc++11
compiler.version=10
os=Linux

[tool_requires]
x86_64 gcc-rpi4-aarch64/160.3

workstation

linux—aarch64—cross

zlib:

s conanfile.
”

S
)

(libz.so
P

35

Library-only packages

[settings]

arch=armv8
build_type=Release
compiler=gcc
compiler.cppstd=gnul7
compiler.libcxx=1ibstdc++11
compiler.version=10
os=Linux

[tool_requires]
x86_64 gcc-rpi4-aarch64/160.3

workstation

linux—aarch64—cross

[settings]

arch=armv8
build_type=Release
compiler=gcc
compiler.libcxx=1ibstdc++11
compiler.version=10

Raspberry Pi 4 os=Linux

&
linux-aarch64-native

zlib:

s conanfile.
”

zlib:
conanfile.py

X

S
)

(libz.so
-

36

Library-only packages

[settings]

arch=armv8
build_type=Release
compiler=gcc
compiler.cppstd=gnul7
compiler.libcxx=1ibstdc++11
compiler.version=10
os=Linux

[tool_requires]
x86_64 gcc-rpi4-aarch64/160.3

workstation

linux—aarch64—cross

[settings]

arch=armv8
build_type=Release
compiler=gcc
compiler.libcxx=1ibstdc++11
compiler.version=10

Raspberry Pi 4 os=Linux

&
linux-aarch64-native

zlib:

s conanfile.
”

zlib:
conanfile.py

X

S
)

(libz.so
P

What was the “build” profile
for?

B

37

’

— MyProject
L src

|
| — source.cpp
| — CMakelists.txt

MyProject

o

/7

P R e

[Dependencies]

e Some of the dependencies required
during the build process are
executables

e These must be able to run on the
machine performing the build

38

’

— MyProject
L— src

|
| — source.cpp
| — CMakelists.txt

P R e
o

MyProject EXE
H [Dependencies])
Some of the dependencies required
during the build process are Build:
executables e Machine doing the
These must be able to run on the build

machine performing the build

’

— MyProject
L src

|
| — source.cpp
| — CMakelists.txt

MyProject

e Some of the dependencies required
during the build process are
executables

e These must be able to run on the
machine performing the build

P R e

[Depend cies] y

o

e Machine doing the
build

Host:
[]

Machine compiled
code will run on

40

Strategy: requirements for build-time executables

class MyPkg(ConanFile): {

) . 0) . "name" : "contoso-http-library",

requires = "opencv/3.4.17", "z1lib/1.2.12 "version-string": "1.0.8",

"dependencies": [
"contoso-core-library",

tool_requires [= "tool_foo/1.9", "tool_bar/8.7"

{ "name": "cantoso-code-generator"”,
"host": true
’
O ~o? {
= "name" : "contoso-build-system",
€ |"host": true
}
]
}
conan install . \
--profile:host=macos-x86_64-cross \
--profile:build=macos-arm-native chkg

41

Library and executable combos

So far we have seen packages with:

o Only executables (“build context”)
o Only libraries (“host context”)

But there’s situations where executables are tightly

coupled with libraries, e.g.

o Protobuf compiler and libprotobf
o Qttools (moc, uic, ...) and Qt libraries

(EXE

LIB

l‘\—\

42

Library and executable combos

e So far we have seen packages with:

o Only executables (“build context”)
o Only libraries (“host context”)

e But there’s situations where executables are tightly

coupled with libraries, e.g.
o Protobuf compiler and libprotobf

74

o Qttools (moc, uic, ...) and Qt libraries

‘\ﬁ

$

43

Strategy: same requirement in both contexts

2]

((EXE
M LB | LIB —

|

N I

class MyPkg(ConanFile):

requires = "protobuf/21.1" -—

tool_requires = "protobuf/21.1"

44

Strategy: same requirement in both contexts

)
— A (EXE
LIB LIB -—

N S
n/ ./

; slass MyPkg(ConanFile):
o‘o

? requires = "protobuf/21.1" -—
—— Jp-tool_requires = "protobuf/21.1"

conan install . --profile:build=macos-arm-native --profile:host=macos-x86_64-cross

———————— Computing necessary packages --------

Requirements
protobuf/21.1:61fd152983603f73eb14ba2d71fee3169a0f586a - Cache

Build requirements
protobuf/21.1:7253508f17f424e6fa69e70030cbeac2c8decd86- Cache

Strategy: split packages for executable and library

8

N
protobuf x86_64

(EXE
' LIB

.
protobuf armé4

ARM [ELRY

46

Strategy: split packages for executable and library

\ EXE \ EXE protobuf-compiler
et N - ¥

protobuf x86_64

(EXE
' LIB

N
protobuf armé4

IR x86_64

47

Strategy: split packages for executable and library

{ EXE (- EXE protobuf-compiler

S S

.

LB
N
protobuf x86_64

(N

(EXE) { LIB libprotobuf
LIB .

- N W
protobuf armé4

ARM [BCORY

48

Strategy: split packages for executable and library

\ EXE \ EXE protobuf-compiler

protobuf x86_64

(=XE (H]=] { LIB libprotobuf
i LIB \ i

S

protobuf armé4

Ca e class MyPkg(ConanFile):
‘ “ o e x requires = "libprotobuf/21.1"

tool_requires = "protobuf-compiler/21.1"

IR x86_64

Split packages for executables and libraries (cont'd)

ubuntu® packages

» Ubuntu » Packages » jammy (22.04LTS) » devel » protobuf-compiler

[Source: protobuf]

Package: protobuf-compiler

Package: libprotobuf23 (3.12.4-1ubuntu?)

e Debian systems support multiarch since the i386 / amd64 days
e Cross building is possible since the build tools (compiler, linker,
CMake...) are aware of the multiple per-architecture library

directories

50

Cross-arch tooling

e A special corner case of “library and executable combo”
e \Where an executable (running on the build machine) may use libraries for the

host architecture. Examples:
o The linker (part of the compiler toolchain) runs on x86_64, but it takes compiled arm64

libraries as input
o The CUDA compiler (nvcce) - running in the build context, needs the libraries from the host

context as inputs
I: LIB LIB

o Qttools (moc, uic, ...)

ARM x86_64

51

Cross-arch tooling (cont’d)

How do we package this? A potential solution

build_context_activated

LIB When you have a build-require, by default, the config files (xxx-config.cmake) files are not
(l generated. But you can activate it using the build_context_activated attribute:
tool_requires = ["my_tool/0.0.1"]
def generate(self):
EXE cmake = CMakeDeps(self) =
generate the config files for the tool require .“
cmake.build_context_activated = ["my_tool"] o e
LIB LIB cmake.generate() ———

<
W i

dependi'ng on the context

Downside: we need to conditionally set which set of libraries to use 52

Cross-arch tooling (cont’d) - An alternative

{ (EXE xxx-toolchain-tools

¥ g Only possible if the
executables give us a

[LIB { LIB xxx-toolchain-1libs way of overriding the
libraries location

N N

P & class MyPkg(ConanFile):
‘ l -,Y"'.e g requires = "xxx-toolchain-1libs/11.4"

tool_requires = "xxx-toolchain-tools/11.4"

53

“Sysroot” and system libraries on Linux

———

| Cross-build i ' Root]
| toolchain ! | filesystem !
--sysroots=

e For some target devices, we may be provided with a reference root
filesystem.

e The toolchain may contain only C/C++ headers and runtime

e The root filesystem contains all “OS-level” system libraries

e On some systems, all are part of the same toolchain: e.g macOS, QNX

54

“Sysroot” on embedded Linux - caveats

e On embedded Linux, a number of arbitrary libraries can be contained in the

reference root filesystem - these are dependencies too!
o Potential for problems if we independently package libraries that may also have copies
inside the root filesystem

e Passing --sysroot to the compiler and linker will re-root the search for

implicitly linked libraries in the direction of the sysroot

o We need to make sure that binutils and glibc of the toolchain are compatible with the versions

in the reference root filesystem (and the device itself)
e Defining CMAKE_SYSROOT also causes CMake to re-root its search logic

o This may cause issues if the root filesystem has libraries that we also have in the package
manager - and requires some care!

o To avoid issues, if a library is part of the system (and is present in the root filesystem), do not
consume it from the C++ package manager.

55

Strategy: package the root filesystem

|

>
v

.
)

Compiler toolchain
el

Root filesystem

def package_info(self):

self.
self.
self.
self.

conf_info
conf_info
conf_info

conf_info

[settings]

arch=armv8
build_type=Release
compiler=gcc
compiler.cppstd=gnul7
compiler.libcxx=1ibstdc++11
compiler.version=10
os=Linux

[tool_requires]
gcc-rpid-aarch64/10.3
rpid4-sysroot/22.04

Conan Host profile:
linux-aarch64-cross

.define("tools.build:cflags"”, f"--sysroot={self.package_folder}")

.define("tools.build:cxxflags", f"--sysroot={self.package_folder}")

.define("tools.build:sharedlinkflags”, f"--sysroot={self.package_folder}")

.define("tools.build:exelinkflags", f"--sysroot={self.package_folder}")

56

Ready to build our own code!

— MyProject
| L— src

| — source.cpp
| |— CMakeLists.txt

MyProject
EXE

] [Dependencies])
:' ¢ ! e Compiler
l | . e Linker, assembiler, ...
i Cross-build toolchain ! R(.)Ot : .
: i filesystem : e C Library
| | e

__

Ready to build our own code!

— MyProject
| L— src

| — source.cpp
| — CMakeLists

MyProject

7

[Dependencies]

______________________ PACKAGEALL NGS

(

i . . KOOT 4 LI INCI, aaacn|0|er,
Cross-build toolchain filesysten | o C Library

__

Closing remarks

We can leverage the power of modern C++ package managers to handle our

project’s dependencies when cross-building
o Retaining our existing workflows
o If feasible, the same project can be built natively or cross-built from a different machine
offloading the heavy lifting to the package manager

Cross-building is a dependency problem: compiler, linker and build system

need to find libraries in different places than the default paths
o This is already how Conan and vcpkg work

Dependencies are easy to handle if they are library-only or executable only
There are more complexities around executables that are tightly coupled with

libraries
o But can be overcome, and this can be a one-time effort

59

Thank you

Any questions?

