=

The Ride with WebAssembly

Taking Your C++ and Going Places

NIPUN JINDAL & PRANAY KUMAR

The C++ Conference 2 2 September 12th-16th

A A A A A

A A A A A
A A A A A
A A A A A

A A A A A
A A A A A

Why this talk?

<A< <S<S<S<
< <K<K
< <K<K
< <A <G<S<G<S<S
< <K<K

WebAssembly: CppCon presence

« Compiling and Running C++ in Your Web
Browser - Ben Smith - CppCon 2019

TEACHING C++ T

sw INER

@Bppcun | 2019

The C++ Conf cppcon.org

Applied WebAssembly:
Compiling and Running
C++in Your
Web Browser

Damien Buhl - CppCon 2018

« C++ Everywhere with WebAssembly -

cppcon | 2018

(1]

e Small files
e Fastdecoding &
e Reduced memory usage

e The syntheis & evolution of asm.js & PNaCl

O, Cppcon

The C-++ Confere

2022 N

September 11-16
Aurorg, Colorado, USA

2 Se
GEEdPORTABLE BINARY |Nsmuﬁiﬁﬁ‘§.

v

>

but if your C++ code will run =

C++ Everywhere
with WebAssembly

WebAssembly: Recent advancements

2020
Debugging using DWARF symbols
Loads of WebAssembly features supported in other browsers (such as Safari)
« SharedArrayBuffer usage to share memory between WebAssembly threads.
Fixed-Width SIMD (Single Instruction, Multiple Data is a type of parallel processing)
« WASM Exception handling
2022

2022 Ao
September 11-16 4
Aurora, Colorado, USA

: The C++ Conference

A A A A A

A A A A A
A A A A A
A A A A A

A A A A A
A A A A A

Agenda

<A< <S<S<S<
< <K<K
< <K<K
< <A <G<S<G<S<S
< <K<K

Agenda

Tooling And Setup Basics of WebAssembly

Porting a C++ project Debugging WebAssembly

...and more

2022 Ao
September 11-16 6
Aurorg, Colorado, USA

@ Cppcon

The C++ Conference

A A A A A

A A A A A
A A A A A
A A A A A

A A A A A
A A A A A

Hands on session repo

<A< <S<S<S<
< <K<K
< <K<K
< <A <G<S<G<S<S
<A< <S<S<S<

Includes source code and examples, docker readme and usage

https://github.com/nipunjindal/cpp-con-wasm

A A A A A

A A A A A
A A A A A
A A A A A

A A A A A
A A A A A

Basics of WebAssembly

<A< <S<S<S<
< <K<K
< <K<K
< <A <G<S<G<S<S
< <K<K

Basics of WebAssembly: What it is and why it's needed for you?

« WebAssembly (abbreviated Wasm) is a portable binary format accepted by all major browsers.

It is designed as a portable compilation target for programming languages, enabling deployment on
the web for client and server applications.

YDy @

» To ship your library/code across the entire web stack, WebAssembly is your ticket.

- WASM was created to support Javascript, not to replace it.

2022 Ao

@ Eppcun September 11-16 9
The C++ Conferenc

e | Aurorg, Colorado, USA

Basics of WebAssembly: What makes it fast compared to JS?

« Compact: Faster to fetch as it's binary
= No parsing needed

« Closer to machine code

= No two-stage compilation

= No GC needed

2022 Ao
September 11-16 10
Aurora, Colorado, USA

: The C++ Conference

Basics of WebAssembly: Advantages

% Efficient and fast A Open and debuggable

ﬁ S\ . U4
E-j Pluggable ',@C Safe and innovative
-)

Enforces the same-origin, permissions policies.
Memory-safe, sandboxed execution env.

- J

2022 A
September 11-16 11
Aurorg, Colorado, USA

@ tapcon

e C++ Conference

Basics of WebAssembly: What would | need in this ride?

= Just like a typical dev environment, WebAssembly has the two main pillars -
« An execution Target (Browsers / node.js environment/ etc.)

» As Chrome supports most of the WebAssembly features and is the most widely used browser, we
have used chrome as the execution target.

= A compilation toolchain (Just like gcc/clang)

> Emscripten is most popular and actively developed toolchain for WebAssembly (can be assumed
as a thin wrapper based on LLVM, just like gcc/clang) hence emscripten has been used as
toolchain for the purpose of this talk.

= Which features are supported and would work well on runtime, depends on the above two.

2022 Ao
September 11-16 12
Aurora, Colorado, USA

: The C++ Conference

Basics of WebAssembly: Check the support?

- Browser support can be checked at

- Emscripten has fanatastic documentation

a . /\ a . = O R
0ODd
O) O PO D a 10ad
) D O O D 9) O D
Current aligned age relative Date relative ered WAl
Bro e
Ob oD Opera 0 Android efo 0 QQ
. i
2-46
4-50 | 12-14 4751 10-37
AR NN R RN A 50N 1y 32-103| 4-6.4
57-104 | 16-104 | 11-155] 53-103 | 44-89 | 6-10 11-15.5 | 7.2-17.0 122129 2.1-4.4.4
105 105 15.6 104 9 11 104 15.6 18.0 all 64 1212 | 104 101 10.4
106-108 16.0-TP | 105-106 16.0
2022 AN
13

September 11-16
Aurora, Colorado, USA

@ Cppcon

The C++ Conference

7.12

2.5

http://https:0/caniuse.com/wasm
https://emscripten.org/docs

Basics of WebAssembly: Notable project to web via Emscripten

« SQLite (SQLite compiled to JavaScript with an easy-to-use API (through sql.js)
« FreeType (TrueType font rendering in JavaScript, using FreeType)
« Ffmpeg (Audio/video encoder, the famous one!)

« Unreal Engine 4

= Unity engine

- Doom 3 (Link)

= VIM ()

2022 Ao

@ Eppcun September 11-16 14

e | Aurorg, Colorado, USA

https://github.com/kripken/sql.js
http://www.continuation-labs.com/projects/d3wasm/
https://wang-lu.com/vim.js/streamlinejs/vim.html

Basics of WebAssembly: WAT and WAST

= WebAssembly is designed with the web’s openness in mind, hence a text format equivalent of the
binary format always exists, a.k.a WAT which is dumped by the compiler as an IR.

= When you try to debug any wasm in browser, it shows WAT by default for readability.

« WAST is a superset of the WebAssembly text format and not officially in the spec but it is used only for
testing purposes.

[x ﬂ Elements Console Sources Network Performance Memory
Page Filesystem > : [« D index.ts hello.wasm x [index.ts

N Group files by (module

— @ Authored/Deployed (func $__wasi_fd_write (;0;) (imp
Send feedback (func $emscripten_memcpy_big (;1;

(func $setTempRet® (;2;) (import

L M " ,

il el (table $__indirect_function_table
v [top (memory $memory (;0;) (export "me
(global $__stack_pointer (;0;) (m
v localhost (global $_ stack_end (;1;) (mut i
el (global $__stack_base (;2;) (mut
_ (elem $elem@ (i32.const 1) funcre
i hello.js (func $__wasm_call_ctors (;3;) (e

‘ hello.wasm @x???%?t} \ call $emscripten_stack_init

2022 Ao
September 11-16 15
Aurora, Colorado, USA

@ Cppcon

The C++ Conference

A A A A A

A A A A A
A A A A A
A A A A A

A A A A A
A A A A A

Tooling and setup

<A< <S<S<S<
< <K<K
< <K<K
< <A <G<S<G<S<S
< <K<K

Tooling Introduction and setup: Emscripten toolchain and compilation

» A complete open-source compiler toolchain to WebAssembly, compiles C and C++ code, or any other
language that uses clang/LLVM.

» Supports various environments such as web, node.js, shell, service workers.

@

git clone https://github.com/emscripten-core/emsdk.git
cd emsdk

git pull

./emsdk install latest

./emsdk activate latest

source ./emsdk_env.sh

2022 Ao
September 11-16 17
Aurora, Colorado, USA

: The C++ Conference

Tooling Introduction and setup: Emscripten toolchain and compilation

» emcc/em++ is toolchain used to compile C++ code to wasm.
= Thin wrapper over LLVM.

It has very similar options as gcc/clang and offers option for optimization, debugging etc.
= You can control output options as well.

« Separate flags my be required for features, such as exceptions, filesystem, network etc.

CC, C++,
gce, g++

configure }——{ emconfigure configure
cmake —_— emcmake cmake |
make _ emmake make

2022 Ao

@ Eppcun September 11-16
The C++ Conferenc

e | Aurorg, Colorado, USA

Tooling Introduction and setup: Sample configurations

Separate flags required for features, such as exceptions, filesystem, network etc. unlike gcc/clang.

> Sets to 1GB memory (includes both stack and heap space) (Default is 16MB)

> Allows the total amount of memory used to change depending on the application demand.

> Catching C++ exceptions (specifically, emitting catch blocks) is turned off by default in >=-01

> To re-enable exceptions in optimized code, run with

> Toinclude the network layer (Fetch API)

: The C++ Conference

2022 Ao
September 11-16 19
Aurora, Colorado, USA

Tooling Introduction and setup: Sample configurations (cont..)

> Includes the threading support.

> Pthreads + memory growth (ALLOW_MEMORY_GROWTH) is especially trick and has few open issues.

2022 Ao
September 11-16 20
Aurora, Colorado, USA

: The C++ Conference

Tooling and setup: Verifying toolchain and running emscripten

= Verifying the setup

./emcc -v

« Write a sample “Hello world’ program.

#include <stdio.h>

int main() {
printf("hello, world!\n");
return 0;

}

2022 Ao

@ Eppcun September 11-16
The C++ Confer

21
ence | Aurorg, Colorado, USA

Tooling and setup: Verifying toolchain and running emscripten

Running via JS glue layer (say in Node.js) Running in browser directly
e 00
./emcc test/hello_world.c -o hello.js ./emcc test/hello_world.c -0 hello.html

Output files Output=files

hello.wasm

You can directly consume wasm as well through
your own custom JS glue layer

hello.html
hello.js is the JS wrapper layer (Created by emsdk just for trying
that loads Aello.wasm out hello.js in browser)
»
@ Copoon | 222t 22

Tooling and setup: Verifying toolchain and running emscripten (cont..)

Running in Node.js Running in browser directly

' emscripten
_ Loaded html in

(JResize canvas Lock/hide mouse pointer browser using a

e
$ node hello.js

local webserver
hello, world!

You can create a
custom html for

loading hello.js in
browser yourself

|
hello, world!

Ny
l|IIHl!lIIIEIIIl:::.-.;L:::;:IIHHHIHII!HHHHII

<html>
<body>
<script src="hello.js"></script>
</body>
</html>
2022 . .

September 11-16 23
Aurora, Colorado, USA

@ Cppcon

The C++ Conference

Tooling and setup: Optimizing code

= Emscripten, like gcc and clang, generates unoptimized code by default.
« Generally, you should first compile and run your code without optimizations (the default).

= Once sure that the code runs correctly, more aggressive optimization techniques can be applied to
make it load and run even faster.

1. Code is optimized by specifying optimization flags when running emcc. The levels include: -00 (0O-zero i.e. no
optimization), -01, -02, -03, -0s, and -0z.

2. -0s, and -0z focus on the code bundle size reduction
3. -03is agenerally a good setting for a release build as it optimizes for speed.

4. First time setup and compilation may take time as wasm system libraries are generated and cached

2022 Ao
September 11-16 24
Aurora, Colorado, USA

: The C++ Conference

Tooling and setup: System libraries and pre-ported deps

« Most native executables link against a system library (libc, libcxx, and so on)
« Emscripten provide its own implementation of system libraries (stdio, filesystem) to be linked.
« This implementation is a hybrid model based on WebAssembly System interface (wasi) and JS.

> WASI is a system APl interface (ABI and API) designed by Mozilla intended to be portable to any
platform.

« Apart from system libs, standard pre-ported deps like boost, SDL are ready to use as well.

2022 Ao
September 11-16 25
Aurora, Colorado, USA

: The C++ Conference

A A A A A

A A A A A
A A A A A
A A A A A

A A A A A
A A A A A

Calls interaction across layers

<A< <S<S<S<
< <K<K
< <K<K
< <A <G<S<G<S<S
< <K<K

Calls interaction across layers: Interact with DOM and javascript

« WebAssembly compiled code interaction to <~ from JS is possible through various options available.

« Remember, WASM cannot interact with DOM directly. So, we need to use both JavaScript and WASM
for practical applications.

index.html

JS

script.js

math.wasm

ofaja

2022 Ao
September 11-16 27
Aurora, Colorado, USA

: The C++ Conference

Calls interaction: Three methods for Interacting with JS from C++

1. Using emscripten_run_script() (simply write inline javascript)

emscripten_run_script("alert('hi')");

2022 Ao

@ Eppcun September 11-16 28

e | Aurorg, Colorado, USA

Calls interaction: Three methods for Interacting with JS from C++(cont).

3. Using EM_ASM() (faster and preferred)

= You need to specify if the return value is an int, double or pointer type using the appropriate
macro EM_ASM_INT, EM_ASM_DOUBLE or EM_ASM_PTR

o000 .
. const std::string fileName = "test.txt";
int X = EM_ASM_INT({ EM_ASM(

console.log('I received: ' + $0); {

return $0 + 1; var js_file_name = UTF8ToString($0);
}, 100); var id = $1;

printE(tSsd\n® ;X) }

name.c_str();

)5

2022 Ao

@ Eppcun September 11-16 29

rence | Aurora, Colorado, USA

https://emscripten.org/docs/api_reference/emscripten.h.html
https://emscripten.org/docs/api_reference/emscripten.h.html
https://emscripten.org/docs/api_reference/emscripten.h.html

Calls interaction across layers: Interacting with the C++ from JS

- embind (covered with the hands on session project)
> struct
» class
» primitives
» smart pointer

» templates

2022 Ao
September 11-16 30
Aurora, Colorado, USA

: The C++ Conference

A A A A A

A A A A A
A A A A A
A A A A A

A A A A A
A A A A A

Porting a C++ project

<A< <S<S<S<
< <K<K
< <K<K
< <A <G<S<G<S<S
< <K<K

Porting a C++ project

Port Library
dependencies

Port Application Logic N y Pre-ported libraries

2022 Ao
September 11-16 32
Aurora, Colorado, USA

@ Cppcon

The C++ Conference

Porting a C++ project: Network layer

Emscripten supports libc networking functions and you must use given asynchronous operations.
Emscripten compiled applications have a number of ways to connect with online servers.
Websockets and POSIX Sockets supported.

XmlHttpRequests and Fetch API support is there.

The Emscripten Fetch API allows make requests (HTTP GET, PUT, POST) from remote/local servers,
compile with -sFETCH option.

Also allows to persist the downloaded files locally in browser’s IndexedDB storage, so that they can
be reaccessed locally on subsequent page visits.

2022 Ao
September 11-16 33
Aurora, Colorado, USA

: The C++ Conference

Porting a C++ project: Network layer (cont..)

« A sample toretrieve data file via fetch APl GET request and load in memory.
000

#include <stdio.h>
#include <string.h>
#include <emscripten/fetch.h>

void downloadSucceeded(emscripten_fetch_t *fetch) {
printf("Finished downloading %llu bytes from URL %s.\n", fetch->numBytes, fetch->url);
Success callback /
emscripten_fetch_close(fetch);

b

void downloadFailed(emscripten_fetch_t *fetch) {
printf("Downloading %s failed, HTTP failure status code: %d.\n", fetch->url, fetch->status);

___——,///”’——F emscripten_fetch_close(fetch);
Error callback ¥

int main() {
emscripten_fetch_attr_t attr;
emscripten_fetch_attr_init(&attr);
Fetch API attributes that strcpy(attr.requestMethod, "GET");
. ____—>» attr.attributes = EMSCRIPTEN_FETCH_LOAD_TO_MEMORY;
need to be customize attr.onsuccess = downloadSucceeded;
attr.onerror = downloadFailed;

emscripten_fetch(&attr, "myfile.dat");
Async Fetch APl call — 3

2022 Ao
September 11-16 34
Aurorg, Colorado, USA

@ Cppcon

The C++ Conference

Porting a C++ project: Storage layer

« Coderuninabrowser environment is sandboxed, doesn’'t have direct access to the local filesystem.

« Emscripten provides a virtual file system that simulates the local file system, so that native code using
synchronous file APIs can be compiled and run with little or no change.

= May be preloaded with your specified data or linked to URLs for lazy loading.

= Could cache your files for current session or across sessions depending upon your use case.

App
' Async file
Synchronous file system APIs system APls

MEMFS (in IDBFS (browser, NODEFS PROXYFS
memory file on top of (node.js, uses (mount another
system, volatile) IndexedDB, node.js module’s file
DEFAULT persistent) filesystem) system)
»
@ Cppcon | 2322.an0 35
Thec++ Conference | Aurora, Colorado, USA

Porting a C++ project: Storage layer (cont..)

Only the MEMFS filesystem is included by default. All others must be enabled explicitly, using
“-lnodefs.js”(NODEFS), “lidbfs.js”(IDBFS), or “-lproxyfs.js”(PROXYFS).

FS object that exposes underlying filesystem interfaces, can be used for from JS as well,

If your C/C++ code doesn’t use files, but you want to use them from JS, then you can build with
“-sFORCE_FILESYSTEM’, which will make the compiler include file system support even though it
doesn’t see it being used.

FS.mkdir('/persistent');
FS.mount(IDBFS, {}, '/persistent');

FS.syncfs(true, function (err) {

i
2022 Ao
September 11-16 36
Aurora, Colorado, USA

: The C++ Conference

Porting a C++ project: Exceptions

= By default, exception catching is disabled in emscripten. Executing a throw would abort the program and you
would see similar message as below -

o0

throw. ..

exception thrown: 5246024 - Exception catching is disabled, this exception cannot be caught. Compile with -
SNO_DISABLE_EXCEPTION_CATCHING or -sEXCEPTION_CATCHING_ALLOWED=[..] to catch

= If you want to opt-in, you have two following options.

1. JavaScript-based exception support (Supported on all browsers/JS engines)

> Toenableit, pass at both compile time and link time.

» Due to how WebAssembly currently implemented JS exceptions, this option can punish with high
performance and size penalty.

> You can reduce some overhead by specifying a list of allowed functions with

2022 Ao

September 11-16 37
Aurora, Colorado, USA

(® Cppcon

ference

Porting a C++ project: Exceptions (cont..)

2. WebAssembly exception handling proposal (Supported on few major browsers)
> Toenableit, pass at both compile time and link time.

» This feature has built-in instructions for throwing /catching exceptions to WebAssembly.

= Practically, one should build two versions of wasm, one with exceptions enabled and the other without. By
default, use the exceptions disabled (lighter build) and switch to the larger less performant one at runtime if an
actual exception occurs.

2022 Ao
September 11-16 38
Aurora, Colorado, USA

: The C++ Conference

Porting a C++ project: Application Main Loop

« The browser event model uses co-operative multitasking.

Each event has a “turn” to run, and must then return control to the browser event loop so that other
events can be processed.

= A common cause of HTML pages hanging is JS that does not complete and return control.
Hence, this can affect how an application using an infinite main loop should be written for web.

= You can specify custom event loops using emscripten_set_main_loop_arg(..)which can be cancelled
later easily. More info at

2022 Ao

September 11-16 39
Aurora, Colorado, USA

: The C++ Conference

https://emscripten.org/docs/api_reference/emscripten.h.html

A A A A A

A A A A A
A A A A A
A A A A A

A A A A A
A A A A A

Debugging WebAssembly

<A< <S<S<S<
< <K<K
< <K<K
< <A <G<S<G<S<S
< <K<K

Debugging WebAssembly

Debugging

[di:bAg-ing]

I. Being the detective in a crime
movie where you are also the
murderer.

szll:!tzzh r 11-16 41
Aurorg, Colorado, USA

O, Cppcon

Debugging WebAssembly: What and where?

= DWAREF is a debugging file format used by many compilers and debuggers to support source level
debugging. We can debug C++ code directly in Chrome browser (Using DWARF information).

= The emcc -g flag can be used to preserve debug information in the compiled output. —g flag be
specified with an integer level: -g0 (max optimization), -g1 (preserve whitespace), -g2(preserve
function names), and -g3 (preserve everything, default level when setting -g)

" DevTools - localhost:5000/mandelbrot

H OW to a C h I eve [w ﬁ_| Eleriicie Ohnsole Sources Network Performance Memory Application Security Lighthouse
th . P Page » : |4 mandelbrot.cc X >, + 1t 5 o O
IS mag I C " v O top Dewivimeldle <SDL2/SDL.h> [_J Pause on caught exceptions

2| #include <complex>
v localhost:

ocalhost:5000 3 © Paused on breakpoint
mandelbrot 4| int main() {

// Init SDL. » Watch

3
5
6 int width = 600, height = 600;
8
1

ke

mandelbrot.js

mandelbrot.wasm DL_Init(SDL_INIT_VIDEO); v Breakpoints
> O file//

SDL_Window* window; mandelbrot.cc:7
* .
SDL_Renderer* renderer; SDL_Init(SDL_INIT_VIDEO);

9
10 SDL_CreateWindowAndRenderer(width, height, SDL_WINDOW_OPENGL, &window,

i & &renderer); ¥ Scope

13 // Generate a palette with random colours. v Local
14 enum { MAX_ITER_COUNT = 256 };

15 SDL_Color palette[MAX_ITER_COUNT]; 0

16 srand(time(0)); : SDL_Color [256]
17 for (int i = @; i < MAX_ITER_COUNT; ++i) { r: SDL Renderer *
18 palette[i] = { -

19 .r = (uint8_t)rand(), idth: 600

20 .g = (uint8_t)rand(),
21 .b = (uint8_t)rand(),
22 .a = 255, v Vv Call Stack

ter: std::complex<double>

» window: SDL_Window *

{} Line7 Column3 (provided via debug info by mandelbrot.wasm) Coverage: n/a » main

2022 A~ Debugging WebAssembly ipthe Chrome browser.

September 11-16
Aurora, Colorado, USA

@ Cppcon

The C++ Conference

Debugging WebAssembly: In Chrome using DWARF information

Step 1: Install chrome C++ DevTools extension for DWARF

Please install it by going to this it helps with all the debugging information

link: goo.gle/wasm-debugging-extension encoded in the WebAssembly file

A 4

Step 2: Enable WebAssembly debugging in the DevTools Experiments

Check “WebAssembly Debugging: Enable
DWARF support”, then DevTools would ask for
reload, go for it.

Open Chrome DevTools > settings, go to
the Experiments panel

Step 3: Provide -g flag while compiling your library and source

When compiling, this the same as

in Clang and gcc, it adds DWARF debug When linking, this is equivalent to -g3.
information to the object files

2022 Ao
September 11-16 43
Aurora, Colorado, USA

@ Cppcon

The C++ Conference

https://goo.gle/wasm-debugging-extension

Debugging WebAssembly: In Chrome using DWARF information

WHAT IS:THIS?
- A

ﬂ“ﬂ
@ Cppcon | 52923431 lllll 16 44
The C-++ Conference

Aurorg, Colorado, USA

Debugging WebAssembly: In Chrome using DWARF information

Step 1: Install chrome C++ DevTools extension for DWARF

Please install it by going to this it helps with all the debugging information
link: goo.gle/wasm-debugging-extension encoded in the WebAssembly file

~ chrome web store

Home > Extensions > C/C++ DevTools Support (DWARF)

m C/C++ DevTools Support (DWARF)
***** 4 @ \ Developer Tools ‘ 3,000+ users

2022 Ao
September 11-16 45
Aurora, Colorado, USA

: The C++ Conference

https://goo.gle/wasm-debugging-extension

Debugging WebAssembly: In Chrome using DWARF information

Step 2: Enable WebAssembly debugging in the
DevTools Experiments

Check “WebAssembly Debugging: Enable
DWARF support”, then DevTools would ask
for reload, go for it.

Open Chrome DevTools > settings, go to
the Experiments panel

Settings Experiments

Preferences
Filter
Workspace

2 WARNING: These experiments could be unstable or unreliable and may require you to restart DevTools.
Experiments

Console Sources Network Performance Memory Application Security Lighthouse > (J Allow extensions to load custom stylesheets

Ignore List

Filter Devices (JJ Capture node creation stacks

» [Violation] Added non-passive event listener to a scroll-blocking 'mousewheel' event. Consider marking) Throttlin . s
event handler as 'passive' to make the page more responsive. See https://www.chromestatus.com/feature/5745543795965952 9 U Automatically pretty print in the Sources Panel

[Violation] Forced reflow while executing JavaScript took 41ms Locations () Protocol Monitor

Shorieurs () Show CSP Violations view ()
() Record coverage while performance tracing
(J) Show option to expose internals in heap snapshots
Source order viewer @
() Timeline: event initiators
() Timeline: WebGL-based flamechart

lebAssembly Debugging: Enable DWARF support (2

([0 Console: Resolve variable names in expressions using source maps

Emulation: Support dual screen mode @

2022 Ao
@ Eppcun September 11-16 46
The C++ Conference | Aurora, Colorado, USA

Debugging WebAssembly: In Chrome using DWARF information

Step 3: Provide -g flag while compiling your library and
source

When compiling, this the same as L , .
in Clang and gcc, it adds DWARF debug Linking will take longer when generating

information to the object files dwarf symbols..

emcc -g hello.cpp -0 mandelbrot.html

2022 Ao
September 11-16 47
Aurora, Colorado, USA

: The C++ Conference

Debugging WebAssembly: In Chrome using DWARF information

x a4l

Page

Elements Console

Filesystem >

+ Add folder to workspace

1. Might need
to add source
folder to
workspace
(one time)

[

Page

-

BB debugging

2022 Ao
September 11-16
Aurora, Colorado, USA

@ Cppcon

The C++ Conference

m-v & debugging

Sources Network Performance

Favourites

hello.wasm X
HE' @ Recents

—_———TrmoTrTr T
(func $__wasi_fd_wri
(func $emscripten_mel
(func $setTempRet® (
(table $__indirect_f
(memory $memory (;0;
(global $_ stack_poi
(global $__stack_end
(global $__stack_basqg
(elem $elem@ (i32.col
(func $__wasm_call_ct
call $emscripten_s

.,Z\. Applications

[Desktop

@ Documents

0 Downloads
OneDrive - Ad...
Creative Cloud...

2. Select the
source code
folder

Tags
0x000264 © Red
0x000266)

0x000267 (func $__original_ma
0x000267 (local $vare i32)
0x00027b global.get $__stac
0x00027d local.set $vare
0x00027f i32.const 16
0x000281 local.set $varl
0x000283 local.get $varo

Orange
Yellow
© Green

© Blue

New Folder Cancel

[Select |

Sources Network Performance

IKl

Console

a]

Elements Memory Ap

» hello.wasm Ce hello.js

Filesystem Ce hello.cpp %

Add folder to workspace _ :
#include <stdio.h>

4. Reload the
web page

4 int main() {
’ hello.html m printf("hello, world!\n");

B hello.wasm return 0;

. hello. cpp‘\ 3. Select the source file,

o 12l0]S and add suitable breakpoint

Debugging WebAssembly: In Chrome using DWARF information

@Cp

e

-

pcon

The C++ Conference

@ Emscripten-Generated Code

cC a

localhost/hello.html

powered by

emscript

2022 Ao

September 11-16
Aurorg, Colorado, USA

X

+

Paused in debugger N

- Running...

OResize canvas @ Lock/hide mouse pointer

&

Page

Elements Console

Filesystem >
=+ Add folder to workspace
debugging
I, hello.ntml
. hello.wasm

A hello.cpp

A hello.js

Sources

[« C§ hello.js

U]

Network Performance Memory Application Security Lighthouse

[y hello.cpp X hello.wasm

#include <stdio.h>

4 int main() {
f

Source tree

Voilall'Breakpoint is hit

49

{} Line5, Column3 (provided via debug info by hello.wasm) Coverage: n/a

* @O0 »0@

» B1 | & : X
SO S S CN 72 (11}

© Paused on breakpoint

» Watch

v Breakpoints

hello.cpp:5
printf("hello, world!\n");

v Scope
v Call Stack
Some call frames have warnings
» main hello.cpp:5
hello.wasm:0x2c4
hello.js:1572
hello.js:2225
hello.js:2282
hello.js:2293

$main
(anonymous)
callMain
doRun
(anonymous)
setTimeout (async)

run hello.js:2289
runCaller hello.js:2203

removeRunDependency

hello.js:1481
receivelnstance hello.js:1661

receivelnstantiationResult
hello.js:1678
Promise.then (async)
(anonymous) hello.js:1707
Promise.then (async)
instantiateAsync hello.js:1704
hello.js:1735

hello.js:1910

createWasm
(anonymous)
» XHR/fetch Breakpoints
» DOM Breakpoints

» Global Listeners

Debugging WebAssembly: In Chrome using DWARF information

@ Emscripten-Generated Code X <+ v

< C & localhost/hello.htm h * O »0@ :

Paused in debugger ~ [w ﬂ Elements Console Sources Network Performance Memory Application Security Lighthouse » B 1 Q P X

W : powered by -
- emscrlpten ! , Running... Page Filesystem > : [G hello.js [y hello.cpp X hello.wasm SO S S AN 74 [11]

=+ Add folder to workspace . © Paused on breakpoint
#include <stdio.h>

N/ debuggin: » Watch
S840 4 int main() {

o v A 2 hello.html) [printf("hello, worldi\n; | v Breakpoint
[JResize canvas ® Lock/hide mouse pointer | Fullscreen K m"tf(ahemw‘"w'\”)i | Y STespols
B hello.wasm 6 return 0; hell §
} ello.cpp:5
» hello.cpp printf("hello, world!\n");

n hello.js v Scope
v Call Stack
Some call frames have warnings
Step IntO/OUt, Step NeXt » main hello.cpp:5

$main hello.wasm:0x2c4

etC. CO ntro |.S (anonymous) hello.js:1572

callMain hello.js:2225

List of break / watch points o

S C 0 p e — Va ri a b le State (anonymous) hello.js:2293

setTimeout (async)

Ca“. StaCk = FunCtlonal Call run hello.js:2289

runCaller hello.js:2203

showcasing wasm calls e gt

receivelnstance hello.js:1661

receivelnstantiationResult
hello.js:1678

Promise.then (async)
(anonymous) hello.js:1707
Promise.then (async)
instantiateAsync hello.js:1704
createWasm hello.js:1735
(anonymous) hello.js:1910

» XHR/fetch Breakpoints

» DOM Breakpoints

{} Line5, Column3 (provided via debug info by hello.wasm) Coverage: n/a

2022 Ao
@ l:ppcun September 11-16 50
Thec++ Conference | Aurora, Colorado, USA

Debugging WebAssembly: Debugging optimized builds

Like with any other languages, debugging works best if optimizations are disabled. Optimizations
might inline functions one into another, reorder code, or remove parts of the code.

Debugging with WebAssembly keep on evolving further.

Use -fno-inline to disable function inlining, when compiling with any -0 level optimizations.

emcc -g temp.c -o temp.html -03 -fno-inline

2022 Ao
September 11-16 51
Aurora, Colorado, USA

: The C++ Conference

A A A A A

A A A A A
A A A A A
A A A A A

A A A A A
A A A A A

WebAssembly: Traps and caution

<A< <S<S<S<
< <K<K
< <K<K
< <A <G<S<G<S<S
< <K<K

WebAssembly: Traps and caution

Filesystem access

> Default filesystem is virtual and sandboxed hence each tab in a browser has its own cache.
Memory limit
» C++ access limited to 4GB in Chrome, 2GB in Firefox & Safari

Zero-cost C++ Exception handling

» Exception handling currently uses JavaScript exception handling and is very slow.

Main Ul thread blocking

> (If not running in a web worker thread) Large loops and computation would block the main thread and you
might get a browser notification to kill the page. You can specify custom event loops using
emscripten_set_main_loop_arg/(..)which can be cancelled later.
More info at

2022 Ao
September 11-16 53
Aurora, Colorado, USA

: The C++ Conference

https://emscripten.org/docs/api_reference/emscripten.h.html

WebAssembly: Traps and caution (cont..)

Running Computation intensive heavy WebAssembly in a Web Worker
» This keeps the main browser thread free to continue rendering and handling user interactions.
» Message passing and handling using callback and events would be done in those such cases.

» May pay an overhead cost for transferring any data here if it is large, but depends on your data
types.

2022 Ao
September 11-16 54
Aurora, Colorado, USA

: The C++ Conference

A A A A A

A A A A A
A A A A A
A A A A A

A A A A A
A A A A A

WebAssembly: Q & A

<A< <S<S<S<
< <K<K
< <K<K
< <A <G<S<G<S<S
< <K<K

Thank you

Nipun Jindal | Sr. Computer Scientist

Pranay Kumar | Computer Scientist

Adobe Systems

2022 Ao

September 11-16
Aurora, Colorado, USA

: The C++ Conference

56

