
© 2022 Adobe. All Rights Reserved. Adobe Confidential.

The ride with WebAssembly :
Taking your C++ and going places
Nipun Jindal | Sr. Computer Scientist
Pranay Kumar | Computer Scientist

Adobe Systems

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Why this talk?

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

WebAssembly: CppCon presence

3

§ Compiling and Running C++ in Your Web
Browser - Ben Smith - CppCon 2019

§ C++ Everywhere with WebAssembly -
Damien Buhl - CppCon 2018

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

WebAssembly: Recent advancements

4

§ Debugging using DWARF symbols

§ Loads of WebAssembly features supported in other browsers (such as Safari)

§ SharedArrayBuffer usage to share memory between WebAssembly threads.

§ Fixed-Width SIMD (Single Instruction, Multiple Data is a type of parallel processing)

§ WASM Exception handling

2020

2022

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Agenda

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Agenda

6

…and more

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Hands on session repo

https://github.com/nipunjindal/cpp-con-wasm

Includes source code and examples, docker readme and usage

https://github.com/nipunjindal/cpp-con-wasm

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Basics of WebAssembly

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Basics of WebAssembly: What it is and why it's needed for you?

§ WebAssembly (abbreviated Wasm) is a portable binary format accepted by all major browsers.

§ It is designed as a portable compilation target for programming languages, enabling deployment on
the web for client and server applications.

§ To ship your library/code across the entire web stack, WebAssembly is your ticket.

§ WASM was created to support Javascript, not to replace it.

9

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Basics of WebAssembly: What makes it fast compared to JS?

§ Compact: Faster to fetch as it's binary

§ No parsing needed

§ Closer to machine code

§ No two-stage compilation

§ No GC needed

10

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Basics of WebAssembly: Advantages

• WASM stack machine is encoded in a size and
load-time-efficient binary format.

• Near native speed using the cross-platform
hardware capabilities.

Efficient and fast

• Assembly pretty-printing for better debug/test.
• Some browsers provide source debugging.

Open and debuggable

• Modules are pluggable, portable, can call into and
out of the JavaScript context.

Pluggable

• Enforces the same-origin, permissions policies.
• Memory-safe, sandboxed execution env.

Safe and innovative

11

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Basics of WebAssembly: What would I need in this ride?

12

§ Just like a typical dev environment, WebAssembly has the two main pillars -

§ An execution Target (Browsers / node.js environment/ etc.)

Ø As Chrome supports most of the WebAssembly features and is the most widely used browser, we
have used chrome as the execution target.

§ A compilation toolchain (Just like gcc/clang)

Ø Emscripten is most popular and actively developed toolchain for WebAssembly (can be assumed
as a thin wrapper based on LLVM, just like gcc/clang) hence emscripten has been used as
toolchain for the purpose of this talk.

§ Which features are supported and would work well on runtime, depends on the above two.

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Basics of WebAssembly: Check the support?

13

• Browser support can be checked at caniuse.com/wasm

• Emscripten has fanatastic documentation https://emscripten.org/docs

http://https:0/caniuse.com/wasm
https://emscripten.org/docs

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Basics of WebAssembly: Notable project to web via Emscripten

§ SQLite (SQLite compiled to JavaScript with an easy-to-use API (through sql.js)

§ FreeType (TrueType font rendering in JavaScript, using FreeType)

§ Ffmpeg (Audio/video encoder, the famous one!)

§ Unreal Engine 4

§ Unity engine

§ Doom 3 (Link)

§ VIM (Link)

14

https://github.com/kripken/sql.js
http://www.continuation-labs.com/projects/d3wasm/
https://wang-lu.com/vim.js/streamlinejs/vim.html

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Basics of WebAssembly: WAT and WAST

§ WebAssembly is designed with the web’s openness in mind, hence a text format equivalent of the
binary format always exists, a.k.a WAT which is dumped by the compiler as an IR.

§ When you try to debug any wasm in browser, it shows WAT by default for readability.

§ WAST is a superset of the WebAssembly text format and not officially in the spec but it is used only for
testing purposes.

15

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Tooling and setup

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Tooling Introduction and setup: Emscripten toolchain and compilation

§ A complete open-source compiler toolchain to WebAssembly, compiles C and C++ code, or any other
language that uses clang/LLVM.

§ Supports various environments such as web, node.js, shell, service workers.

17

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Tooling Introduction and setup: Emscripten toolchain and compilation

§ emcc/em++ is toolchain used to compile C++ code to wasm.

§ Thin wrapper over LLVM.

§ It has very similar options as gcc/clang and offers option for optimization, debugging etc.

§ You can control output options as well.

§ Separate flags my be required for features, such as exceptions, filesystem, network etc.

18

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Tooling Introduction and setup: Sample configurations

Separate flags required for features, such as exceptions, filesystem, network etc. unlike gcc/clang.

§ -s TOTAL_MEMORY=1024MB

Ø Sets to 1GB memory (includes both stack and heap space) (Default is 16MB)

§ -s ALLOW_MEMORY_GROWTH=1

Ø Allows the total amount of memory used to change depending on the application demand.

§ -s DISABLE_EXCEPTION_CATCHING=0 or 1

Ø Catching C++ exceptions (specifically, emitting catch blocks) is turned off by default in >= -O1

Ø To re-enable exceptions in optimized code, run with -sDISABLE_EXCEPTION_CATCHING=0

§ -sFETCH

Ø To include the network layer (Fetch API)

19

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Tooling Introduction and setup: Sample configurations (cont..)

§ -pthread, -sUSE_PTHREADS=1

Ø Includes the threading support.

Ø Pthreads + memory growth (ALLOW_MEMORY_GROWTH) is especially trick and has few open issues.

20

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Tooling and setup: Verifying toolchain and running emscripten

§ Verifying the setup

§ Write a sample “Hello world” program.

21

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Tooling and setup: Verifying toolchain and running emscripten

Running via JS glue layer (say in Node.js) Running in browser directly

hello.js hello.wasm

Output files

hello.js is the JS wrapper layer
that loads hello.wasm

hello.js hello.wasm

hello.html
(Created by emsdk just for trying

out hello.js in browser)

Output files

You can directly consume wasm as well through
your own custom JS glue layer

22

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Tooling and setup: Verifying toolchain and running emscripten (cont..)

Running in Node.js Running in browser directly

hello.js hello.wasm

Loaded html in
browser using a
local webserver

hello.js hello.wasm

You can create a
custom html for

loading hello.js in
browser yourself

23

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Tooling and setup: Optimizing code

§ Emscripten, like gcc and clang, generates unoptimized code by default.

§ Generally, you should first compile and run your code without optimizations (the default).

§ Once sure that the code runs correctly, more aggressive optimization techniques can be applied to
make it load and run even faster.

1. Code is optimized by specifying optimization flags when running emcc. The levels include: -O0 (O-zero i.e. no
optimization), -O1, -O2, -O3, -Os, and –Oz.

2. -Os, and -Oz focus on the code bundle size reduction

3. -O3 is a generally a good setting for a release build as it optimizes for speed.

4. First time setup and compilation may take time as wasm system libraries are generated and cached

24

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Tooling and setup: System libraries and pre-ported deps

25

§ Most native executables link against a system library (libc, libcxx, and so on)

§ Emscripten provide its own implementation of system libraries (stdio, filesystem) to be linked.

§ This implementation is a hybrid model based on WebAssembly System interface (wasi) and JS.

Ø WASI is a system API interface (ABI and API) designed by Mozilla intended to be portable to any
platform.

§ Apart from system libs, standard pre-ported deps like boost, SDL are ready to use as well.

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Calls interaction across layers

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Calls interaction across layers: Interact with DOM and javascript

§ WebAssembly compiled code interaction to ó from JS is possible through various options available.

§ Remember, WASM cannot interact with DOM directly. So, we need to use both JavaScript and WASM
for practical applications.

27

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Calls interaction: Three methods for Interacting with JS from C++

1. Using emscripten_run_script() (simply write inline javascript)

2. Using EM_JS() (faster and preferred)

28

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Calls interaction: Three methods for Interacting with JS from C++(cont).

3. Using EM_ASM() (faster and preferred)

§ You need to specify if the return value is an int, double or pointer type using the appropriate
macro EM_ASM_INT, EM_ASM_DOUBLE or EM_ASM_PTR

29

https://emscripten.org/docs/api_reference/emscripten.h.html
https://emscripten.org/docs/api_reference/emscripten.h.html
https://emscripten.org/docs/api_reference/emscripten.h.html

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Calls interaction across layers: Interacting with the C++ from JS

• embind (covered with the hands on session project)

Ø struct

Ø class

Ø primitives

Ø smart pointer

Ø templates

30

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Porting a C++ project

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Porting a C++ project

32

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Porting a C++ project: Network layer

§ Emscripten supports libc networking functions and you must use given asynchronous operations.

§ Emscripten compiled applications have a number of ways to connect with online servers.

§ Websockets and POSIX Sockets supported.

§ XmlHttpRequests and Fetch API support is there.

§ The Emscripten Fetch API allows make requests (HTTP GET, PUT, POST) from remote/local servers,
compile with -sFETCH option.

§ Also allows to persist the downloaded files locally in browser’s IndexedDB storage, so that they can
be reaccessed locally on subsequent page visits.

33

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Porting a C++ project: Network layer (cont..)

§ A sample to retrieve data file via fetch API GET request and load in memory.

Success callback

Error callback

Fetch API attributes that
need to be customize

Async Fetch API call

34

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Porting a C++ project: Storage layer

§ Code run in a browser environment is sandboxed, doesn’t have direct access to the local filesystem.

§ Emscripten provides a virtual file system that simulates the local file system, so that native code using
synchronous file APIs can be compiled and run with little or no change.

§ May be preloaded with your specified data or linked to URLs for lazy loading.

§ Could cache your files for current session or across sessions depending upon your use case.

App

libc libcxx

Synchronous file system APIs

MEMFS (in
memory file

system, volatile)
DEFAULT

IDBFS (browser,
on top of

IndexedDB,
persistent)

NODEFS
(node.js, uses

node.js
filesystem)

PROXYFS
(mount another

module’s file
system)

Async file
system APIs

35

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Porting a C++ project: Storage layer (cont..)

§ Only the MEMFS filesystem is included by default. All others must be enabled explicitly, using
“-lnodefs.js” (NODEFS), “-lidbfs.js” (IDBFS), or “-lproxyfs.js” (PROXYFS).

§ FS object that exposes underlying filesystem interfaces, can be used for from JS as well,

§ If your C/C++ code doesn’t use files, but you want to use them from JS, then you can build with
“-sFORCE_FILESYSTEM”, which will make the compiler include file system support even though it
doesn’t see it being used.

36

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Porting a C++ project: Exceptions

§ By default, exception catching is disabled in emscripten. Executing a throw would abort the program and you
would see similar message as below -

§ If you want to opt-in, you have two following options.

1. JavaScript-based exception support (Supported on all browsers/JS engines)

Ø To enable it, pass -fexceptions at both compile time and link time.

Ø Due to how WebAssembly currently implemented JS exceptions, this option can punish with high
performance and size penalty.

Ø You can reduce some overhead by specifying a list of allowed functions with
EXCEPTION_CATCHING_ALLOWED

37

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Porting a C++ project: Exceptions (cont..)

2. WebAssembly exception handling proposal (Supported on few major browsers)

Ø To enable it, pass -fwasm-exceptions at both compile time and link time.

Ø This feature has built-in instructions for throwing /catching exceptions to WebAssembly.

§ Practically, one should build two versions of wasm, one with exceptions enabled and the other without. By
default, use the exceptions disabled (lighter build) and switch to the larger less performant one at runtime if an
actual exception occurs.

38

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Porting a C++ project: Application Main Loop

§ The browser event model uses co-operative multitasking.

§ Each event has a “turn” to run, and must then return control to the browser event loop so that other
events can be processed.

§ A common cause of HTML pages hanging is JS that does not complete and return control.

§ Hence, this can affect how an application using an infinite main loop should be written for web.

§ You can specify custom event loops using emscripten_set_main_loop_arg(..) which can be cancelled
later easily. More info at
https://emscripten.org/docs/api_reference/emscripten.h.html#c.emscripten_set_main_loop

39

https://emscripten.org/docs/api_reference/emscripten.h.html

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Debugging WebAssembly

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Debugging WebAssembly

41

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Debugging WebAssembly: What and where?

§ DWARF is a debugging file format used by many compilers and debuggers to support source level
debugging. We can debug C++ code directly in Chrome browser (Using DWARF information).

§ The emcc -g flag can be used to preserve debug information in the compiled output. –g flag be
specified with an integer level: -g0 (max optimization), -g1 (preserve whitespace), -g2(preserve
function names), and -g3 (preserve everything, default level when setting -g)

Debugging WebAssembly in the Chrome browser.

How to achieve
this magic?

42

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Debugging WebAssembly: In Chrome using DWARF information

Step 3: Provide -g flag while compiling your library and source

When compiling, this the same as
in Clang and gcc, it adds DWARF debug

information to the object files
When linking, this is equivalent to -g3.

Step 2: Enable WebAssembly debugging in the DevTools Experiments

Open Chrome DevTools > settings, go to
the Experiments panel

Check “WebAssembly Debugging: Enable
DWARF support”, then DevTools would ask for

reload, go for it.

Step 1: Install chrome C++ DevTools extension for DWARF

Please install it by going to this
link: goo.gle/wasm-debugging-extension

it helps with all the debugging information
encoded in the WebAssembly file

43

https://goo.gle/wasm-debugging-extension

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Debugging WebAssembly: In Chrome using DWARF information

44

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Debugging WebAssembly: In Chrome using DWARF information

Step 1: Install chrome C++ DevTools extension for DWARF

Please install it by going to this
link: goo.gle/wasm-debugging-extension

it helps with all the debugging information
encoded in the WebAssembly file

45

https://goo.gle/wasm-debugging-extension

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Debugging WebAssembly: In Chrome using DWARF information

Step 2: Enable WebAssembly debugging in the
DevTools Experiments

Open Chrome DevTools > settings, go to
the Experiments panel

Check “WebAssembly Debugging: Enable
DWARF support”, then DevTools would ask

for reload, go for it.

46

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Debugging WebAssembly: In Chrome using DWARF information

Step 3: Provide -g flag while compiling your library and
source

When compiling, this the same as
in Clang and gcc, it adds DWARF debug

information to the object files

Linking will take longer when generating
dwarf symbols..

47

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Debugging WebAssembly: In Chrome using DWARF information

1. Might need
to add source
folder to
workspace
(one time)

2. Select the
source code
folder

3. Select the source file,
and add suitable breakpoint

4. Reload the
web page

48

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Debugging WebAssembly: In Chrome using DWARF information

Source tree

49

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Debugging WebAssembly: In Chrome using DWARF information

1. Step Into/Out, Step Next
etc. controls

2. List of break / watch points
3. Scope – Variable state
4. Call stack – Functional call

showcasing wasm calls

50

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Debugging WebAssembly: Debugging optimized builds

§ Like with any other languages, debugging works best if optimizations are disabled. Optimizations
might inline functions one into another, reorder code, or remove parts of the code.

§ Debugging with WebAssembly keep on evolving further.

§ Use -fno-inline to disable function inlining, when compiling with any -O level optimizations.

51

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

WebAssembly: Traps and caution

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

WebAssembly: Traps and caution

§ Filesystem access

Ø Default filesystem is virtual and sandboxed hence each tab in a browser has its own cache.

• Memory limit

Ø C++ access limited to 4GB in Chrome, 2GB in Firefox & Safari

• Zero-cost C++ Exception handling

Ø Exception handling currently uses JavaScript exception handling and is very slow.

• Main UI thread blocking

Ø (If not running in a web worker thread) Large loops and computation would block the main thread and you
might get a browser notification to kill the page. You can specify custom event loops using
emscripten_set_main_loop_arg(..) which can be cancelled later.
More info at https://emscripten.org/docs/api_reference/emscripten.h.html#c.emscripten_set_main_loop

53

https://emscripten.org/docs/api_reference/emscripten.h.html

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

WebAssembly: Traps and caution (cont..)

§ Running Computation intensive heavy WebAssembly in a Web Worker

Ø This keeps the main browser thread free to continue rendering and handling user interactions.

Ø Message passing and handling using callback and events would be done in those such cases.

Ø May pay an overhead cost for transferring any data here if it is large, but depends on your data
types.

54

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

WebAssembly: Q & A

© 2022 Adobe. All Rights Reserved. Adobe Confidential.56

Nipun Jindal | Sr. Computer Scientist

Pranay Kumar | Computer Scientist

Adobe Systems

Thank you

