


Welcome to CppCon 2022!

Join #visual_studio channel on CppCon Discord 
https://aka.ms/cppcon/discord
• Meet the Microsoft C++ team

• Ask any questions

• Discuss the latest announcements 

Take our survey
https://aka.ms/cppcon

https://aka.ms/cppcon/discord
https://aka.ms/cppcon


Problem Space



A function such as “memcpy” needs to have a unique implementation 

per-CPU.

Or some CPU’s get their own implementation and others get a more 

generic implementation based on general features supported by the 

CPU such as AVX, AVX2, etc.

Memcpy runs VERY fast – need zero-overhead mechanism to switch 

between implementations.



How is this 
Handled Today?

All techniques evaluated in the context of “how would this 

look on Windows”, not necessarily “how is it implemented on 

other OS’s”.



Developer Initialized and Checked Program State

Developers write some logic that happens when binary is initializing 

after load. Checks CPU features, etc. Sets up global variables.

Within hot functions like memcpy, developer uses this state to choose 

the most optimal code sequence.

Examples:

• Indirect call a function pointer that was initialized

• Test-and-branch pattern to select best function



Performance Issues

1. Indirect calls are EXPENSIVE in kernel-mode due to speculative 

execution mitigations (clearing branch predictor state).

2. Indirect calls are EXPENSIVE because of CFI (Control-Flow-

Integrity) checks (i.e. Control Flow Guard, Clang-CFI).

3. Test-and-branch’s cost scales with the number of checks (can easily 

end up costing more than the function being optimized).

4. Making global state writeable, then read-only, is expensive (TLB 

shootdowns). Affects binary load time.



Usability Issues

Developer needs to manually initialize and check state.

Hard to initialize state generically (i.e. what if this is a static CRT that 

gets linked in to code in user-mode, kernel-mode, boot loader, etc.)? 

Some environments (like kernel-mode) don’t call CRT initializers. Need 

to do even more custom stuff.



GCC IFunc Approach

Solves a lot of usability issues. For a function like “memcpy” being 

optimized, a “selector” function is defined.

When code tries to call the function for the first time, the selector 

function gets called instead. Selector function runs developer-defined 

code and returns a pointer to the most optimal implementation to use 

(i.e. a “memcpy” specific to your CPU model).



Issues - GCC IFunc Approach

Involves making an indirect call (performance).

If CFI checks are omitted for perf, creates a security issue.

Single “selector” function makes it difficult for multiple libraries to 

contribute specializations for the same base function (like memcpy).

Note: If IFunc is used for a DLL export, there is no perf penalty for 

callers of the DLL Export. This function call is already done indirectly 

and IFunc simply “updates” the exported functions address.



Load Time 
Function Selection



Requirements

Friendly, flexible developer model.

Excellent performance – Retain direct calls and jumps, no indirect calls 

or cascading branches.

Maintains One Definition Rule.

Secure.

Extensible without requiring compiler updates.



Building Blocks 1. OS defined “capabilities”.

2. Binary metadata format to map “set of 

capabilities present” and “function to 

use”. 

3. Compiler syntax to create metadata.

4. OS support to parse metadata and use 

it to modify binary code pages based 

on result.



1. OS Capabilities



OS Capabilities (overridecapabilities.h in SDK)

enum {

OVRDCAP_AMD64_ERMSB = 0x00000000

OVRDCAP_AMD64_FAST_SHORT_REPMOV = 0x00000001

OVRDCAP_AMD64_FAST_ZERO_LEN_REPMOV = 0x00000002

…

OVRDCAP_AMD64_V1_CAPSET = 0x0000013B

…

};

Capabilities allow querying:

• Specific CPU Features or CPU Model

• Operating System Features

• Anything else people need ☺

Versioning: V1_CAPSET indicates 

OS knows about all previous 

capabilities.

Currently these are exposed as 

macros but they will be an enum.

OS can publish new capabilities without updating the compiler.



2. Binary Metadata



Load Time Function Selection (LTFS) Metadata

FOO.DLL

Code

LTFS 

Metadata
(in DVRT format, .reloc section)

Data

For each function receiving Load Time Function Selection:

BDD (Binary Decision Diagram): Represents evaluation criteria.

RVAs: Array containing RVA of each candidate function.

Fixup RVAs: Array containing RVA for every location in the 

binary that direct calls/jumps into the target function.

RVA (Relative Virtual Address): Offset from the start of the binary



Binary Decision Diagram (BDD)

AVX

ERMSB

AVX2

Index Function RVA

0 0xB000

1 0xB150

2 0xA090

3 0x5000

NULL 2 1

0

Each node in the BDD either a decision 

node or a leaf node.

Decision nodes contain a capability to 

check, and the next node to evaluate if this 

capability is true/false.

Leaf nodes contain either:

1) The index into the table that contains 

the RVA of the selected function.

2) NULL node that indicates no specialized 

function found.

ERMSB

3

RVAs array:



3. Compiler Syntax

Open Questions Remain!



Scenarios to Support

Specify a set of ordered evaluation criteria

“if (FOO and BAR) use FooBar”, “if (FOO) use Foo”, “if (BAR) use Bar”

Merge evaluation criteria from multiple TU’s in a sensible way.

Function naming flexibility.

If candidate function implemented in C/ASM, developer can manually specify its name.

If function is implemented in C++, function can be named automatically using name mangling.



Concepts

Qualifier

• Get automatically sorted relative to 

one another by the linker.

Ordered Map

 Gets put into binary in the precise 

order specified by the developer.

Qualifier and Ordered Map can be used together or independently.

Use the same set of OS Capabilities.

Function MUST be dispatch attributed in all TU’s to use this feature.



Qualifier Rules

LTFS criteria can use any number of capabilities in their qualifier 

(including none).

The order in which qualifiers are seen by the linker doesn’t matter. The 

order in which capabilities are listed in a qualifier doesn’t matter.

The capability with the smallest numerical constant value gets 

evaluated first.

“Most specific” qualifier goes first. If one qualifier is “ERMSB” and the 

other is “AVX and ERMSB”, the latter is the most specific.



Qualifier Examples

TU 1:

[[msvc::dispatch(qualifier: [all(AVX, ERMSB)])]]

void* memcpy(void*, void*, size_t);

TU 2:

[[msvc::dispatch(qualifier: [all(MEMCPY_ACCELERATOR)])]]

void* memcpy(void*, void*, size_t);

Assume numerical value as follows: AVX (20) > ERMSB (10) > MEMCPY_ACCELERATOR (5)



Qualifier Examples

ERMSB (10)

MEMCPY_ACCELERATOR (5)

memcpy_accelerator

(name mangled)

AVX (20)

memcpy_ermsb_avx

(name mangled)
memcpy

Order in which capabilities are evaluated based on their numerical value, sorted by linker.

Function names are mangled by compiler (but friendly names displayed here for clarity).



Qualifier Examples

TU 1:

[[msvc::dispatch(qualifier: [all(AVX, ERMSB)])]]

void* memcpy(void*, void*, size_t);

TU 2:

[[msvc::dispatch(qualifier: [all(ERMSB)])]]

void* memcpy(void*, void*, size_t);

Assume numerical value as follows: AVX (20) > ERMSB (10)



Qualifier Examples
ERMSB (10)

AVX (20)

memcpy_ermsb_avx

(name mangled)

memcpy

Order in which capabilities are evaluated based on their numerical value, sorted by linker.

Function names are mangled by compiler (but friendly names displayed here for clarity).

memcpy_ermsb

(name mangled)



Qualifier Issues

Easy to use for simple cases, but automatic linker ordering can get 

confusing FAST!

Imagine a case where you have 200 implementations of memcpy.



Ordered Map

Provides ordered evaluation criteria. Conceptually similar to having a 

bunch of “if” statements.

First set of capabilities that is fully met (in the order defined by the 

developer) gets selected.



Ordered Map

[[msvc::dispatch(map:

[ all(ERMSB, AVX2) -> memcpy_ermsb_avx2,

all(ERMSB, AVX) -> memcpy_ermsb_avx,

ERMSB -> memcpy_ermsb,

AVX -> memcpy_avx])]]

void* memcpy(void*, void*, size_t);

If both ERMSB and AVX2 are supported, use memcpy_ermsb_avx2

If both ERMSB and AVX are supported, use memcpy_ermsb_avx

If ERMSB is supported, use memcpy_ermsb

If AVX is supported, use memcpy_avx



Ordered Map BDD (Unoptimized)

AVX

ERMSB

AVX2

memcpy_ermsb_avx2ERMSB

memcpy_ermsb_avx

memcpy_ermsbmemcpy_avxmemcpy

AVX

ERMSB



Ordered Map BDD (Optimized)

AVX

ERMSB

AVX2

memcpy_ermsb_avx2AVX

memcpy_ermsb_avxmemcpy_ermsb

memcpy_avxmemcpy

BDD can be compressed but evaluation must follow developer specified order. 



Combining Qualifier and Ordered Map

When a qualifier is matched, it leads to either:

• A function to use

• An ordered map



Original Qualifier Example

ERMSB (10)

MEMCPY_ACCELERATOR (5)

Node for 

MEMCPY_ACCELERATOR 

qualifier is matched.

AVX (20)

memcpy_ermsb_avx

(name mangled)
memcpy



Original Qualifier Example

ERMSB (10)

MEMCPY_ACCELERATOR (5)

AVX (20)

memcpy_ermsb_avx

(name mangled)
memcpy

memcpy_accelerator

(name mangled)

Can lead to a function to 

use (leaf node)



Combining Qualifier and Map

TU 1:

[[msvc::dispatch(qualifier: [all(AVX, ERMSB)])]]

void* memcpy(void*, void*, size_t);

TU 2:

[[msvc::dispatch(qualifier: [all(MEMCPY_ACCELERATOR)],

map: [all(AVX2, AVX512) -> memcpy_avx512,

AVX2 -> memcpy_avx2],

default: memcpy_accelerator)]]

void* memcpy(void*, void*, size_t);



Qualifier + Ordered Map Example

ERMSB (10)

MEMCPY_ACCELERATOR (5)

AVX (20)

memcpy_ermsb_avx

(name mangled)
memcpy

AVX2

AVX512

memcpy_avx512

memcpy_accel

memcpy_avx2

Can lead to additional 

nodes from an ordered 

map.



Benefits

Allows defining structured, ordered metadata to define to the OS how 

to select the most optimal functions.

Metadata can be defined in a single TU or in multiple TU’s.

Supports assembly as well as C/C++ implementations.



4. OS Support



Operating System Loader Support

Detect & cache the presence of all possible capabilities.

Boot Time

Parse the LTFS metadata and determine the “most optimal” function 

based on supported capabilities.

Performs “fixups” (binary modifications) so all direct jumps/calls to the 

target function now point at the most-optimal candidate function.

Binary Load Time



Toolchain Details



Compiler

For every dispatch-attributed function, fnname, emit a new symbol fnname_$ltfs$

For every TU that contains at least one dispatch-attributed function, store the dispatch 

metadata in .ltfsmap section.

LTFSMAP section contains everything required to construct BDDs at link time.

Usage

Symbol table

New section (.ltfsmap)

cl.exe /experimental:loadTimeSelection tu1.cpp



Compiler

Disables inlining of dispatch-attributed functions

Disables bottom-up inter-procedural register analysis

Normally, codegen of the callers is dependent on codegen of their callees. Callers can make use of 

volatile registers which are not used by its callees without saving/restoring them across calls.

In LTFS, to preserve correctness, we disable this optimization where dispatch-attributed is called.

LTFS can only apply to direct calls or jumps. If compiler inlines a function, we cannot take advantage 

of this feature



More LTFS syntax

Combination of capabilities

[[msvc::dispatch(map:
[any(AVX, AVX2) -> foo_avx,
all(ERMSB, POPCNT) -> foo_ermsb_pop,
none(SSE4_1, SSE4_2) -> foo_simple])]]

int foo(int a) {
return 42;

}



Constexpr support

[[msvc::dispatch(map: [any(AVX2, AVX512) -> foo_avx,
none(ERMSB, ACCEL) -> foo_simple])]]

constexpr int foo(int a) {
if (std::is_constant_evaluated()) {

// instructions to evaluate at compile-time
} else {

// instruction to evaluate at runtime
}

}



Life of a dispatch-attributed function, foo

#include "cap.h"

int foo_avx512(int);

int foo_avx2(int);

[[msvc::dispatch(map: [

AVX512 -> foo_avx512,

AVX2 -> foo_avx2

])]]

int foo(int) { return 3; }

int main() { return foo(3); }

tu3.cpp



cl.exe /c /experimental:loadTimeSelection tu3.cpp

link.exe /dump /symbols tu3.obj



cl.exe /c /experimental:loadTimeSelection tu3.cpp

link.exe /dump /rawdata /section:.ltfsmap tu3.obj



Linker

tu1.obj

.ltfsmap

tu3.obj

.ltfsmap

tu2.obj

.ltfsmap

out.exe

LTFS 

metadata

Error if any function is dispatch-

attributed in one TU but not in other.

Collects all the callsites for every 

dispatch-attributed function.

Final BDD is constructed from .ltfsmap

section followed by its topological sort.

Generates thunks.

link.exe tu3.obj



Supporting Indirect Calls

The linker modifies any code taking the address of the target function 

(foo) to instead take the address of the generated thunk (foo_thunk)

Pointer comparisons at runtime work irrespective of the function that 

gets finally selected by the loader.

For DLL exports, thunk function is the one that gets exported.

Thunks for direct calls

By default, direct calls to foo are also patched to call foo_thunk



ARM64 specifics

ARM64 direct call/jump uses BL/B instruction that can support jumps only 
within the range of +-128MB.

Compiler inserts branch islands when target is farther than this.

Since target in LTFS is unknown until load-time, we have to take this into 
account. The branch island is now inserted based on the RVA of the 
candidate which is farthest to the callsite.



Final binary with thunks

link /dump /loadconfig /relocations test.exe

link /dump /disasm test.exe

link.exe tu3.obj



Final binary without thunks

link /dump /loadconfig /relocations test.exe

link /dump /disasm test.exe

link.exe /ltfs-on-callsites tu3.obj



Relocation types

link /dump /loadconfig /relocations test.exe

link /dump /disasm test.exe

Type 1 = AMD64 call/jmp instructions
Type 2 = ARM64 BL/B instructions
Type 3 = ARM64 ADRP/ADD/BR instruction seq.



Relocation types

link /dump /loadconfig /relocations test.exe

link /dump /disasm test.exe

Type 1 = AMD64 call/jmp instructions
Type 2 = ARM64 BL/B instructions
Type 3 = ARM64 ADRP/ADD/BR instruction seq.



Thunk page

Section summary

Disassembly



OS Details



Fixup Optimization

Windows doesn’t perform fixups at binary load time and doesn’t write 

“paged out” code pages to disk.

Kernel caches the information needed to perform fixups.

When a page is accessed (and not currently mapped) we read it from 

the binary on-disk and apply fixups.

Clustered paging is always fast since the binary's pages are 

contiguous on-disk.



Why is a Thunk Necessary For Direct Calls/Jumps?

Performing lots of fixups is expensive!

Don’t want to re-write half of a page with fixups prior to it being used. 

Thunk minimizes the number of fixups that need to be applied.



Why is a Thunk Necessary For Direct Calls/Jumps?

• In Hyper-V containers (also WDAG, Windows Sandbox, etc.), code 

pages are shared between host and VM.
• Saves hundreds of MB of physical memory per container.

• Code pages that have fixups are NOT shared.
• Host and container may have different image bases, etc.

• In practice not many code pages have fixups since AMD64/ARM64 code is position 

independent.

• LTFS could introduce fixups on a LOT of pages, destroy all code 

page sharing for containers.
• Thunks mean only the thunk pages cannot be shared, MUCH smaller overhead.

• Thunks are clustered together on a small set of pages (or single page).



Demo & 
Performance Info

https://www.youtube.com/watch?v=tH4rm2eg-Q0

https://www.youtube.com/watch?v=tH4rm2eg-Q0


Why Does This Matter??

Using the most optimal instructions can make a BIG difference on performance!

Comparing the total runtime of 2 memset implementations 

for specific sizes



Performance - Intel

# of cycles it takes to make 100,000 calls to an asm function that 

returns 1 on an Intel Broadwell system:

Direct call: 328613                           ~3.28 cycles/call

Indirect call (CFG): 657175              ~6.57 cycles/call

Indirect call (NO-CFG): 410749       ~4.1 cycles/call

Thunk call: 410745                            ~4.1 cycles/call

In practice CFG overhead MUCH higher (performs a bitmap lookup that isn’t as fast in real world).

In practice thunk call should perform better than Indirect Call (NOCFG) when missing prediction info.



Performance - ARM

Big Cores:

Indirect call and LTFS (w/ thunk) performance looks equivalent (micro).

Real-world code, LTFS (w/ thunk) faster (easier on branch predictor).

Little Cores:

LTFS (w/ thunk) is 3 cycles faster than indirect call (micro).

On small memcpy’s, 3 cycles is ~15+% of the total memcpy cost.

Both Cores:

LTFS (w/ thunk) equivalent to direct calls.



Real World Use Case - Memcpy

We have a prototype memcpy function for ARM64 that is 20-30% 

faster than our current memcpy.

Only possible to use on newest version of Windows.

Will use LTFS to switch between the old memcpy and the more 

performant memcpy.

Zero-overhead switching, and 20-30% perf improvement on 

compatible versions of Windows.



Real World Use Case - CFG

Control Flow Guard on ARM64 causes non-trivial performance 

regressions on SPEC2k17.

CFG: For every indirect call, a second indirect call is added to a “check 

function”.

Replacing the second indirect call with LTFS can reduce overall 

overhead of CFG by up to ~50%.

This is all preliminary benchmark data, investigations still in progress!



Looking Forward



We have several areas in Windows that will be optimized using this 

feature soon.

Supported in latest Windows Insider Preview builds, Visual Studio 

support tentatively planned for 17.5 Preview 1.

We’d love to hear your feedback!



Enjoy the rest of the conference!

Join #visual_studio channel on CppCon Discord 
https://aka.ms/cppcon/discord
• Meet the Microsoft C++ team

• Ask any questions

• Discuss the latest announcements 

Take our survey
https://aka.ms/cppcon

https://aka.ms/cppcon/discord
https://aka.ms/cppcon


Our sessions

Monday 12th

• The Imperatives Must Go – Victor Ciura

• What’s New in C++ 23 – Sy Brand

• C++ Dependencies Don’t Have to Be Painful

– Augustin Popa

• How Microsoft Uses C++ to Deliver Office –

Zachary Henkel

Tuesday 13th

• High-performance Load-time 

Implementation Selection – Joe Bialek, 

Pranav Kant

• C++ MythBusters – Victor Ciura

Wednesday 14th

-memory-safe C++ - Jim Radigan

Thursday 15th

• What’s New for You in Visual Studio Code 

– Marian Luparu, Sinem Akinci

• Overcoming Embedded Development 

Tooling Challenges – Marc Goodner

• Reproducible Developer Environments –

Michael Price

Friday 16th

• What’s New in Visual Studio 2022 –

Marian Luparu, Sy Brand

• C++ Complexity (Keynote) – Herb Sutter

• GitHub Features Every C++ 

Developer Should Know – Michael Price 


