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Personal Log: 

Where No Init Has Gone Before

An Exploration on the C++ Fringe…
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…Where the Uncalled for Happens Anyway
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Before We Go Any Further

I won’t be showing you actual logging stuff:

● File IO

● Parameter handling

Unless someone gives me a 90 minute slot… 😉

I will be showing you:

● Text encoding & decoding without any preprocessing

● The implementation of DO_ON_INIT

● In C++ 17
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Who Am I?

Andrei Zissu

● Israeli C++ programmer

● Multiple industries over the past 2 decades

○ Mobile, cyber, multimedia and more

● Member of WG21 Israeli NB

○ Special interest in reflection 

● Working at Binah.ai
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2
1

Real-time health and wellness insights collected with the 
device’s camera

Reward

Binah.ai disrupts wellness and health monitoring 

Light Android/iOS/Web SDK 
that can be added to any app

100% Software-based 



How It All Started

“Hi Andrei. Please remove sensitive log strings from our shipped binaries”

Simple…
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Here’s the Problem

I’ll circle back later to why I’m showing this on msvc… 8



So How Do We Fix This (In C++17)?

● Replace strings with something else

● With what?

● Encrypted string? 

○ But how would we produce one at compile time in C++17?

● Some numeric representation
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Perhaps an enum With Log Msg Ids?

Perhaps. Except…

● We'd need one for each unique message - upfront effort

● Lots of maintenance - when adding or modifying log messages

● Bug prone - stems directly out of the required maintenance

10



So Then… 

Could We Do It Automatically?

Perhaps With Hashing?

Advantages:

● Constant size regardless of input size - smaller binary, better security

● May be produced by a C++17 constexpr function (easy to find online, as I did)

Drawbacks:

● Can't be reversed (unlike encryption) - production code can't retrieve the original strings

● Hash collisions 

○ Highly unlikely assuming a good hash function

○ Easily mitigated by guaranteed early detection (can just retry with a different hash 

key)
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First Things First Though - Let’s 

Implement Log Hashing, We’ll Take Care 

of Decoding Later
Easily found constexpr hash function online (https://github.com/serge-sans-
paille/frozen/blob/1f006e45adf600280bd3924513b80023e8dfdc80/include/frozen/bits/hash_string.h#L19)
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And Now With a Little Tweaking for My Needs…

Let’s just make sure the binary is indeed now clean of incriminating text…
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Oops…

We might need to actually force a const evaluation…
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…Which Only Takes a Single Extra Line of Code
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Good!

Oh yeah, got rid of the log strings!

Oh, got rid of the log strings…

So… How do we get them back?
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Decoding Hurdles

● Original strings are gone

● Hash functions are one way only

● Result: production code cannot access original strings

○ Log files contain only hash values, no strings

○ Preparing an offline dictionary is also impossible

● Conclusion: we need a separate decoding tool with access to the 

original strings

○ Which lucky for us are still there in the source code…
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Decoder Design

What would the decoder tool do with the original strings?

● Calculate their hash values again, this time at run time

But where exactly would it get them from?

● The logger macros

● But we are not invoking that code in the decoder…

● And we need all of them…
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What If…

What if we could somehow collect all the logged strings?

Without actual invocations…

Before anything else happens…

What would it take to do that?
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How Can You Do Something 

Automatically in C++?

● Global object

○ But we need this done from local scopes. No way.

● Static data member of a class.

○ Locally defined classes are in the language (e.g. lambdas)

○ Let’s try this…
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This Should Work. Right?
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Wrong!

Locally defined classes cannot have static data members…

Now what?
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How About We Extract InitExec Into a 

Template Class?
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Yes!!!

Managed to Build It
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No… 

Where’s Our Log?

We just got optimized out.

Should have seen this one coming…
25



So What Might Force the Optimizer to 

Give Us a Break?

● Look for something that may not be optimized away

● An unused template instantiation won’t do, as we’ve just seen
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Perhaps We Need to Force a Side Effect

error LNK2019: unresolved external symbol "public: static struct 

InitExec<16>::Impl InitExec<16>::impl" (?impl@?$InitExec@$0BA@@@2UImpl@1@A) 

referenced in function "void __cdecl f(void)" (?f@@YAXXZ)

This is actually a good sign - we’ve passed the compilation phase
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Let’s Calm Down the Linker Too
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But That’s Actually Quite Ugly

Let’s Get Rid of That Side Effect
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Where We’re at So Far
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That’s nice, but we’re not quite there yet

● We need the action (cout in this case) to be generated by local code!
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That’s nice, but we’re not quite there yet

● We need the action (cout in this case) to be generated by local code!

● Actually we’ve already taken a small step…

● We’ve passed a small piece of state - the line number

● Could we go all the way and carry out any custom action?

● That sounds like… a lambda!
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So How Do We Get a Lambda All the Way 

From f() To InitExec?

● As constructor parameter - static member, no way

● Template parameter it is then…

33



1st Try

Nope, we can’t just pass a lamda as a template argument

error C2923: 'InitExec': 'p' is not a valid 

template type argument for parameter 'P'

error C2955: 'InitExec': use of class 

template requires template argument list
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But Maybe There’s Another Way After All…

(Thanks to the Almighty Internet 🖧)
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But Maybe There’s Another Way After All…

(Thanks to the Almighty Internet 🖧)
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But Maybe There’s Another Way After All…

(Thanks to the Almighty Internet 🖧)
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But Maybe There’s Another Way After All…

(Thanks to the Almighty Internet 🖧)
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And There You Have It!

● Custom code executed at global init from a non-invoked context

● In C++ 17!

● Unfortunately not in all compilers (more about this later)

● This is the basis, now we’ll package it nicely as DO_ON_INIT
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Summing It Up - DO_ON_INIT
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And Now This Is Finally Possible

41



And It’s Even Easier In C++ 20

* Based on code contributed by Arthur O'Dwyer
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Inline Static Is Actually Available in C++17

But it crashed on me in VS 2019. Go figure…
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Questions So Far?
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Putting It All Together

We started off with encoding our log strings at compile time:

#define FORCE_CONST_EVAL(expr) std::integral_constant<decltype(expr), (expr)>::value

#define LOG(MSG) std::cout << FORCE_CONST_EVAL(hash_str(MSG)) << '\n'
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So How Do We Build the Decoder Tool?

● Production code doesn’t have the original strings

● But the source code does!

● Same LOG macros, different implementation when built for decoding

● Doing what? - mapping the string hash values to the original strings

● When? - before all else, to have the mapping handy when needed

● How? - well, with DO_ON_INIT of course!
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● BUILD_FOR_ENCODING compile-time switch 

● If on 
○ LOG macro substitutes logged string with hash at compile time

● If off 
○ LOG macro uses DO_ON_INIT to register the logged string and its hash, 

at run time

○ Any hash encountered in the log file is replaced with the original string

● Out of scope in this talk
○ File IO (both ways)

○ Log parameters

Overall Design
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Let’s Start, Top to Bottom

#ifdef BUILD_FOR_ENCODING

#define LOG(MSG) std::cout << HASH(MSG) << '\n'

#else

#define LOG(MSG) DO_ON_INIT(register_message(MSG))

#endif
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Let’s Start, Top to Bottom

#ifdef BUILD_FOR_ENCODING

#define LOG(MSG) std::cout << HASH(MSG) << '\n'

#else

#define LOG(MSG) DO_ON_INIT(register_message(MSG))

#endif

We’ve already seen the encoding part, so 

let’s just focus on the decoder
49



Registration Is Pretty Straightforward
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Registration Is Pretty Straightforward

● Lazy init in get_reg() insures lifetime control during global init sequence
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Registration Is Pretty Straightforward

● Lazy init in get_reg() insures lifetime control during global init sequence

● The assert is our safety net against hash collisions

○ Every log message is registered, so the assert is guaranteed to be 

checked for all logs (in debug builds)

○ Last check may never be reached if compiler does string pooling 52



And Now Let’s Test It!
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And Now Let’s Test It!

Where did these two hash values come from? 54



This Is Where:
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And Now Back to Decoder Mode:
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f() Is Not Called, Log Strings Materialize “Out of Nowhere”
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“Magic” Call Stack
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Which Log Is It?

Just Inspect the Call Stack!
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Next up in the Call Stack: 

Nested Class Constructor Call
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And Last but Not Least: 

The Static Member Global Initialization
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Questions So Far?
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Demo Time!

https://github.com/cppal/hashed_logger
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Special Circumstances Which Made This Possible

● A need that presented itself.

● This “hack” just recently happened to become possible in C++17.

● I didn’t know locally defined classes can’t have static data members.

● I happened to try this out first with the right compiler (msvc)…

○ gcc - can’t compile this at all (more on the next slide)

○ clang - segfaulted due to the dangers of the global init context…
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Lucky I Didn’t Try This First in Gcc…
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… Or at Least Not Without Some Hacks Even 

Crazier Than Mine

*Contributed by Alexander Vaisman
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Digging a Bit Deeper Into Gcc

● https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83258
○ Bug 83258 - Rejecting function pointer non-type template parameter without 

linkage

● https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92320

○ “Generally speaking it seems that GCC is perfectly happy instantiating a 

template with a constexpr (as you would hope) and with a constexpr function 

pointer even, but only if that function pointer derives from a free function.” 

(Joshua Leahy)

○ Gcc also has __attribute__((__used__, section(".init_array") as a vendor-specific extension. 

Not sure that works on all platforms. (Kudos Erez Strauss for pointing me to this)
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Lucky I Didn’t Try This First in Clang…
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As It Turns Out, I Was Doing It Wrong

DO_ON_INIT( std::cout <<

"Let's see if I can print my line number: "

<< __LINE__ << '\n'; );

DO_ON_INIT( printf( "Let's see if I can print my line 

number: %d\n", __LINE__) );

*Figured out thanks to Alexander Vaisman
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Recap

● Used constexpr hash function to obfuscate log messages

● DO_ON_INIT implementation

○ Class templated on constexpr function pointer NTTP

○ Executes NTTP function via constructor of nested class

○ Invoked during construction of nested class static instance

○ Template class is instantiated with local lambda

○ Via constexpr function pointer

○ Forced into ODR use by (void)

● DO_ON_INIT is used to map text hash values back to original texts
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Analysis

● Main drawback - be careful with this in production code
○ Not on all compilers (gcc in particular)
○ May encounter compiler limitations 

■ Perhaps even UB?
● But it can be great for internal tools (e.g. log decoder)
● Secondary drawback - this technique requires macros
● Be careful what you do with DO_ON_INIT (cout as cautionary tale)
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Analysis - Performance Impact

● No serious performance/memory footprint
○ Production code may actual benefit on both counts
○ Decoding tool has proven small and fast (on our 200+ logs)

● Impact on production code
○ Small hash values instead of full strings
○ May need to be converted back to strings if warranted by underlying 

logger - but those can be cached with statics
○ Impact on build times should be negligible - depending on the hash 

function
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What Else Could DO_ON_INIT Be Used For?

● Default initial API call - probably not the best idea until we’re 
sure we can trust DO_ON_INIT in production code

● Built-in unitests:

* Unitests can easily be left out of production code via #ifdef
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Live, Log and Prosper

Thank You!

Get in touch:

● andrziss@gmail.com

● https://www.linkedin.com/in/andreizissu/
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* Many thanks to Inbal Levi, Dafna Mordechai 

and other good people

for all the first timer advice!
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