
1

Personal Log:

Where No Init Has Gone Before

An Exploration on the C++ Fringe…

2

…Where the Uncalled for Happens Anyway

3

Before We Go Any Further

I won’t be showing you actual logging stuff:

● File IO

● Parameter handling

Unless someone gives me a 90 minute slot… 😉

I will be showing you:

● Text encoding & decoding without any preprocessing

● The implementation of DO_ON_INIT

● In C++ 17

4

Who Am I?

Andrei Zissu

● Israeli C++ programmer

● Multiple industries over the past 2 decades

○ Mobile, cyber, multimedia and more

● Member of WG21 Israeli NB

○ Special interest in reflection

● Working at Binah.ai

5

2
1

Real-time health and wellness insights collected with the
device’s camera

Reward

Binah.ai disrupts wellness and health monitoring

Light Android/iOS/Web SDK
that can be added to any app

100% Software-based

How It All Started

“Hi Andrei. Please remove sensitive log strings from our shipped binaries”

Simple…

7

Here’s the Problem

I’ll circle back later to why I’m showing this on msvc… 8

So How Do We Fix This (In C++17)?

● Replace strings with something else

● With what?

● Encrypted string?

○ But how would we produce one at compile time in C++17?

● Some numeric representation

9

Perhaps an enum With Log Msg Ids?

Perhaps. Except…

● We'd need one for each unique message - upfront effort

● Lots of maintenance - when adding or modifying log messages

● Bug prone - stems directly out of the required maintenance

10

So Then…

Could We Do It Automatically?

Perhaps With Hashing?

Advantages:

● Constant size regardless of input size - smaller binary, better security

● May be produced by a C++17 constexpr function (easy to find online, as I did)

Drawbacks:

● Can't be reversed (unlike encryption) - production code can't retrieve the original strings

● Hash collisions

○ Highly unlikely assuming a good hash function

○ Easily mitigated by guaranteed early detection (can just retry with a different hash

key)

11

First Things First Though - Let’s

Implement Log Hashing, We’ll Take Care

of Decoding Later
Easily found constexpr hash function online (https://github.com/serge-sans-
paille/frozen/blob/1f006e45adf600280bd3924513b80023e8dfdc80/include/frozen/bits/hash_string.h#L19)

12

https://github.com/serge-sans-paille/frozen/blob/1f006e45adf600280bd3924513b80023e8dfdc80/include/frozen/bits/hash_string.h#L19

And Now With a Little Tweaking for My Needs…

Let’s just make sure the binary is indeed now clean of incriminating text…
13

Oops…

We might need to actually force a const evaluation…

14

…Which Only Takes a Single Extra Line of Code

15

Good!

Oh yeah, got rid of the log strings!

Oh, got rid of the log strings…

So… How do we get them back?
16

Decoding Hurdles

● Original strings are gone

● Hash functions are one way only

● Result: production code cannot access original strings

○ Log files contain only hash values, no strings

○ Preparing an offline dictionary is also impossible

● Conclusion: we need a separate decoding tool with access to the

original strings

○ Which lucky for us are still there in the source code…

17

Decoder Design

What would the decoder tool do with the original strings?

● Calculate their hash values again, this time at run time

But where exactly would it get them from?

● The logger macros

● But we are not invoking that code in the decoder…

● And we need all of them…

18

What If…

What if we could somehow collect all the logged strings?

Without actual invocations…

Before anything else happens…

What would it take to do that?

19

How Can You Do Something

Automatically in C++?

● Global object

○ But we need this done from local scopes. No way.

● Static data member of a class.

○ Locally defined classes are in the language (e.g. lambdas)

○ Let’s try this…

20

This Should Work. Right?

21

Wrong!

Locally defined classes cannot have static data members…

Now what?

22

How About We Extract InitExec Into a

Template Class?

23

Yes!!!

Managed to Build It

24

No…

Where’s Our Log?

We just got optimized out.

Should have seen this one coming…
25

So What Might Force the Optimizer to

Give Us a Break?

● Look for something that may not be optimized away

● An unused template instantiation won’t do, as we’ve just seen

26

Perhaps We Need to Force a Side Effect

error LNK2019: unresolved external symbol "public: static struct

InitExec<16>::Impl InitExec<16>::impl" (?impl@?$InitExec@$0BA@@@2UImpl@1@A)

referenced in function "void __cdecl f(void)" (?f@@YAXXZ)

This is actually a good sign - we’ve passed the compilation phase

27

Let’s Calm Down the Linker Too

28

But That’s Actually Quite Ugly

Let’s Get Rid of That Side Effect

29

Where We’re at So Far

30

That’s nice, but we’re not quite there yet

● We need the action (cout in this case) to be generated by local code!

31

That’s nice, but we’re not quite there yet

● We need the action (cout in this case) to be generated by local code!

● Actually we’ve already taken a small step…

● We’ve passed a small piece of state - the line number

● Could we go all the way and carry out any custom action?

● That sounds like… a lambda!

32

So How Do We Get a Lambda All the Way

From f() To InitExec?

● As constructor parameter - static member, no way

● Template parameter it is then…

33

1st Try

Nope, we can’t just pass a lamda as a template argument

error C2923: 'InitExec': 'p' is not a valid

template type argument for parameter 'P'

error C2955: 'InitExec': use of class

template requires template argument list

34

But Maybe There’s Another Way After All…

(Thanks to the Almighty Internet 🖧)

35

But Maybe There’s Another Way After All…

(Thanks to the Almighty Internet 🖧)

36

But Maybe There’s Another Way After All…

(Thanks to the Almighty Internet 🖧)

37

But Maybe There’s Another Way After All…

(Thanks to the Almighty Internet 🖧)

38

And There You Have It!

● Custom code executed at global init from a non-invoked context

● In C++ 17!

● Unfortunately not in all compilers (more about this later)

● This is the basis, now we’ll package it nicely as DO_ON_INIT

39

Summing It Up - DO_ON_INIT

40

And Now This Is Finally Possible

41

And It’s Even Easier In C++ 20

* Based on code contributed by Arthur O'Dwyer

42

Inline Static Is Actually Available in C++17

But it crashed on me in VS 2019. Go figure…
43

Questions So Far?

44

Putting It All Together

We started off with encoding our log strings at compile time:

#define FORCE_CONST_EVAL(expr) std::integral_constant<decltype(expr), (expr)>::value

#define LOG(MSG) std::cout << FORCE_CONST_EVAL(hash_str(MSG)) << '\n'

45

So How Do We Build the Decoder Tool?

● Production code doesn’t have the original strings

● But the source code does!

● Same LOG macros, different implementation when built for decoding

● Doing what? - mapping the string hash values to the original strings

● When? - before all else, to have the mapping handy when needed

● How? - well, with DO_ON_INIT of course!

46

● BUILD_FOR_ENCODING compile-time switch

● If on
○ LOG macro substitutes logged string with hash at compile time

● If off
○ LOG macro uses DO_ON_INIT to register the logged string and its hash,

at run time

○ Any hash encountered in the log file is replaced with the original string

● Out of scope in this talk
○ File IO (both ways)

○ Log parameters

Overall Design

47

Let’s Start, Top to Bottom

#ifdef BUILD_FOR_ENCODING

#define LOG(MSG) std::cout << HASH(MSG) << '\n'

#else

#define LOG(MSG) DO_ON_INIT(register_message(MSG))

#endif

48

Let’s Start, Top to Bottom

#ifdef BUILD_FOR_ENCODING

#define LOG(MSG) std::cout << HASH(MSG) << '\n'

#else

#define LOG(MSG) DO_ON_INIT(register_message(MSG))

#endif

We’ve already seen the encoding part, so

let’s just focus on the decoder
49

Registration Is Pretty Straightforward

50

Registration Is Pretty Straightforward

● Lazy init in get_reg() insures lifetime control during global init sequence

51

Registration Is Pretty Straightforward

● Lazy init in get_reg() insures lifetime control during global init sequence

● The assert is our safety net against hash collisions

○ Every log message is registered, so the assert is guaranteed to be

checked for all logs (in debug builds)

○ Last check may never be reached if compiler does string pooling 52

And Now Let’s Test It!

53

And Now Let’s Test It!

Where did these two hash values come from? 54

This Is Where:

55

And Now Back to Decoder Mode:

56

f() Is Not Called, Log Strings Materialize “Out of Nowhere”

57

“Magic” Call Stack

58

Which Log Is It?

Just Inspect the Call Stack!

59

Next up in the Call Stack:

Nested Class Constructor Call

60

And Last but Not Least:

The Static Member Global Initialization

61

Questions So Far?

62

Demo Time!

https://github.com/cppal/hashed_logger

63

Special Circumstances Which Made This Possible

● A need that presented itself.

● This “hack” just recently happened to become possible in C++17.

● I didn’t know locally defined classes can’t have static data members.

● I happened to try this out first with the right compiler (msvc)…

○ gcc - can’t compile this at all (more on the next slide)

○ clang - segfaulted due to the dangers of the global init context…

64

Lucky I Didn’t Try This First in Gcc…

65

… Or at Least Not Without Some Hacks Even

Crazier Than Mine

*Contributed by Alexander Vaisman
66

Digging a Bit Deeper Into Gcc

● https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83258
○ Bug 83258 - Rejecting function pointer non-type template parameter without

linkage

● https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92320

○ “Generally speaking it seems that GCC is perfectly happy instantiating a

template with a constexpr (as you would hope) and with a constexpr function

pointer even, but only if that function pointer derives from a free function.”

(Joshua Leahy)

○ Gcc also has __attribute__((__used__, section(".init_array") as a vendor-specific extension.

Not sure that works on all platforms. (Kudos Erez Strauss for pointing me to this)

67

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83258
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83258
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92320

Lucky I Didn’t Try This First in Clang…

68

As It Turns Out, I Was Doing It Wrong

DO_ON_INIT(std::cout <<

"Let's see if I can print my line number: "

<< __LINE__ << '\n';);

DO_ON_INIT(printf("Let's see if I can print my line

number: %d\n", __LINE__));

*Figured out thanks to Alexander Vaisman

69

Recap

● Used constexpr hash function to obfuscate log messages

● DO_ON_INIT implementation

○ Class templated on constexpr function pointer NTTP

○ Executes NTTP function via constructor of nested class

○ Invoked during construction of nested class static instance

○ Template class is instantiated with local lambda

○ Via constexpr function pointer

○ Forced into ODR use by (void)

● DO_ON_INIT is used to map text hash values back to original texts

70

Analysis

● Main drawback - be careful with this in production code
○ Not on all compilers (gcc in particular)
○ May encounter compiler limitations

■ Perhaps even UB?
● But it can be great for internal tools (e.g. log decoder)
● Secondary drawback - this technique requires macros
● Be careful what you do with DO_ON_INIT (cout as cautionary tale)

71

Analysis - Performance Impact

● No serious performance/memory footprint
○ Production code may actual benefit on both counts
○ Decoding tool has proven small and fast (on our 200+ logs)

● Impact on production code
○ Small hash values instead of full strings
○ May need to be converted back to strings if warranted by underlying

logger - but those can be cached with statics
○ Impact on build times should be negligible - depending on the hash

function

72

What Else Could DO_ON_INIT Be Used For?

● Default initial API call - probably not the best idea until we’re
sure we can trust DO_ON_INIT in production code

● Built-in unitests:

* Unitests can easily be left out of production code via #ifdef

73

Live, Log and Prosper

Thank You!

Get in touch:

● andrziss@gmail.com

● https://www.linkedin.com/in/andreizissu/

74

* Many thanks to Inbal Levi, Dafna Mordechai

and other good people

for all the first timer advice!

mailto:andrziss@gmail.com
https://www.linkedin.com/in/andreizissu/

