

@ciura_victor
Victor Ciura

Senior SW Engineer
Visual C++

CppCon
September 2022

The Imperatives Must Go!

https://twitter.com/ciura_victor

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! X

Abstract

Can a language whose official motto is “Avoid Success at All Costs” teach us new tricks in modern C++ ?

If Haskell is so great, why hasn't it taken over the world? My claim is that it has. But not as a Roman legion
loudly marching in a new territory, rather as distributed Trojan horses popping in at the gates, masquerading as
modern features or novel ideas in today’s mainstream languages. Functional Programming ideas that have
been around for over 40 years will be rediscovered to solve our current software complexity problems.

Indeed, modern C++ has become more functional. From mundane concepts like lambdas & closures,
std::function, values types and constants, to composability of STL algorithms, lazy ranges, folding, mapping or
even higher-order functions in STL. Did I mention Rust yet?

In this session we’ll analyze a bunch of FP techniques in C++ and see how they help make our code shorter,
clearer and faster, by embracing a declarative vs. an imperative style. We’ll visit the functional parts of current
STL, use algebraic data types (ADT) and learn about the new FP stuff coming in the next C++ standard, like
ranges or monadic extensions to std::future, std::optional and std::expected. Brace yourselves for a bumpy
ride including composition, lifting, currying, partial application, pure functions, maybe even pattern matching
and lazy evaluation.

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 3

About me

Advanced Installer Clang Power Tools

@ciura_victor

Visual C++

https://www.advancedinstaller.com
http://www.clangpowertools.com
https://twitter.com/ciura_victor
https://visualstudio.microsoft.com

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 4

Welcome to CppCon 2022 !

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 5

Q & A

Do ask questions as we go along

Comments are welcome, too🙋

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 6

1/n

This is meant as an introductory presentation to the
concepts to follow.

Depending on how this lands, sequels will cover some of
these topics in depth.

Don't worry, there are no cliffhangers...
🎞

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!

🔥 Hot take typing

7

If it looks like a hot take, if it feels like a hot take... it probably is 😈

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 8

\fp 10

FP in 10

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 9

Slide Title

What is it all about ?

🤔

Functional Programming

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 10

Slide Titlepipelines

lambdas & closures

currying

composition

Maybe | Just

monads

optional

declarative vs imperative
algebraic data types

fold values types

higher order functions

ranges IO monad

monoids

FP

lifting

category theory

algorithms

map

expressions vs statements

partial application

pure functions

pattern matching

lazy evaluation

recursion

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 11

Slide Title
Paradox of Programming

https://www.youtube.com/watch?v=JH_Ou17_zyUA Crash Course in Category Theory - Bartosz Milewski

Machine/Human impedance mismatch:

Local/Global perspective

Progress/Goal oriented

Detail/Idea

Vast/Limited memory

Pretty reliable/Error prone

Machine language/Mathematics

https://www.youtube.com/watch?v=JH_Ou17_zyU

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 11

Slide Title
Paradox of Programming

https://www.youtube.com/watch?v=JH_Ou17_zyUA Crash Course in Category Theory - Bartosz Milewski

Machine/Human impedance mismatch:

Local/Global perspective

Progress/Goal oriented

Detail/Idea

Vast/Limited memory

Pretty reliable/Error prone

Machine language/Mathematics

Is it easier to think like a machine than to do math?

https://www.youtube.com/watch?v=JH_Ou17_zyU

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 12

Slide Title
Semantics

https://www.youtube.com/watch?v=JH_Ou17_zyUA Crash Course in Category Theory - Bartosz Milewski

The meaning of a program

Operational semantics: local, progress oriented

• Execute program on an abstract machine in your brain

Denotational semantics

• Translate program to math

Math: an ancient language developed for humans

https://www.youtube.com/watch?v=JH_Ou17_zyU

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 13

Slide Title
What is Functional Programming ?

• Functional programming is a style of programming in which the basic method of

computation is the application of functions to arguments

• A functional language is one that supports and encourages the functional style

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 14

Slide Title

Let's address the 🐘 in the room...

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 14

Slide Title

Let's address the 🐘 in the room...

Haskell

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 15

Slide Title

A functional language is one that supports and
encourages the functional style

What do you mean ?

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 16

Slide Title

Summing the integers 1 to 10 in C++/Java/C#

int total = 0;
for (int i = 1; i ≤ 10; i++)
 total = total + i;

The computation method is variable assignment.

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 17

Slide Title

Summing the integers 1 to 10 in Haskell

sum [1..10]

The computation method is function application.

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 18

Slide Title

Functional

WHAT

Non-Functional

HOW

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 19

OOP / FP
A SOLID summary:

wikipedia.org/wiki/SOLID

https://en.wikipedia.org/wiki/SOLID

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 20

Slide Title
Historical Background

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 21

Slide Title Historical Background
Most of the "new" ideas and innovations in modern

programming languages are actually very old...

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 22

Slide Title
Historical Background

1930s

Alonzo Church develops the lambda calculus,
a simple but powerful theory of functions

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 23

Slide Title
Historical Background

John McCarthy develops Lisp, the first functional language, with some
influences from the lambda calculus, but retaining variable assignments

1950s

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 24

Slide Title
Historical Background

Peter Landin develops ISWIM, the first pure functional language,
based strongly on the lambda calculus, with no assignments

1960s

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 25

Slide Title
Historical Background

John Backus develops FP, a functional language that emphasizes
higher-order functions and reasoning about programs

1970s

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 26

Slide Title
Historical Background

Robin Milner and others develop ML, the first modern functional language,
which introduced type inference and polymorphic types

1970s

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 27

Slide Title
Historical Background

David Turner develops a number of lazy functional languages,
culminating in the Miranda system

1970-80s

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 28

Slide Title
Historical Background

An international committee starts the development of Haskell,
a standard lazy functional language

1987

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 29

Slide Title
Historical Background

Phil Wadler and others develop type classes and monads,
two of the main innovations of Haskell

1990s

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 30

Slide Title
Historical Background

The committee publishes the Haskell Report, defining a stable
version of the language; an updated version was published in 2010

2003
2010

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 31

Slide Title

xkcd.com/1312/

https://xkcd.com/1312/

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 32

Why (not) Haskell ?

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 32

Why (not) Haskell ?

If Haskell is so great, why hasn't it taken over the world?

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 32

Why (not) Haskell ?

If Haskell is so great, why hasn't it taken over the world?

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 32

Why (not) Haskell ?

If Haskell is so great, why hasn't it taken over the world?

My claim is that it has.

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 32

Why (not) Haskell ?

If Haskell is so great, why hasn't it taken over the world?

My claim is that it has.

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 32

Why (not) Haskell ?

If Haskell is so great, why hasn't it taken over the world?

My claim is that it has.

But not as a Roman legion loudly marching in a new territory, rather as distributed
Trojan horses popping in at the gates, masquerading as modern features or novel
ideas in today’s mainstream languages.

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 33

Why (not) Haskell ?

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 33

Why (not) Haskell ?

Functional Programming ideas that have been around for over 40 years are
rediscovered to solve our current software complexity problems.

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 33

Why (not) Haskell ?

Functional Programming ideas that have been around for over 40 years are
rediscovered to solve our current software complexity problems.

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 33

Why (not) Haskell ?

Functional Programming ideas that have been around for over 40 years are
rediscovered to solve our current software complexity problems.

Indeed, contemporary C++ has become more functional.

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 33

Why (not) Haskell ?

Functional Programming ideas that have been around for over 40 years are
rediscovered to solve our current software complexity problems.

Indeed, contemporary C++ has become more functional.

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 33

Why (not) Haskell ?

Functional Programming ideas that have been around for over 40 years are
rediscovered to solve our current software complexity problems.

Indeed, contemporary C++ has become more functional.

From mundane concepts like lambdas & closures, std::function, values types and
constants, to composability of STL algorithms, lazy ranges, folding, mapping, partial
application (bind), higher-order functions or even monads such as optional, future...

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 34

Slide Title

f [] = []
f (x:xs) = f ys ++ [x] ++ f zs
 where
 ys = [a | a ← xs, a ≤ x]
 zs = [b | b ← xs, b > x]

A Taste of Haskell

What does f do ?

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 35

Slide Title
Quick Sort

qsort :: Ord a ⇒ [a] " [a]
qsort [] = []
qsort (x:xs) =
 qsort smaller ++ [x] ++ qsort larger
 where
 smaller = [a | a ← xs, a ≤ x]
 larger = [b | b ← xs, b > x]

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 36

Slide Title

q [3,2,4,1,5]

q [2,1] ++ [3] ++ q [4,5]

q [1] q []++ [2] ++ q [] q [5]++ [4] ++

[1] [] [] [5]

Quick Sort

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 37

Slide Title
Quick Sort

void quickSort(arr[], low, high)
{
 if (low < high)
 {
 /* pi is partitioning index, arr[pi] is now
 at right place */
 pi = partition(arr, low, high);

 quickSort(arr, low, pi - 1);
 quickSort(arr, pi + 1, high);
 }
}

/* This function takes last element as pivot, places
 the pivot element at its correct position in sorted
 array, and places all smaller (smaller than pivot)
 to left of pivot and all greater elements to right
 of pivot */
partition (arr[], low, high)
{
 // pivot (Element to be placed at right position)
 pivot = arr[high];

 i = (low - 1) // Index of smaller element

 for (j = low; j <= high- 1; j++)
 {
 // If current element is smaller than or
 // equal to pivot
 if (arr[j] <= pivot)
 {
 i++; // increment index of smaller element
 swap arr[i] and arr[j]
 }
 }
 swap arr[i + 1] and arr[high])
 return (i + 1)
}pseudo-code

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 38

Slide Title
True Story

1986:

Donald Knuth was asked to implement a program for the ”Programming pearls” column in

the Communications of ACM journal.

The task:

Read a file of text, determine the n most frequently used words, and print out a sorted list of

those words along with their frequencies.

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 38

Slide Title
True Story

1986:

Donald Knuth was asked to implement a program for the ”Programming pearls” column in

the Communications of ACM journal.

The task:

Read a file of text, determine the n most frequently used words, and print out a sorted list of

those words along with their frequencies.

His solution written in Pascal was 10 pages long.

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 39

Slide Title
True Story

Doug McIlroy

wikipedia.org/wiki/Douglas_McIlroy

https://en.wikipedia.org/wiki/Douglas_McIlroy

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 39

Slide Title

His response was a 6-line shell script that did the same:

 tr -cs A-Za-z '\n' |
 tr A-Z a-z |
 sort |
 uniq -c |
 sort -rn |
 sed ${1}q

True Story
Doug McIlroy

wikipedia.org/wiki/Douglas_McIlroy

https://en.wikipedia.org/wiki/Douglas_McIlroy

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 40

Slide Title

Taking inspiration from Doug McIlroy's UNIX shell script,

write an algorithm in your favorite programming language,

that solves the same problem: word frequencies

It's all about | pipelines

💻

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 41

FP...

How do I start on this journey?

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 42

Prerequisites

Category Theory
for Programmers

😅

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 43

The Book

 Bartosz Milewski
@BartoszMilewski

github.com/hmemcpy/milewski-ctfp-pdf

https://github.com/hmemcpy/milewski-ctfp-pdf

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 44

C++

twitter.com/tvaneerd/status/1387

https://twitter.com/tvaneerd/status/1387631977373765632?s=20&t=PPc9s1KKudr36Os1MIR9nw

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 45

The Book

amazon.com/Functional-Programming-programs-functional-techniques

Ivan Čukić
@ivan_cukic

https://www.amazon.com/Functional-Programming-programs-functional-techniques/dp/1617293814

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 46

Need a lift?

Lift ⬆

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 47

Need a lift?

boost.org/doc/libs/develop/libs/hof/doc/html/doc/

Higher-Order Functions

boost::hof

https://www.boost.org/doc/libs/develop/libs/hof/doc/html/doc/

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 48

Need a lift?

github.com/rollbear/lift

A C++17 library of simple constexpr higher order functions of predicates
and for making functional composition easier.

These help reduce code duplication and improve clarity, for example in
code using STL <algorithm>

https://github.com/rollbear/lift

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 49

Need a lift?

Higher order functions

equal
not_equal
less_than
less_equal
greater_than
greater_equal
negate

compose
when_all
when_any
when_none
if_then
if_then_else
do_all

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 50

Need a lift?
struct Employee {
 std::string name;
 unsigned number;
};

const std::string& select_name(const Employee& e) { return e.name; }
unsigned select_number(const Employee& e) { return e.number; }

std::vector<Employee> staff;

// sort employees by name
std::sort(staff.begin(), staff.end(),
 lift::compose(std::less<>{}, select_name);

// retire employee number 5
auto i = std::find_if(staff.begin(), staff.end(),
 lift::compose(lift::equal(5),
 select_number));
if (i != staff.end()) staff.erase(i);

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 51

Need a lift?

If you're using C++20 ranges you can get this (and more).

Projections... Oh my!

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 52

Need a lift?

Lifts overloaded functions named 'function' to one callable that can be
used with other higher order functions.

#define LIFT_THRICE(...) \
 noexcept(noexcept(__VA_ARGS__)) \
 -> decltype(__VA_ARGS__) \
 { \
 return __VA_ARGS__; \
 }

#define LIFT_FWD(x) std::forward<decltype(x)>(x)

#define LIFT(lift_func) [](auto&& ... p)
 LIFT_THRICE(lift_func(LIFT_FWD(p)...))

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 53

Need a lift?

Lifts overloaded functions named 'function' to one callable that can be
used with other higher order functions.

std::vector<int> vi;
...
std::vector<std::string> vs;
std::transform(std::begin(vi), std::end(vi),
 std::back_inserter(vs),
 LIFT(std::to_string)); //lift overloaded set of 9 functions

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 54

Need a lift?

youtube.com/watch?v=kcBlSmo3Xlk

https://www.youtube.com/watch?v=kcBlSmo3Xlk

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 55

📦

Boxes 📦

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 56

Type Constructors

There are various ways to hide 📦 a value:

unique_ptr<T> p;
shared_ptr<T> p;
vector<T> v;
optional<T> o;
function<T(int)> f;

Access the value within:

*p| p.get()
*p| p.get()
v[0] | *v.begin()
*o| o.value()
f(5)

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 57

Functor | Applicative | Monad

Performing actions on the hidden value, without breaking the 📦 BOX.

adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures

https://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 58

📦 The Box

don't look inside the 📦 box

don't use optional for error handling

when in doubt, draw inspiration from other APIs:  

Haskell (Maybe) or Rust (Option<T>)

std::optional can simplify APIs

adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures

https://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 59

📦 The Box

optional<T> f()

optional<T> g(optional<T> in)

optional<T> h(optional<T> in)

if / else

if / else

don't look inside the 📦 box🚫

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 60

📦 The Box

adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures

https://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 61

Example

Calling the a function on the std::string value inside the std::optional box.

string capitalize(string str);
...

optional<string> str = ...; // from an operation that could fail

string cap;
if (str)
 cap = capitalize(str.value()); // capitalize(*str);

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 62

Example

Calling the a function on the std::string value inside the std::optional box.

string capitalize(string str);
...

optional<string> str = ...; // from an operation that could fail

optional<string> cap;
if (str)
 cap = capitalize(str.value()); // capitalize(*str);

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 63

Lifting capitalize()

Lifted capitalize() operates on optional<string> and produces optional<string>

optional<string> liftedCapitalize(const optional<string> & s)
{
 optional<string> result;
 if (s)
 result = capitalize(*s);

 return result;
}

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 64

Lifting capitalize()

std::string std::string

std::optional<string> std::optional<string>

capitalize()

liftedCapitalize()

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 65

Lifting any function

Lifted f operates on optional<A> and produces optional

template<class A, class B>
optional fmap(function<B(A)> f, const optional<A> & o)
{
 optional result;
 if (o)
 result = f(*o); // wrap a

 return result;
}

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 66

Lifting any function

A B

std::optional<A> std::optional

f

lifted f

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 67

Composition of lifted functions

The real power of lifted functions shines when composing functions.

optional<string> str{" Some text "};

auto len = fmap<string, int>(&length,
 fmap<string, string>(&trim, str);

std::string

std::optional<string>

trim

liftedTrim

int

std::optional<int>

length

liftedLength

std::optional<string>

std::string

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 68

Lifting any function (take 2)

template<typename T, typename F>
auto fmap(const optional<T> & o, F f) -> decltype(f(o.value()))
{
 if (o)
 return f(o.value());
 else
 return {}; // std::nullopt
}

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 69

Composition Example

Let’s build a symbol table for a debugged program.

optional<int64_t> current_pc = ... ; // function address
...

optional<string> debug_location()
{
 if (!current_pc)
 return {};

 const auto function = dsym::load_symbol(current_pc.value());
 if (!function)
 return {};

 return dsym::to_string(function.value()); // function name
}

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 70

Composition Example (take 2)

Let’s build a symbol table for a debugged program.

optional<int64_t> current_pc = ... ; // function address
...

optional<string> debug_location()
{
 return fmap(
 fmap(current_pc, dsym::load_symbol),
 dsym::to_string
);
}

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 71

Composition Example (take 3)

We could create an fmap transformation that has the pipe | syntax, like ranges:

optional<int64_t> current_pc = ... ; // function address
...

optional<string> debug_location()
{
 return current_pc
 | fmap(dsym::load_symbol)
 | fmap(dsym::to_string);
}

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 72

Lifting a function to a vector

Lifted f operates on vector<A> and produces vector

template<class A, class B>
vector fmap(function<B(A)> f, vector<A> v)
{
 vector result;
 std::transform(v.begin(), v.end(), back_inserter(result), f);
 return result;
}

higher-order function

A B

std::vector<A> std::vector

f

lifted f

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 73

Lifting a function to a vector

Lifted length operates on vector<string> and produces vector<int>

vector<string> names{ ... };

vector<int> lengths = fmap<string, int>(&length, names);

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 74

Functor (recap)

Type constructor

create a box type that wraps another type

encapsulates the values of another type into a context

Function lifting

create a higher-order function (eg. fmap)

for any function A->B create a function box<A> -> box

Why?

no need to break encapsulation (no peek in 📦)

better composition (chaining, continuation)

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 75

📦 The Box

optional<int> string_view_to_int(string_view sv)
{
 const auto first = sv.data();
 const auto last = first + sv.size();

 int val = -1;
 const auto result = std::from_chars(first, last, val);

 if (result.ec == errc{} && result.ptr == last)
 return val;
 else
 return nullopt;
}

Monadic std::optional (C++23 P0798)

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 76

📦 The Box

Monadic std::optional (C++23 P0798)

cout << string_view_to_int(sv)
 .and_then([=](int val) -> optional<int> {
 const int logs = clamp(val, 0, max_logs);
 if (logs > 0)
 return logs;
 else
 return std::nullopt;
 })
 .transform([](int val) {
 return std::format("Collecting in {} logs.", val);
 })
 .or_else([] {
 return optional<string>{"Log error"};
 })
 .value()

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 77

Declarative style

youtube.com/watch?v=2ouxETt75R4

https://www.youtube.com/watch?v=2ouxETt75R4

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 78

Values

Expressions yield values, Statements do not;

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 79

Related session

cppcon.digital-medium.co.uk/session/2022/values/

https://cppcon.digital-medium.co.uk/session/2022/values/

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 80

Values

youtube.com/watch?v=_oBx_NbLghY

https://www.youtube.com/watch?v=_oBx_NbLghY

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 81

Most valuable Values

Value-oriented design reconciles functional and procedural programming by
focusing on value semantics.

Like functional programming, it promotes local reasoning and composition.

It is however pragmatic and can be implemented in idiomatic C++,

in existing codebases.

Juan Pedro Bolívar Puente

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 82

Values

youtube.com/watch?v=SAMR5GJ_GqA

https://www.youtube.com/watch?v=SAMR5GJ_GqA

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 83

Immutable DS

youtube.com/watch?v=sPhpelUfu8Q

https://www.youtube.com/watch?v=sPhpelUfu8Q

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 84

Immutable

Adding const always helps

const all the things!

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 85

Immutable

Adding const always helps

https://www.youtube.com/watch?v=dGCxMmGvocE

wait...

https://www.youtube.com/watch?v=dGCxMmGvocE

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 86

Immutable

compiler-explorer.com/z/9Wcc54r9x

https://compiler-explorer.com/z/9Wcc54r9x

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 86

Immutable
Top 4 places to never use const:

compiler-explorer.com/z/9Wcc54r9x

https://compiler-explorer.com/z/9Wcc54r9x

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 86

Immutable
Top 4 places to never use const:

compiler-explorer.com/z/9Wcc54r9x

https://compiler-explorer.com/z/9Wcc54r9x

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 86

Immutable
Top 4 places to never use const:

don't `const` non-reference return types

compiler-explorer.com/z/9Wcc54r9x

https://compiler-explorer.com/z/9Wcc54r9x

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 86

Immutable
Top 4 places to never use const:

don't `const` non-reference return types

don't `const` local values that need take advantage of implicit move-on-return

operations (even if you have multiple different objects that might be returned)

compiler-explorer.com/z/9Wcc54r9x

https://compiler-explorer.com/z/9Wcc54r9x

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 86

Immutable
Top 4 places to never use const:

don't `const` non-reference return types

don't `const` local values that need take advantage of implicit move-on-return

operations (even if you have multiple different objects that might be returned)

don't `const` non-trivial value parameters that you might need to return directly

from the function

compiler-explorer.com/z/9Wcc54r9x

https://compiler-explorer.com/z/9Wcc54r9x

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 86

Immutable
Top 4 places to never use const:

don't `const` non-reference return types

don't `const` local values that need take advantage of implicit move-on-return

operations (even if you have multiple different objects that might be returned)

don't `const` non-trivial value parameters that you might need to return directly

from the function

don't `const` any member data  

- it breaks implicit and explicit moves  

- it breaks common use cases of assignment
compiler-explorer.com/z/9Wcc54r9x

https://compiler-explorer.com/z/9Wcc54r9x

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 87

All the ra(n)ge...

C++ 20 Ranges

The beginning of the end for [begin, end)

Jeff Garland

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 88

Ranges

New algorithms

Views
Actions

Projections

Pipelines

Lazy evaluation

Very efficient generated code

Many adaptors

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 89

A taste of ranges

Print only the even elements of a range in reverse order:

std::for_each(
 std::crbegin(v), std::crend(v),
 [](auto const i) {
 if(is_even(i))
 cout << i;
 });

for (auto const i : v
 | rv::reverse
 | rv::filter(is_even))
{
 cout << i;
}

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 90

A taste of ranges

Skip the first 2 elements of the range and print only the even numbers of the next 3 in the range:

auto it = std::cbegin(v);
std::advance(it, 2);
auto ix = 0;
while (it != cend(v) && ix++ < 3)
{
 if (is_even(*it))
 cout << (*it);
 it++;
}

for (auto const i : v
 | rv::drop(2)
 | rv::take(3)
 | rv::filter(is_even))
{
 cout << i;
}

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 91

A taste of ranges

Modify an unsorted range so that it retains only the unique values but in reverse order.

vector<int> v{ 21, 1, 3, 8, 13, 1, 5, 2 };

std::sort(std::begin(v), std::end(v));

v.erase(
 std::unique(std::begin(v), std::end(v)),
 std::end(v));

std::reverse(std::begin(v), std::end(v));

vector<int> v{ 21, 1, 3, 8, 13,
 1, 5, 2 };

v = std::move(v) |
 ra::sort |
 ra::unique |
 ra::reverse;

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 92

A taste of ranges

Create a range of strings containing the last 3 numbers divisible to 7 in the range [101, 200],

in reverse order.

vector<std::string> v;

for (int n = 200, count = 0;
 n >= 101 && count < 3; --n)
{
 if (n % 7 == 0)
 {
 v.push_back(to_string(n));
 count++;
 }
}

auto v = rs::iota_view(101, 201)
 | rv::reverse
 | rv::filter([](auto v) { return v%7==0; })
 | rv::transform(to_string)
 | rv::take(3)
 | rs::to_vector;

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 93

A taste of ranges

C++20 ranges ruined one more interview question 😄

auto strings = std::string_view{"Hello C++ 20"}
 | std::views::split(' ');

for (const auto & ref : strings)
 std::cout << std::string_view{ref.begin(), ref.end()} << '\n';

a range of ranges

lazily evaluated

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 94

Slide Title

Taking inspiration from Doug McIlroy's UNIX shell script:

It's all about | pipelines

 tr -cs A-Za-z '\n' |
 tr A-Z a-z |
 sort |
 uniq -c |
 sort -rn |
 sed ${1}q

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 95

Word frequencies

const auto words =
 istream_range<std::string>(std::cin)
 | view::transform(string_to_lower)
 | view::transform(string_only_alnum)
 | view::remove_if(&std::string::empty)
 | ranges::to_vector | action::sort;

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 96

Word frequencies

const auto results = words
 | view::group_by(std::equal_to())
 | view::transform([] (const auto & group) {
 const auto b = std::begin(group);
 const auto e = std::end(group);
 const auto size = std::distance(b, e);
 const std::string word = *b;
 return make_pair(size, word);
 })
 | ranges::to_vector | action::sort;

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 97

Word frequencies

for (auto value : results | view::reverse
 | view::take(n))
{  
 std::cout << value.first << ": " << value.second << "\n";
}

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 98

Slide Title
Remember him?

Phil Wadler and others develop type classes and monads,
two of the main innovations of Haskell

1990s

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 99

Slide Title

"Make your code readable.

Pretend the next person who looks

at your code is a psychopath and

they know where you live."

Phil Wadler

Takeaway
<*> Čukić

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 100

Enjoy the rest of the conference!

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 101

Our sessions

@ciura_victor
Victor Ciura

Senior SW Engineer
Visual C++

CppCon
September 2022

The Imperatives Must Go!

https://twitter.com/ciura_victor

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 103

Extra

Bonus problem

104

Counting adjacent repeated values in a sequence.

How many of you solved this textbook exercise before ?

(in any programming language)

🙋🙋

105

Counting adjacent repeated values in a sequence

{ 5, 8, 8, 2, 1, 1, 9, 4, 4, 7 }

106

Counting adjacent repeated values in a sequence

{ 5, 8, 8, 2, 1, 1, 9, 4, 4, 7 }
Visual hint:

106

Counting adjacent repeated values in a sequence

{ 5, 8, 8, 2, 1, 1, 9, 4, 4, 7 }

{ 5, 8, 8, 2, 1, 1, 9, 4, 4, 7 }

Visual hint:

106

Counting adjacent repeated values in a sequence

{ 5, 8, 8, 2, 1, 1, 9, 4, 4, 7 }

{ 5, 8, 8, 2, 1, 1, 9, 4, 4, 7 }

Visual hint:

106

Counting adjacent repeated values in a sequence

{ 5, 8, 8, 2, 1, 1, 9, 4, 4, 7 }

{ 5, 8, 8, 2, 1, 1, 9, 4, 4, 7 }

Visual hint:

106

Counting adjacent repeated values in a sequence

{ 5, 8, 8, 2, 1, 1, 9, 4, 4, 7 }

{ 5, 8, 8, 2, 1, 1, 9, 4, 4, 7 }

Visual hint:

106

Counting adjacent repeated values in a sequence

{ 5, 8, 8, 2, 1, 1, 9, 4, 4, 7 }

{ 5, 8, 8, 2, 1, 1, 9, 4, 4, 7 }

Visual hint:

106

Counting adjacent repeated values in a sequence

{ 5, 8, 8, 2, 1, 1, 9, 4, 4, 7 }

{ 5, 8, 8, 2, 1, 1, 9, 4, 4, 7 }

Visual hint:

(==)

106

Counting adjacent repeated values in a sequence

{ 5, 8, 8, 2, 1, 1, 9, 4, 4, 7 }

{ 5, 8, 8, 2, 1, 1, 9, 4, 4, 7 }

{ 0, 1, 0, 0, 1, 0, 0, 1, 0 }

Visual hint:

(==)

106

Counting adjacent repeated values in a sequence

{ 5, 8, 8, 2, 1, 1, 9, 4, 4, 7 }

{ 5, 8, 8, 2, 1, 1, 9, 4, 4, 7 }

{ 0, 1, 0, 0, 1, 0, 0, 1, 0 }

Visual hint:

(+) ➡ 3

(==)

107

Counting adjacent repeated values in a sequenceC++

Let me guess... a bunch of for loops, right ?

107

Counting adjacent repeated values in a sequenceC++

Let me guess... a bunch of for loops, right ?

How about something shorter ? 

An STL algorithm maybe ?

108

template<class InputIt1, class InputIt2,
 class T,
 class BinaryOperation1, class BinaryOperation2>
T inner_product(InputIt1 first1, InputIt1 last1,
 InputIt2 first2, T init,
 BinaryOperation1 op1 // "sum" function
 BinaryOperation2 op2) // "product" function
{
 while (first1 != last1)
 {
 init = op1(init, op2(*first1, *first2));
 ++first1;
 ++first2;
 }
 return init;
}

Counting adjacent repeated values in a sequenceC++

https://en.cppreference.com/w/cpp/algorithm/inner_product

https://en.cppreference.com/w/cpp/algorithm/inner_product

109

Counting adjacent repeated values in a sequenceC++

template <typename T>
int count_adj_equals(const T & xs) // requires non-empty range
{
 return std::inner_product( 
 std::cbegin(xs), std::cend(xs) - 1, // to penultimate elem  
 std::cbegin(xs) + 1, // collection tail  
 0,  
 std::plus{},  
 std::equal_to{}); // yields boolean => 0 or 1
}

110

Counting adjacent repeated values in a sequenceC++

If you found that piece of code in a code-base,

would you understand what it does* ?❓
🙋🙋* without my cool diagram & animation

111

Let's go back to Haskell for a few minutes...

Counting adjacent repeated values in a sequence

112

Counting adjacent repeated values in a sequence

[5, 8, 8, 2, 1, 1, 9, 4, 4, 7]
Visual hint:

112

Counting adjacent repeated values in a sequence

[5, 8, 8, 2, 1, 1, 9, 4, 4, 7]

[5, 8, 8, 2, 1, 1, 9, 4, 4, 7]

Visual hint:

112

Counting adjacent repeated values in a sequence

[5, 8, 8, 2, 1, 1, 9, 4, 4, 7]

[5, 8, 8, 2, 1, 1, 9, 4, 4, 7]

Visual hint:

112

Counting adjacent repeated values in a sequence

[5, 8, 8, 2, 1, 1, 9, 4, 4, 7]

[5, 8, 8, 2, 1, 1, 9, 4, 4, 7]

Visual hint:

112

Counting adjacent repeated values in a sequence

[5, 8, 8, 2, 1, 1, 9, 4, 4, 7]

[5, 8, 8, 2, 1, 1, 9, 4, 4, 7]

Visual hint:

112

Counting adjacent repeated values in a sequence

[5, 8, 8, 2, 1, 1, 9, 4, 4, 7]

[5, 8, 8, 2, 1, 1, 9, 4, 4, 7]

Visual hint:

112

Counting adjacent repeated values in a sequence

[5, 8, 8, 2, 1, 1, 9, 4, 4, 7]

[5, 8, 8, 2, 1, 1, 9, 4, 4, 7]

Visual hint:

(-)

112

Counting adjacent repeated values in a sequence

[5, 8, 8, 2, 1, 1, 9, 4, 4, 7]

[5, 8, 8, 2, 1, 1, 9, 4, 4, 7]

[-3, 0, 6, 1, 0, -8, 5, 0, -3]

Visual hint:

(-)

112

Counting adjacent repeated values in a sequence

[5, 8, 8, 2, 1, 1, 9, 4, 4, 7]

[5, 8, 8, 2, 1, 1, 9, 4, 4, 7]

[-3, 0, 6, 1, 0, -8, 5, 0, -3]

Visual hint:

(==0) ➡ 3

(-)

113

Counting adjacent repeated values in a sequence

let xs = [5, 8, 8, 2, 1, 1, 9, 4, 4, 7]

count_if f = length . filter f
adj_diff = mapAdjacent (-)
count_adj_equals = count_if (==0) . adj_diff

> count_adj_equals xs
3

That's it !

114

Counting adjacent repeated values in a sequence
Let's break it down:

// C++
[](auto a, auto b) { return a + b; }
plus{}

[](auto e) ->bool { return e == 1; }

// Haskell
(\a b -> a + b)
(+)

(\e -> e == 1)
(==1)

Lambdas & sections

115

Counting adjacent repeated values in a sequence
Let's break it down:

length::[a] -> Int
filter::(a->Bool) -> [a] -> [a]

=>

count_if::(a->Bool) -> [a] -> Int
count_if f = length . filter f

116

Counting adjacent repeated values in a sequence
Let's break it down:

mapAdjacent::(a->a->b) -> [a] -> [b]
mapAdjacent _ [] = []
mapAdjacent f xs = zipWith f xs (tail xs)

116

Counting adjacent repeated values in a sequence
Let's break it down:

mapAdjacent::(a->a->b) -> [a] -> [b]
mapAdjacent _ [] = []
mapAdjacent f xs = zipWith f xs (tail xs)

(-)::a -> a -> a
adj_diff = mapAdjacent (-)

=>

adj_diff::[a] -> [a]

117

(==0)::a -> Bool
count_if::(a->Bool) -> [a] -> Int
adj_diff::[a] -> [a]

Counting adjacent repeated values in a sequence
Let's break it down:

count_adj_equals::[a] -> Int
count_adj_equals = count_if (==0) . adj_diff

118

let xs = [5, 8, 8, 2, 1, 1, 9, 4, 4, 7]

> let ds = adj_diff xs
[-3, 0, 6, 1, 0, -8, 5, 0, -3]

> count_if(==0) ds
3

Counting adjacent repeated values in a sequence
Let's break it down:

119

Counting adjacent repeated values in a sequence

count_if f = length . filter f
adj_diff = mapAdjacent (-)
count_adj_equals = count_if (==0) . adj_diff

The algorithm

120

Counting adjacent repeated values in a sequenceC++
Back to modern C++

120

Counting adjacent repeated values in a sequenceC++
Back to modern C++

template <typename T>
int count_adj_equals(const T & xs)
{
 return accumulate(0,
 zip(xs, tail(xs)) | transform(equal_to{}));
}

120

Counting adjacent repeated values in a sequenceC++
Back to modern C++

template <typename T>
int count_adj_equals(const T & xs)
{
 return accumulate(0,
 zip(xs, tail(xs)) | transform(equal_to{}));
}

Ranges FTW

