
1

The Case for a Standardized
Package Description Format

Luis Caro Campos

2022 Annual C++ Developer Survey "Lite"

How do you manage your C++ 1st and 3rd party libraries?

3

Which of these do you find frustrating …?

4

Which of these do you find frustrating …?

5

Consuming third party libraries: ZLIB

My Sources

C++ source files

ThirdParty

Build Scripts

My Project

zlib source files

zlib

Build scripts?

● Single library
● ~15 source files
● 2 public header files

6

Consuming third party libraries: ZLIB

My Sources

C++ source files

ThirdParty

Build Scripts

My Project

zlib source files

zlib

Build scripts?

● Single library
● ~15 source files
● 2 public header files

7

Consuming third party libraries: ZLIB

My Sources

C++ source files

ThirdParty

Build Scripts

My Project

zlib source files

zlib

Build scripts?

● Single library
● ~15 source files
● 2 public header files

8

Consuming third party libraries: ZLIB

My Sources

C++ source files

ThirdParty

Build Scripts

My Project

zlib source files

zlib

Build scripts?

● Single library
● ~15 source files
● 2 public header files

9

Consuming third party libraries: Boost

My Sources

C++ source files

ThirdParty

Build Scripts

My Project

A lot

boost

Build scripts?

more

source files

10

Consuming third party libraries: Boost

My Sources

C++ source files

ThirdParty

Build Scripts

My Project

A lot

boost

Build scripts?

more

source files

11

Consuming third party libraries: Boost (cont’d)

My Sources

C++ source files

ThirdParty

Build Scripts

My Project

A lot

boost

Build scripts?

more

source files

github.com/arnaudgelas/ExternalProject

12

Consuming third party libraries: Boost (cont’d)

My Sources

C++ source files

ThirdParty

Build Scripts

My Project

A lot

boost

Build scripts?

more

source files github.com/bazelbuild/rules_foreign_cc

13

Consuming third party libraries: Another option

My Sources

C++ source files

ThirdParty

Build Scripts

My Project

C++ source files

FooBar

Build scripts

A match!
We may be able to
perform project
composition

14

Consuming third party libraries: Another option

My Sources

C++ source files

ThirdParty

Build Scripts

My Project

FooBar (submodule)

“include”

15

Header only libraries

● Simplest case
● Small footprint on your build scripts

○ Only need to expose an include directory, no need to involve the compiler or linker
● More than 1 in 4 recipes in ConanCenter are header only
● Library authors know this

16

Header only libraries

17

Header only libraries

18

Recap

● All examples so far are different ways of vendoring your dependencies inside
your project

● When building a library or application that vendors dependencies - it’s very
convenient

○ It might “just work”
● But when you depend on a library that vendors dependencies - not so much!

○ This is a big headache for package repository maintainers (especially Linux distros)
○ The dependencies of this library might conflict with your own dependencies
○ For library authors that want their libraries available in these public repositories, they’ll have so

provide a way of consuming dependencies externally

19

Consuming Libraries

My Sources

C++ source files

ThirdParty

Build Scripts

My Project

foo source files

foo

Build scripts

My Sources

C++ source files

ThirdParty

Build Scripts

My Project

foo
“Download and build”

My Sources

C++ source files

ThirdParty

Build Scripts

My Project

foo

Compatible Scripts

20

Consuming Libraries

My Sources

C++ source files

ThirdParty

Build Scripts

My Project

foo source files

foo

Build scripts

My Sources

C++ source files

ThirdParty

Build Scripts

My Project

foo
“Download and build”

My Sources

C++ source files

ThirdParty

Build Scripts

My Project

foo

Compatible Scripts

21

Consuming Libraries

My Sources

C++ source files

ThirdParty

Build Scripts

My Project

foo source files

foo

Build scripts

My Sources

C++ source files

ThirdParty

Build Scripts

My Project

foo
“Download and build”

My Sources

C++ source files

ThirdParty

Build Scripts

My Project

foo

Compatible Scripts

22

Consuming Libraries

My Sources

C++ source files

ThirdParty

Build Scripts

My Project

foo source files

foo

Build scripts

My Sources

C++ source files

ThirdParty

Build Scripts

My Project

foo
“Download and build”

My Sources

C++ source files

ThirdParty

Build Scripts

My Project

foo

Compatible Scripts

23

Consuming Libraries (cont’d)

● How we refer to libraries depends on the abstractions provided by the build system we are
using (CMake, Bazel, Makefiles, Visual Studio or Xcode Projects…)

○ The “modern” way is based on “usage requirements” -
○ But in some cases we still see build scripts that propagate “flags” explicitly

github.com/qt/qtbase

24

Consuming Libraries (cont’d)

● How we refer to libraries depends on the abstractions provided by the build system we are
using (CMake, Bazel, Makefiles, Visual Studio or Xcode Projects…)

○ The “modern” way is based on “usage requirements” -
○ But in some cases we still see build scripts that propagate “flags” explicitly

github.com/protocolbuffers/protobuf

25

Usage requirements

This is what happens under the hood - flags are passed to the compiler and linker

c++ -DBOOST_ATOMIC_DYN_LINK -DBOOST_ATOMIC_NO_LIB -DBOOST_FILESYSTEM_DYN_LINK
-DBOOST_FILESYSTEM_NO_LIB -isystem /path/to/boost/include -MD -MT hello.cpp.o -MF
hello.cpp.o.d hello.cpp.o -c hello.cpp

c++ -Wl,-search_paths_first -Wl,-headerpad_max_install_names hello.cpp.o -o hello
-Wl,-rpath,/path/to/boost/lib /path/to/boost/lib/libboost_filesystem.dylib
/path/to/boost/lib/libboost_atomic.dylib

26

Usage requirements (cont’d)

Our code might interact with
external libraries by referring to
entities like these:

Qt::ZlibPrivate

Boost::filesystem

@boost//:algorithm

Depending on the context, these
are then translated to compile
and link flags.
In CMake these are called
“targets”

Who performs this
“translation”?

This will typically be a feature of
the (meta) build system: CMake,
Bazel, Meson, B2, etc.

Who provides this
information?
When? How?

27

Find logic

My Sources

C++ source files

ThirdParty

Build Scripts

My Project

boost source files

Boost

“Find Boost”

Given some known assumptions about a
library:

● A filename
● A common filesystem location
● How it depends on other libraries
● A file structure (nearby files relative to an

anchor one)
… Locate it and populate the information in the
target

28

Consuming Libraries

My Sources

C++ source files

ThirdParty

Build Scripts

My Project

foo source files

foo

Build scripts

My Sources

C++ source files

ThirdParty

Build Scripts

My Project

foo

“Download and
build”

My Sources

C++ source files

ThirdParty

Build Scripts

My Project

foo

Compatible Scripts

My Sources

C++ source files

ThirdParty

Build Scripts

My Project

foo

“Find foo”

We can now consume libraries
“externally provided” -
As long as they satisfy the
assumptions we made about
them!

29

Encapsulation to the rescue

My Sources

C++ source files

ThirdParty

Build Scripts

My Project

Foo

FindFoo.cmake

Foo::libfoo

Foo

lib

include

libfoo.so

foo

foo.h

Foo binary package

30

Encapsulation to the rescue

My Sources

C++ source files

ThirdParty

Build Scripts

My Project

Foo

FindFoo.cmake

Foo::libfoo

Foo

lib

include

libfoo.so

foo

foo.h

Foo binary package

cmake

FooConfig.cmake

31

Config files packaged with binaries

● To “consume” a library, all we need now is:
○ The package name
○ The component name

● The following can now be private as far as our build scripts are concerned:
○ The file structure and filenames of the source files for the dependency
○ The build system and how to invoke it
○ The filenames of the compiled libraries
○ The file structure of the compiled “package”
○ The internal dependency graph (which sub-components depend on which others)

32

Config files packaged with binaries

ISO C++ Developer Survey:
 How do you manage first and third party libraries?

33

Config files packaged with binaries - disadvantages

● There are still a few unanswered questions:
○ how does our build system know where to locate this file?
○ Who and when is this file generated?

● And a big shortcoming:
○ CMake package config files (the current gold standard) are not build system agnostic

■ They are full-fledged CMake scripts and may contain statements rather than just being
descriptive

34

CMake package config files

35

pkg-config and Libtool

● Including special files alongside binary artifacts is far from a new concept
○ pkg-config and Libtool have been doing it for a really long time

Libtool control files

pkg-config files

36

Libtool

● It parses the information implicitly when compiler is invoked via libtool.

libtool --mode=link gcc -g -O -o test test.o /path/to/lib/libhello.la

gcc -g -O -o .libs/test test.o -Wl,--rpath -Wl,/path/to/lib /path/to/lib/libhello.a -lm

37

pkg-config

prefix=/usr
exec_prefix=${prefix}
includedir=${prefix}/include
libdir=${exec_prefix}/lib

Name: foo
Description: The foo library
Version: 1.0.0
Cflags: -I${includedir}/foo
Libs: -L${libdir} -lfoo

prefix=/usr
exec_prefix=${prefix}
includedir=${prefix}/include
libdir=${exec_prefix}/lib

Name: bar
Description: The bar library
Version: 2.1.2
Requires.private: foo >= 0.7
Cflags: -I${includedir}
Libs: -L${libdir} -lbar

foo.pc bar.pc

gcc `pkg-config --cflags --libs bar` -o myapp myapp.c

-I/usr/include/foo 38

Libtool and pkg-config today

Libtool

● Requires buildystem to explicitly
invoke libtool to call the
compiler for us

● Typically limited to projects that
abide by the GNU Build System
conventions

● Most use cases are now
covered by pkg-config - distro
maintainers prefer this

pkg-config

● Still very popular in Unix-like
environments

● A .pc file can only describe a single
component

● It’s oriented to flags - rather than
describing properties

○ There’s a desire to isolate build
script maintainers from globals
and rely on transitive usage
requirements instead

39

Where we are today

My Sources

C++ source files

Build Scripts

My Project Foo

lib

include

libfoo.so

foo

foo.h

Foo binary package

share

FooConfig.cmake

foo.pc

40

Recap

● We have our project, our sources, our build scripts
● We want our build scripts to not be concerned about:

○ External library source files
○ How those files are built

● But we do want to be able to consume libraries in our code (compile+link)
● We want to be agnostic as to how/where the library was built
● The current approaches all have limitations

41

What is a library?

libfoo.so

42

What is a library?

libfoo.so

Dynamic linker

Static linker

43

What is a library?

libfoo.so

libfoo.aa

lib Dynamic linker

Static linker

44

libfoo.so

libfoo.aa

libfoo_comp1.aa

libfoo_comp2.aa

lib Dynamic linker

Static linker

What is a library?

45

What is a library?

libfoo.so

foo.h

include

foo

libfoo.aa

libfoo_comp1.aa

libfoo_comp2.aa

lib Dynamic linker

Static linker

Compiler

46

What is a library?

libfoo.so

foo.h

include

foo

libfoo.aa

libfoo_comp1.aa

libfoo_comp2.aa

lib Dynamic linker

Static linker

Compiler

Module interface unit

47

What is a library?

libfoo.so

foo.h

include

foo

libfoo.aa

libfoo_comp1.aa

libfoo_comp2.aa

lib

share

foo-config.cmake

Dynamic linker

Static linker

Compiler

Build system

Module interface unit

48

What is a library?

libfoo.so

foo.h

include

foo

libfoo.aa

libfoo_comp1.aa

libfoo_comp2.aa

lib

share

foo-config.cmake

foo::comp1

Dynamic linker

Static linker

Compiler

Build system

Developer

Module interface unit

49

What is a library?

libfoo.so

foo.h

include

foo

libfoo.aa

libfoo_comp1.aa

libfoo_comp2.aa

lib

share

foo-config.cmake

foo::comp1

Dynamic linker

Static linker

Compiler

Build system

Developer

Package
Manager

package

Module interface unit

50

The way forward

● The goal: make it easier for developers to use libraries in their build scripts

target_link_libraries(my_awesome_app PRIVATE Boost::filesystem)

● This starts with build system support:
○ Transitive usage requirements in favor of compile/link flags
○ Ability to load and parse the information from an externally provided package description file
○ Interoperability:

■ Different build systems can opt to implement support for a common format
■ Completely decoupled from the build system of the libraries we are consuming

51

Proposed approaches

Common Package Specification
(P1313R0)
Document: P1313R0
Date: 2018-10-07
SG15 - Tooling
Author: Matthew Woehlke

{
 "Name": "sample",
 "Description": "Sample CPS",
 "Version": "1.2.0",
 "Compat-Version": "0.8.0",
 "Platform": {
 "Isa": "x86_64",
 "Kernel": "linux",
 },
 "Configurations": ["Optimized", "Debug"],
 "Default-Components": ["sample"],
 "Components": {
 "sample-core": {
 "Type": "interface",
 "Definitions": ["SAMPLE"],
 "Includes": ["@prefix@/include"]
 },
 "sample": {
 "Type": "dylib",
 "Requires": [":sample-core"],
 "Configurations": {
 "Optimized": {
 "Location":
"@prefix@/lib64/libsample.so.1.2.0"
 },
 "Debug": {
 "Location":
"@prefix@/lib64/libsample_d.so.1.2.0"
 }
 }
 …
 … 52

Proposed approaches (cont’d)

● Text files with a specific syntax
● Two concepts:

○ Packages and Libraries

Author: Colby Pike
Date: 2019

53

Libman (cont’d)

54

The role of the package manager

Foo

lib

include

libfoo.so

foo

foo.h

Foo binary package

cmake

FooConfig.cmake Consumer

55

The role of the package manager (cont’d)

● We now have modern, dedicated C++ package managers
○ Dedicated support to build libraries from source
○ Ability to model ABI compatibility
○ Integrations with build systems…
○ Ability to resolve dependency-graphs with C++ concepts (visibility, transitiveness, package

variants/options).
● There’s also a fundamental aspect:

○ The package manager knows where

c++ -DBOOST_ATOMIC_DYN_LINK -DBOOST_ATOMIC_NO_LIB -DBOOST_FILESYSTEM_DYN_LINK
-DBOOST_FILESYSTEM_NO_LIB -isystem /path/to/boost/include -MD -MT hello.cpp.o -MF
hello.cpp.o.d hello.cpp.o -c hello.cpp

c++ -Wl,-search_paths_first -Wl,-headerpad_max_install_names hello.cpp.o -o hello
-Wl,-rpath,/path/to/boost/lib /path/to/boost/lib/libboost_filesystem.dylib
/path/to/boost/lib/libboost_atomic.dylib

56

The role of the package manager (cont’d)

Foo

lib

include

libfoo.so

foo

foo.h

Foo binary package

share

descriptor Consumer
Package and
dependency
manager

Dependencies

57

The role of the package manager (cont’d)

● Generated pkg-config, libtool and exported CMake files often contain
hardcoded absolute paths

○ Pointing to locations that may only exist in the machine the package was built
○ This must be known at package creation time (and in some cases, at compile time)
○ Imposing constraints on where consumers can place precompiled binary packages

● This may be okay in some scenarios:
○ System wide package managers (apt, homebrew, …)
○ Workflows that impose building from source on the machine consuming the package

58

Interoperability with Conan

[requires]
zlib/1.12.12
boost/1.78.0
fmt/9.1.0

conanfile.txt

C++ project

conan install .

Pkg-config .pc files

*-config.cmake files

Visual Studio .props files

Xcode .xconfig files

Autotools env flags
…

59

Interoperability with Conan (cont’d)

● This functionality requires recipes expressing all the information that would
otherwise be contained in a package description file

○ Transitive usage requirements: compile flags, include directories, dependencies between
library components

github.com/conan-io/conan-center-index: Conan recipe for Qt6

60

Interoperability with Conan (cont’d)

● This functionality requires recipes expressing all the information that would
otherwise be contained in a package description file

○ Transitive usage requirements: compile flags, include directories, dependencies between
library components

github.com/conan-io/conan-center-index: Conan recipe for Qt6
Recipes need to
“Duplicate” information that the
library’s build system already
knows about 61

Interoperability

● Libraries don’t provide this information in a standard way
● A lot of the heavy lifting is done by repository maintainers to “connect”

things together
○ Conan Center Index recipes, vcpkg ports, homebrew formulas, Linux distro packages, Conda

recipes, your local “infra” team
● This leads to “lock-in” - hard for teams to try out different solutions

62

Closing remarks

● There’s no standard way for libraries to communicate usage requirements to
consumers

○ CMake exported targets work really well - for CMake
○ Otherwise developers fall back to a myriad of suboptimal ways to consume dependencies
○ Repository maintainers have been successful at creating isolated ecosystems

● The concept of a library has evolved over the years
○ Handled at different levels that are completely decoupled from each other
○ C++ modules are adding a new level of complexity!

● There have been proposals to fix this
○ But have gained very little traction in years
○ Difficult to get the scope right

● Let’s fix this!

63

Thank you

64

Any questions?

65

Acknowledgements

Icons made by Iconixar from www.flaticon.com

66

https://www.flaticon.com/authors/iconixar
http://www.flaticon.com

