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2022 Annual C++ Developer Survey "Lite"

How do you manage your C++ 1st and 3rd party libraries?
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Which of these do you find frustrating …?
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Which of these do you find frustrating …?
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Consuming third party libraries: ZLIB

My Sources

C++ source files

ThirdParty

Build Scripts 

My Project

zlib source files

zlib

Build scripts?

● Single library
● ~15 source files
● 2 public header files
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Consuming third party libraries: Boost
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Consuming third party libraries: Boost (cont’d)

My Sources

C++ source files

ThirdParty

Build Scripts 

My Project

A lot

boost

Build scripts?

more

source files

github.com/arnaudgelas/ExternalProject
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Consuming third party libraries: Boost (cont’d)

My Sources

C++ source files

ThirdParty

Build Scripts 

My Project

A lot

boost

Build scripts?

more

source files github.com/bazelbuild/rules_foreign_cc
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Consuming third party libraries: Another option

My Sources

C++ source files

ThirdParty

Build Scripts 

My Project

C++ source files

FooBar

Build scripts

A match!
We may be able to 
perform project 
composition
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Consuming third party libraries: Another option

My Sources

C++ source files

ThirdParty

Build Scripts 

My Project

FooBar (submodule)

“include”
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Header only libraries

● Simplest case
● Small footprint on your build scripts

○ Only need to expose an include directory, no need to involve the compiler or linker
● More than 1 in 4 recipes in ConanCenter are header only
● Library authors know this
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Header only libraries
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Header only libraries
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Recap

● All examples so far are different ways of vendoring your dependencies inside 
your project

● When building a library or application that vendors dependencies - it’s very 
convenient

○ It might “just work”
● But when you depend on a library that vendors dependencies - not so much!

○ This is a big headache for package repository maintainers (especially Linux distros)
○ The dependencies of this library might conflict with your own dependencies
○ For library authors that want their libraries available in these public repositories, they’ll have so 

provide a way of consuming dependencies externally 
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Consuming Libraries
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Consuming Libraries (cont’d) 

● How we refer to libraries depends on the abstractions provided by the build system we are 
using (CMake, Bazel, Makefiles, Visual Studio or Xcode Projects…)

○ The “modern” way is based on “usage requirements” -
○ But in some cases we still see build scripts that propagate “flags” explicitly

github.com/qt/qtbase
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Consuming Libraries (cont’d) 

● How we refer to libraries depends on the abstractions provided by the build system we are 
using (CMake, Bazel, Makefiles, Visual Studio or Xcode Projects…)

○ The “modern” way is based on “usage requirements” -
○ But in some cases we still see build scripts that propagate “flags” explicitly

github.com/protocolbuffers/protobuf
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Usage requirements

This is what happens under the hood - flags are passed to the compiler and linker

c++ -DBOOST_ATOMIC_DYN_LINK -DBOOST_ATOMIC_NO_LIB -DBOOST_FILESYSTEM_DYN_LINK 
-DBOOST_FILESYSTEM_NO_LIB -isystem /path/to/boost/include -MD -MT hello.cpp.o -MF 
hello.cpp.o.d hello.cpp.o -c hello.cpp

c++ -Wl,-search_paths_first -Wl,-headerpad_max_install_names hello.cpp.o -o hello 
-Wl,-rpath,/path/to/boost/lib /path/to/boost/lib/libboost_filesystem.dylib 
/path/to/boost/lib/libboost_atomic.dylib
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Usage requirements (cont’d)

Our code might interact with 
external libraries by referring to 
entities like these:

Qt::ZlibPrivate

Boost::filesystem

@boost//:algorithm

Depending on the context, these 
are then translated to compile 
and link flags.
In CMake these are called 
“targets”

Who performs this 
“translation”?

This will typically be a feature of 
the (meta) build system: CMake, 
Bazel, Meson, B2, etc.

Who provides this 
information? 
When? How?
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Find logic

My Sources

C++ source files

ThirdParty

Build Scripts 

My Project

boost source files

Boost

“Find Boost”

Given some known assumptions about a 
library:

● A filename
● A common filesystem location
● How it depends on other libraries
● A file structure (nearby files relative to an 

anchor one)
… Locate it and populate the information in the 
target 
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Consuming Libraries

My Sources

C++ source files

ThirdParty

Build Scripts 

My Project

foo source files

foo

Build scripts

My Sources

C++ source files

ThirdParty

Build Scripts 

My Project

foo

“Download and 
build”

My Sources

C++ source files

ThirdParty

Build Scripts 

My Project

foo

Compatible Scripts 

My Sources

C++ source files

ThirdParty

Build Scripts 

My Project

foo

“Find foo”

We can now consume libraries 
“externally provided”  -
As long as they satisfy the 
assumptions we made about 
them!
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Encapsulation to the rescue

My Sources

C++ source files
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My Project
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Foo binary package
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Config files packaged with binaries

● To “consume” a library, all we need now is:
○ The package name
○ The component name

● The following can now be private as far as our build scripts are concerned:
○ The file structure and filenames of the source files for the dependency
○ The build system and how to invoke it
○ The filenames of the compiled libraries
○ The file structure of the compiled “package”
○ The internal dependency graph (which sub-components depend on which others)
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Config files packaged with binaries

ISO C++ Developer Survey:
     How do you manage first and third party libraries?
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Config files packaged with binaries - disadvantages

● There are still a few unanswered questions: 
○ how does our build system know where to locate this file?
○ Who and when is this file generated?

● And a big shortcoming:
○ CMake package config files (the current gold standard) are not build system agnostic

■ They are full-fledged CMake scripts and may contain statements rather than just being 
descriptive
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CMake package config files
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pkg-config and Libtool

● Including special files alongside binary artifacts is far from a new concept
○ pkg-config and Libtool have been doing it for a really long time

Libtool control files

pkg-config files
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Libtool

● It parses the information implicitly when compiler is invoked via libtool.

libtool --mode=link gcc -g -O -o test test.o  /path/to/lib/libhello.la

gcc -g -O -o .libs/test test.o -Wl,--rpath -Wl,/path/to/lib /path/to/lib/libhello.a -lm
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pkg-config

prefix=/usr
exec_prefix=${prefix}
includedir=${prefix}/include
libdir=${exec_prefix}/lib

Name: foo
Description: The foo library
Version: 1.0.0
Cflags: -I${includedir}/foo
Libs: -L${libdir} -lfoo

prefix=/usr
exec_prefix=${prefix}
includedir=${prefix}/include
libdir=${exec_prefix}/lib

Name: bar
Description: The bar library
Version: 2.1.2
Requires.private: foo >= 0.7
Cflags: -I${includedir}
Libs: -L${libdir} -lbar

foo.pc bar.pc

gcc `pkg-config --cflags --libs bar` -o myapp myapp.c

-I/usr/include/foo 38



Libtool and pkg-config today

Libtool

● Requires buildystem to explicitly 
invoke libtool to call the 
compiler for us

● Typically limited to projects that 
abide by the GNU Build System 
conventions

● Most use cases are now 
covered by pkg-config - distro 
maintainers prefer this

pkg-config

● Still very popular in Unix-like 
environments

● A .pc file can only describe a single 
component

● It’s oriented to flags - rather than 
describing properties

○ There’s a desire to isolate build 
script maintainers from globals 
and rely on transitive usage 
requirements instead
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Where we are today

My Sources

C++ source files

Build Scripts 

My Project Foo

lib

include

libfoo.so

foo

foo.h

Foo binary package

share

FooConfig.cmake

foo.pc
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Recap

● We have our project, our sources, our build scripts
● We want our build scripts to not be concerned about:

○ External library source files
○ How those files are built

● But we do want to be able to consume libraries in our code (compile+link)
● We want to be agnostic as to how/where the library was built
● The current approaches all have limitations
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What is a library?

libfoo.so
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What is a library?

libfoo.so

Dynamic linker

Static linker
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libfoo.so
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libfoo_comp1.aa

libfoo_comp2.aa

lib Dynamic linker

Static linker

What is a library?
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The way forward

● The goal: make it easier for developers to use libraries in their build scripts

target_link_libraries(my_awesome_app PRIVATE Boost::filesystem)

● This starts with build system support:
○ Transitive usage requirements in favor of compile/link flags
○ Ability to load and parse the information from an externally provided package description file
○ Interoperability:

■ Different build systems can opt to implement support for a common format
■ Completely decoupled from the build system of the libraries we are consuming
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Proposed approaches

Common Package Specification 
(P1313R0)
Document: P1313R0
Date: 2018-10-07
SG15 - Tooling
Author: Matthew Woehlke 

{
  "Name": "sample",
  "Description": "Sample CPS",
  "Version": "1.2.0",
  "Compat-Version": "0.8.0",
  "Platform": {
    "Isa": "x86_64",
    "Kernel": "linux",
  },
  "Configurations": [ "Optimized", "Debug" ],
  "Default-Components": [ "sample" ],
  "Components": {
    "sample-core": {
      "Type": "interface",
      "Definitions": [ "SAMPLE" ],
      "Includes": [ "@prefix@/include" ]
    },
    "sample": {
      "Type": "dylib",
      "Requires": [ ":sample-core" ],
      "Configurations": {
        "Optimized": {
          "Location": 
"@prefix@/lib64/libsample.so.1.2.0"
        },
        "Debug": {
          "Location": 
"@prefix@/lib64/libsample_d.so.1.2.0"
        }
      }
    …
    … 52



Proposed approaches (cont’d)

● Text files with a specific syntax
● Two concepts:

○ Packages and Libraries

Author: Colby Pike
Date: 2019
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Libman (cont’d)
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The role of the package manager

Foo

lib

include

libfoo.so

foo

foo.h

Foo binary package

cmake

FooConfig.cmake Consumer

55



The role of the package manager (cont’d)

● We now have modern, dedicated C++ package managers
○ Dedicated support to build libraries from source
○ Ability to model ABI compatibility
○ Integrations with build systems…
○ Ability to resolve dependency-graphs with C++ concepts (visibility, transitiveness, package 

variants/options).
● There’s also a fundamental aspect:

○ The package manager knows where

c++ -DBOOST_ATOMIC_DYN_LINK -DBOOST_ATOMIC_NO_LIB -DBOOST_FILESYSTEM_DYN_LINK 
-DBOOST_FILESYSTEM_NO_LIB -isystem /path/to/boost/include -MD -MT hello.cpp.o -MF 
hello.cpp.o.d hello.cpp.o -c hello.cpp

c++ -Wl,-search_paths_first -Wl,-headerpad_max_install_names hello.cpp.o -o hello 
-Wl,-rpath,/path/to/boost/lib /path/to/boost/lib/libboost_filesystem.dylib 
/path/to/boost/lib/libboost_atomic.dylib
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The role of the package manager (cont’d)

Foo

lib

include

libfoo.so

foo

foo.h

Foo binary package

share

descriptor Consumer
Package and 
dependency 
manager

Dependencies
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The role of the package manager (cont’d)

● Generated pkg-config, libtool and exported CMake files often contain 
hardcoded absolute paths

○ Pointing to locations that may only exist in the machine the package was built
○ This must be known at package creation time (and in some cases, at compile time)
○ Imposing constraints on where consumers can place precompiled binary packages

● This may be okay in some scenarios:
○ System wide package managers (apt, homebrew, …)
○ Workflows that impose building from source on the machine consuming the package
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Interoperability with Conan

[requires]
zlib/1.12.12
boost/1.78.0
fmt/9.1.0

conanfile.txt

C++ project

conan install .

Pkg-config .pc files

*-config.cmake files

Visual Studio .props files

Xcode .xconfig files

Autotools env flags
…
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Interoperability with Conan (cont’d)

● This functionality requires recipes expressing all the information that would 
otherwise be contained in a package description file

○ Transitive usage requirements: compile flags, include directories, dependencies between 
library components

github.com/conan-io/conan-center-index: Conan recipe for Qt6
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Interoperability with Conan (cont’d)

● This functionality requires recipes expressing all the information that would 
otherwise be contained in a package description file

○ Transitive usage requirements: compile flags, include directories, dependencies between 
library components

github.com/conan-io/conan-center-index: Conan recipe for Qt6
Recipes need to 
“Duplicate” information that the 
library’s build system already 
knows about 61



Interoperability

● Libraries don’t provide this information in a standard way
● A lot of the heavy lifting is done by repository maintainers to “connect” 

things together
○ Conan Center Index recipes, vcpkg ports, homebrew formulas, Linux distro packages, Conda 

recipes, your local “infra” team
● This leads to “lock-in” - hard for teams to try out different solutions
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Closing remarks

● There’s no standard way for libraries to communicate usage requirements to 
consumers

○ CMake exported targets work really well - for CMake
○ Otherwise developers fall back to a myriad of suboptimal ways to consume dependencies
○ Repository maintainers have been successful at creating isolated ecosystems

● The concept of a library has evolved over the years
○ Handled at different levels that are completely decoupled from each other
○ C++ modules are adding a new level of complexity!

● There have been proposals to fix this
○ But have gained very little traction in years
○ Difficult to get the scope right 

● Let’s fix this!
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Thank you
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Any questions?
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