=

The Case For a Standardized
Package Description Format

LUIS CARO CAMPOS

The C++ Conference 2 2 September 12th-16th

The Case for a Standardized
Package Description Format

Luis Caro Campos

Y o 1 Sy conan

aaaaaaaaaaaaaaaaaaaa

2022 Annual C++ Developer Survey "Lite"

How do you manage your C++ 1st and 3rd party libraries?

ANSWER CHOICES

[The library source code is part of my build]

| compile the libraries separately using their instructions
System package managers (e.g., apt, brew, ...)

| download prebuilt libraries from the Internet

Vcpkg

Conan

Nuget

Other (please specify)

None of the above, | do not have any dependencies

Total Respondents: 1,183

RESPONSES
69.91%

50.89%

38.80%

27.56%

18.93%

18.34%

9.30%

8.37%

1.35%

827

602

459

326

224

217

110

99

16

Which of these do you find frustrating ...?

2022 Annual C++ Developer Survey "Lite"

MAJOR MINOR NOT A TOTAL WEIGHTED
PAIN PAIN SIGNIFICANT AVERAGE
POINT POINT ISSUE FOR ME
Managing libraries my application depends on 47.63% 34.77% 17.60%
563 411 208 1,182 2.30
Build times 43.94% 38.65% 17.41%
515 453 204 1172 2.27
Setting up a continuous integration pipeline from scratch 33.73% 40.75% 25.51%
(automated builds, tests, ...) 394 476 298 1,168 2.08
Setting up a development environment from scratch 27.83% 42.98% 29.19%
(compiler, build system, IDE, ...) 329 508 345 1,182 1.99
Concurrency safety: Races, deadlocks, performance 25.04% 46.67% 28.29%
bottlenecks 293 546 331 1,170 1.97
Managing CMake projects 29.34% 38.15% 32.51%
343 446 380 1,169 1.97
Debugging issues in my code 17.85% 54.57% 27.58%

209 639 323 1171 1.90

Which of these do you find frustrating ...?

2022 Annual C++ Developer Survey "Lite"

Managing libraries my application depends on

[Build times]

Setting up a continuous integration pipeline from scratch
(automated builds, tests, ...)

Setting up a development environment from scratch
(compiler, build system, IDE, ...)

Concurrency safety: Races, deadlocks, performance
bottlenecks

Managing CMake projects

Debugging issues in my code

MAJOR
PAIN
POINT

47.63%
563

43.94%
515

33.73%
394

27.83%
329

25.04%
293

29.34%
343

17.85%
209

MINOR NOT A TOTAL WEIGHTED
PAIN

POINT

34.77%
41

38.65%
45

40.75%
47

42.98%

508 345
46.67% 28.29%

546 331 1,170 1.97
38.15% 32.51%

446 380 1,169 1.97
54.57% 27.58%

639 323 1171 1.90

Consuming third party libraries: ZLIB

My Project

— My Sources

Ijnt;'u C++ source files

Build Scripts

—— & ThirdParty
L zlib : .
X e Single library
'jn zlib source files — e ~15 source files
e 2 public header files

Build scripts?

Consuming third party libraries: ZLIB
P 244bbd6fo5 ~ [protobuf]/ third_party / zlib.BUILD

(63 sloc) 1.68 KB Raw

My Project

— My Sources

load("@rules_cc//cc:defs.bzl", "cc_library")

licenses(["notice"]) # BSD/MIT-like license (for zlib)

i C++ source files

i
2
3
w 4
= 5 exports_files(["zlib.BUILD"])
6
e
8
9

_ZLIB_HEADERS = [

[~ Build Scripts

Yere32:h™;
"deflate.h",
I 1 10 "gzguts.h",
o ThlrdParty i "inffast.h",
|_ . 12 "inffixed.h",
zlib 13 "inflate.h",
14 "inftrees.h",
:!;:p\ . . 15 “trees:h";
i zlib source files o .
s 17 "zlib.h",
18 "zutil.h",
. Build scripts? =
20
21 _ZLIB_PREFIXED_HEADERS = ["zlib/include/" + hdr for hdr in _ZLIB_HEADERS]
22

23 # In order to limit the damage from the “includes’ propagation
24 # via ‘:zlib', copy the public headers to a subdirectory and
25 # expose those.

26 genrule(

Consuming third party libraries: ZLIB
My Project F ax~ / 3rdparty / zlib /| CMakeLists.txt

— My Sources 91 sloc) | 2.49 kB

1 #
:3;.“\’ 2 # (Make file for zlib. See root CMakelLists.txt
L .
w ' C++ source files >
| C++] 4 #
~ 5
| n Bu”d SCFIptS 6 project(${ZLIB_LIBRARY} C)
7
8 include(CheckFunctionExists)
. 9 include(CheckIncludeFile)
0 ThlrdParty 10 include(CheckCSourceCompiles)
11 include(CheckTypeSize)
L zib 2
13 #
LS 14 # Check for fseeko
i1 zlib source files 15 #
[C++ | 16 check_function_exists(fseeko HAVE_FSEEKO)
17 if(NOT HAVE_FSEEKO)
O\
18 add_definitions (-DNO_FSEEKO)
f) . . - =
Build scripts? 19 endif()
20
21 #
22 # Check for unistd.h
23 #
24 if(NOT MSVC)
25 check_include_file(unistd.h Z_HAVE_UNISTD_H)

Consuming third party libraries: ZLIB

My Project ¥ dfsbd44564 - |qt5-base|/ src/ 3rdparty / zlib.pri
I— My Sources 19 sloc) = 499 Bytes

wince: DEFINES += NO_ERRNO_H
INCLUDEPATH = $$PWD/z1lib $$INCLUDEPATH
SOURCES+= \

$$PWD/zlib/adler32.c \

1
2
3
4
= . . 5 $$PWD/z1lib/compress.c \
' Build SCFIptS 6 $$PWD/z1ib/cre32.c \
7
8
9

1]:”“ ++ .
e C++ source files

$$PWD/z1lib/deflate.c \
$$PWD/z1lib/gzclose.c \
$$PWD/z1ib/gzlib.c \

— @ ThirdParty

10 $$PWD/z1lib/gzread.c \
|_ leb) $$PWD/zlib/gzwrite.c \
12 $$PWD/zlib/infback.c \
:"-I'\ . . 13 $$PWD/zlib/inffast.c \
i zlib source files 14 $$PWD/zLib/inflate.c \
e 15 $$PWD/z1lib/inftrees.c \
N 16 $$PWD/zlib/trees.c \
D] : : 17 $$PWD/z1ib/uncompr.c \
BU|Id Scrlptsr) 18 $$PWD/z1lib/zutil.c
19

20 TR_EXCLUDE += $$PWD/x

Consuming third party libraries: Boost

My Project
— My Sources

I:n(;’ C++ source files

Build Scripts

—— @ ThirdParty
- boost

— i Alot

i more

ll\

i -
ez Source files

— ?j Build scripts?

10

Consuming third party libraries: Boost

. master v~ | rules_boost /|BUILD.boost
My Project e

2511 i (2311 sloc) 48.2 KB
— My Sources o

load("@bazel_skylib//rules:copy_file.bz1", "copy_file")
load("@bazel_skylib//lib:selects.bzl", "selects")
load("@bazel_skylib//rules:common_settings.bzl", "bool_flag")

z i C++ i
e C++ source files

load("@com_github_nelhage_rules_boost//:boost/boost.bz1", "boost_library",

1

2

3

N 4

Build Scripts :
6 _w_no_deprecated = selects.with_or({

7

8

9

("@platforms//os:linux", "@platforms//os:osx", "@platforms//os:ios", '

— 0 ThlrdParty "—Wno-deprecated-declarations",
1,
L boost 10 "//conditions:default": [1,
1 })
pea
— @ Alot i
== 13 # Hopefully, the need for these 0SxCPU config_setting()s will be obviated
g\ 14
& more 15 config_setting(
16 name = "linux_arm",
:5;:|i\ . 17 constraint_values = [
[IH1}
— azzy SOUrce files 18 "@platforms//o0s: linux",
19 "@platforms//cpu:arm",
. . 20 ,
—| ? | Build scripts? o !
(-]

e b]

Consuming third party libraries: Boost (cont'd)

My Project
— My Sources

i '::::, ++ .
e C++ source files

Build Scripts

— @ ThirdParty
L boost
N Alot

- E‘ Build scripts?

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

ExternalProject_Add(boost
URL "http://dl.dropbox.com/u/15135983/boost.tar.gz"
URL_MD5 66f100a77f727e21d67fefd1827b6c64
BUILD_IN_SOURCE 1
UPDATE_COMMAND ""
PATCH_COMMAND "
CONFIGURE_COMMAND ${Boost_Bootstrap_Command}
BUILD_COMMAND ${Boost_b2_Command} install
——without-python
——without-mpi
--disable-icu
——prefix=${CMAKE_BINARY_DIR}/INSTALL
--threading=single,multi
—-link=shared
--variant=release
—iR

github.com/arnaudgelas/ExternalProject

12

Consuming third party libraries: Boost (cont'd)

My Project
— My Sources

i '::::, ++ .
e C++ source files

Build Scripts

— @ ThirdParty
L boost

™

4 Alot

- E‘ Build scripts?

20
21
22
23
24
25
26
27
28
29
30
31
32
33

def _create_configure_script(configureParameters):
ctx = configureParameters.ctx
root = detect_root(ctx.attr.lib_source)

return [
"cd $INSTALLDIR",
“##copy_dir_contents_to_dir## $$EXT_BUILD_RO0T$$/{}/. .".format(root),
"chmod -R +w .",
"##enable_tracing##",
"./bootstrap.sh {}".format(" ".join(ctx.attr.bootstrap_options)),
"./b2 install {} —-prefix=.".format(" ".join(ctx.attr.user_options)),

"##disable_tracing##",

github.com/bazelbuild/rules_foreign_cc

13

Consuming third party libraries: Another option

My Project
— My Sources

il C++ source files

Build Scripts }\
A match!

—— o ThirdParty

We may be able to
L FooBar perform project

. composition
i C++ source files

Build scripts

14

Consuming third party libraries: Another option

My Project

— My Sources

ITE““’ C++ source files

B |Bmkiscmﬁs]

— & ThirdParty “include”

L © 7 FooBar (submodule) <~

Header only libraries

e Simplest case

e Small footprint on your build scripts
o Only need to expose an include directory, no need to involve the compiler or linker

e More than 1 in 4 recipes in ConanCenter are header only
e Library authors know this

16

Header only libraries

e r/cpp - Posted by u/barfyus 1 month ago

AsyncCppRpc - asynchronous transport-agnostic header-only C++ RPC library @ r/cpp - Posted by u/Able_Armadillo491 7 months ago

64 upvotes 15 comments O awards

A header only c++17 structure of arrays implementation

58 upvotes 28 comments 1 award

e r/cpp + Posted by u/TheCompiler95 3 days ago

ptc-print: a C++17 header-only library for custom printing to the out
(basicallv a detailed implementation of the Pvthon print() function w ,
e r/cpp - Posted by u/foldingarmour 2 months ago

morphologica: A header-only library for high performance OpenGL data

visualization and plotting in C++
e r/epp - Posted by u/frozenca 2 months ago 56 upvotes 13 comments 0 awards

A header-only STL-like C++20 B-Tree with disk file support

github.com/frozen...
47 upvotes 4 comments 0 awards
e r/cpp - Posted by u/Ganofir 5 months ago

Goose - a small header only library for printing STL-like collections

23 upvotes 5comments 0 awards

17

Header only libraries

aANeome

A curated list of awesome header-only C++ libraries

“ awesome

HEP

] awesome-hpp | Public

A curated list of awesome header-only C++ libraries

ok %125

18

Recap

e All examples so far are different ways of vendoring your dependencies inside
your project
e \When building a library or application that vendors dependencies - it's very
convenient
o It might “just work”

e But when you depend on a library that vendors dependencies - not so much!
o This is a big headache for package repository maintainers (especially Linux distros)
o The dependencies of this library might conflict with your own dependencies
o For library authors that want their libraries available in these public repositories, they’ll have so
provide a way of consuming dependencies externally

19

Consuming Libraries

My Project

:

My Sources
C++ source files
Build Scripts

ThirdParty
foo

My Project
My Sources
|:“.,,, C++ source files

Build Scripts

T

:1;:‘,\ .
« 100 source files

E Build scripts

1)

_ ThirdParty

L foo

"B “Download and build”

My Project
My Sources
|:“m C++ source files

Build Scripts

_ ThirdParty
- foo

LCompatible Scripts

20

Consuming Libraries

My Project

L

[

My Sources

|:**.;, C++ source files

Build Scripts

ThirdParty
foo

:1;‘:1,\ .
« 100 source files

E Build scripts

My Project

L

My Sources

% C++ source files

:

Build Scripts

ThirdParty
foo

My Project

:

L'B “Download and build”

1)

My Sources
©., C++ source files
Build Scripts
ThirdParty

L —foo

LCompatible Scripts

21

Consuming Libraries

My Project

L

[

My Sources

|:**.;, C++ source files

Build Scripts

ThirdParty
foo

:1;‘:1,\ .
« 100 source files

E Build scripts

My Project
My Sources
|:“.,,, C++ source files

Build Scripts

_ ThirdParty

L foo

"B “Download and build”

My Project
My Sources
|:“m C++ source files

j Build Scripts

T ThirdParty

B foo

LCompatible Scripts

1)

22

Consuming Libraries

My Project

L

[

My Sources

|:'*.;, C++ source files

Build Scripts

ThirdParty
foo

:1:‘:1,\ .
« 100 source files

E Build scripts

My Project
My Sources
|:é.,,; C++ source files

Build Scripts

_ ThirdParty

L foo

"B “Download and build”

My Project

:

L

My Sources

, C++ source files

Build Scripts

ThirdParty
~ foo

LCompatible Scripts

23

Consuming Libraries (cont'd)

e How we refer to libraries depends on the abstractions provided by the build system we are

using (CMake, Bazel, Makefiles, Visual Studio or Xcode Projects...)
o The “modern” way is based on “usage requirements” -
o Butin some cases we still see build scripts that propagate “flags” explicitly

A'”

715 qgt_internal_extend_target(Core CONDITION NOT QT_FEATURE_system_zlib

716 LIBRARIES
717 Qt::ZlibPrivate
718)

github.com/qt/qtbase

Consuming Libraries (cont'd)

e How we refer to libraries depends on the abstractions provided by the build system we are

using (CMake, Bazel, Makefiles, Visual Studio or Xcode Projects...)
o The “modern” way is based on “usage requirements” -
o Butin some cases we still see build scripts that propagate “flags” explicitly

v35 copts = COPTS,

136 includes = ["src/"],

137 linkopts = LINK_OPTS,

138 visibility = ["//visibility:public"],

139 deps = [":protobuf_lite"] + select({

140 "//build_defs:config_msyc: [1,

141 "//conditions:default":| ["@zlib//:z1ib"],
142 }),

143)

github.com/protocolbuffers/protobuf

Usage requirements

add_executable(hello hello.cpp)

target_link_libraries(hello PRIVATE Boost::filesystem)

@ This is what happens under the hood - flags are passed to the compiler and linker

~
c++ -DBOOST_ATOMIC_DYN_LINK -DBOOST_ATOMIC_NO_LIB -DBOOST_FILESYSTEM_DYN_LINK
-DBOOST_FILESYSTEM_NO_LIB -isystem /path/to/boost/include -MD -MT hello.cpp.o -MF
hello.cpp.o.d hello.cpp.o -c hello.cpp
%
)

c++ -W1,-search_paths_first -W1, -headerpad_max_install_names hello.cpp.o -0 hello
-W1, -rpath, /path/to/boost/1lib /path/to/boost/lib/libboost_filesystem.dylib
/path/to/boost/lib/1libboost_atomic.dylib

26

Usage requirements (cont’d)

Our code might interact with
external libraries by referring to
entities like these:

This will typically be a feature of
the (meta) build system: CMake,
Bazel, Meson, B2, etc.

Who performs this
“translation”?

Qt::ZlibPrivate

Boost::filesystem

@boost//:algorithm

Who provides this
information?
When? How?

Depending on the context, these
are then translated to compile
and link flags.

In CMake these are called
“targets”

Find logic

My Project
_L My Sources

:|'.|.‘

d] N

g il ++ i
e C++ source files

Build Scripts

— @ ThirdParty
L Boost
" boostseureefiles
[C++ |

ﬁ “Find Boost”

¥ master ~ CMake/ModuIes[/ FindBoost.cmake]

9 bradking FindBoost: Add support for Boost 1.79 ...

A 66 contributors Q o ©) ar % O ’3 & <<

2589 lines| (2322 sloc) 114 KB

Distributed under the 0SI-approved BSD 3-Clause License. See accompanying

i f
2
3
4
5

file Copyright.txt or https://cmake.org/licensing for details.

#[

+42

FindBoost

[.rst:

28

Consuming Libraries

My Project My Project
My Sources My Sources
|:"m C++ source files |:"l C++ source files
Build Scripts) Build Scripts
> ThirdParty) ThirdParty
L o0 - foo
« foo source files “[-) “Download and

build”
s | Build scripts

My Project
My Project
My Sources
My Sources
“e C++ source files

“a C++ source files

B Build Scripts
B Build Scripts

? ThirdParty

» ThirdParty L
P foo
00

LCompatible Scripts [) “Find foo

We can now consume libraries
“‘externally provided” -

As long as they satisfy the
assumptions we made about
them!

29

Encapsulation to the rescue

My Project
_L My Sources
I:nm C++ source files

Build Scripts

— @ ThirdParty
L Foo

= FindFoo.cmake

Foo::libfoo

‘Bm Foo N
b
Lm libfoo.so
~ include
L

foo

~ fo
L foo.h

Foo binary package
_ /

30

Encapsulation to the rescue

My Project

L

My Sources

e . C++ source files

[2

Build Scripts

— @ ThirdParty

L

L

Foo

=rdEesemake—

Foo::libfoo

/_Foo N
b
Lm libfoo.so
— include
L

~ foo
L foo.h

"~ cmake

FooConfig.cmake

\

Foo binary package /

31

Config files packaged with binaries

e To “consume” a library, all we need now is:

o The package name
o The component name

e The following can now be private as far as our build scripts are concerned:
o The file structure and filenames of the source files for the dependency

The build system and how to invoke it

The filenames of the compiled libraries

The file structure of the compiled “package”

The internal dependency graph (which sub-components depend on which others)

o O O O

Config files packaged with binaries

ISO C++ Developer Survey:
How do you manage first and third party libraries?

ANSWER CHOICES

The library source code is part of my build

I compile the libraries separately using their instructions
System package managers (e.g., apt, brew, ...)

I download prebuilt libraries from the Internet

Vcpkg

Conan

RESPONSES
69.91%

50.89%

38.80%

27.56%

18.93%

18.34%

821

60z

45¢

32¢

22¢

217

33

Config files packaged with binaries - disadvantages

e There are still a few unanswered questions:
o how does our build system know where to locate this file?
o Who and when is this file generated?
e And a big shortcoming:
o CMake package config files (the current gold standard) are not build system agnostic

m They are full-fledged CMake scripts and may contain statements rather than just being
descriptive

34

CMake package config files

A CMake > A CMake > Issues > #20106

[P open (@ Issue created 2 years ago by @ Brad King Owner

Buildsystem-agnostic package export format

The CMake package approach described in the cmake-packages(7) manual works well for consuming packages from CMake, but not for
other tools or build systems. Ideally we should offer a format for install(EXPORT) and export() thatis independent of CMake and

more accessible to other tools.

35

pkg-config and Libtool

e Including special files alongside binary artifacts is far from a new concept
o pkg-config and Libtool have been doing it for a really long time

v 7 libplist
> B3 bin
v 7 include
> 03 plist
vl lib
libplist-2.0.a
libplist-2.0.la
libplist++-2.0.a
libplist++-2.0.1a
v 7 pkgconfig
libplist-2.0.pc
libplist++-2.0pd - Pkg-config files

Libtool control files

Libtool

It parses the information implicitly when compiler is invoked via libtool.

libtool

--mode=1ink gcc -g -0 -o test test.o | /path/to/lib/libhello.la

gcc -g -0 -o .libs/test test.o|-Wl,--rpath -W1, /path/to/lib /path/to/lib/libhello.a -1m

37

pkg-config

prefix=/usr
exec_prefix=${prefix}
includedir=$§{prefix}/include
libdir=S{exec_prefix}/1lib

Name: foo

Description: The foo library
Version: 1.0.0

Cflags: -IS{includedir}/foo
Libs: -L${libdir} -1foo

prefix=/usr
exec_prefix=${prefix}
includedir=$8{prefix}/include
libdir=${exec_prefix}/1lib

Name: bar

Description: The bar library
Version: 2.1.2
Requires.private: foo >= 0.7
Cflags: -IS{includedir}
Libs: -L${libdir} -1lbar

foo.pc

bar.pc

gcc ‘pkg-config --cflags --1libs bar® -o myapp myapp.c

[L:j> -I/usr/include/foo

38

Libtool and pkg-config today

Libtool

e Requires buildystem to explicitly
invoke libtool to call the
compiler for us

e Typically limited to projects that
abide by the GNU Build System
conventions

e Most use cases are now
covered by pkg-config - distro
maintainers prefer this

pkg-config

e Still very popular in Unix-like
environments
e A .pcfile can only describe a single
component
e It's oriented to flags - rather than
describing properties
o There’s a desire to isolate build
script maintainers from globals
and rely on transitive usage
requirements instead

39

Where we are today

My Project

[

[2

My Sources

e . C++ source files

Build Scripts

3 libfoo.so

— include

L ~ foo
L foo.h

—— " share

FooConfig.cmake

LN
-~ | foo.pc

\

Foo binary package/

40

Recap

e \We have our project, our sources, our build scripts

e \We want our build scripts to not be concerned about:

o External library source files
o How those files are built

e But we do want to be able to consume libraries in our code (compile+link)
e We want to be agnostic as to how/where the library was built
e The current approaches all have limitations

41

What is a library?

E3 libfoo.so

42

What is a library?

E3 libfoo.so

Vs

-

Dynamic linker

Vs

-

Static linker

43

What is a library?

Vs

Dynamic linker

" lib
r:ﬂ libfoo.so -
. Static linker
Em libfoo.a L

What is a library?

" lib
— B3 libfoo.so
— mm libfoo.a

— A libfoo_comp1.a

~ mm libfoo_comp2.a

Vs

-

Dynamic linker

Vs

-

Static linker

45

What is a library?

include

Lim f
00
L foo.h
b
E3 libfoo.so

— mm libfoo.a

— A libfoo_comp1.a

Em libfoo_comp2.a

|

Compiler

Vs

-

Dynamic linker

Vs

-

Static linker

46

What is a library?

include

|__

[Compiler

L . foo.h

. Module interface unit

Vs

Dynamic linker

-

E3 libfoo.so -
Static linker

— mEm libfoo.a L

— A libfoo_comp1.a

Em libfoo_comp2.a

What is a library?

include

|__

L . foo.h

. Module interface unit

&A@ libfoo.so
— mm libfoo.a

— A libfoo_comp1.a

~ mm libfoo_comp2.a

~ share

foo-config.cmake

|

Compiler

Vs

-

Dynamic linker

Vs

-

Static linker

Vs

-

Build system

48

What is a library?

include

|__

L . foo.h

. Module interface unit

&A@ libfoo.so
— mm libfoo.a

— A libfoo_comp1.a

~ mm libfoo_comp2.a

~ share

foo-config.cmake
L foo::comp1

[Compiler

Vs

Dynamic linker

-

Vs

Static linker

-

Vs

Build system

-

[Developer

49

What is a fibrar

b

include

|__

L

. foo.h

N

. Module interface unit

libfoo.so

libfoo.a
libfoo_comp1.a

libfoo_comp2.a

share

. foo-config.cmake

\\ L foo::comp1

/

2 package

[Compiler

Vs

Dynamic linker

-

Vs

Static linker

-

Vs

Build system

-

[Developer

|

Package
Manager

50

The way forward

e The goal: make it easier for developers to use libraries in their build scripts

[ta rget_link_libraries(my_awesome_app PRIVATE [Boost: :filesystem)] 1

e This starts with build system support:
o Transitive usage requirements in favor of compile/link flags
o Ability to load and parse the information from an externally provided package description file
o Interoperability:
m Different build systems can opt to implement support for a common format
m Completely decoupled from the build system of the libraries we are consuming

51

Proposed approaches

Common Package Specification
~— N (P1313R0)
CPS pocument: P1313R0

Date: 2018-10-07

SG15 - Tooling

Author: Matthew Woehlke

{

"Name": "sample",
"Description”: "Sample CPS",
"Version": "1.2.0",
"Compat-Version": "0.8.0",
"Platform": {

"Isa": "x86_64",

"Kernel": "linux",

Y

"Default-Components”: ["sample"],
"Components": {
"sample-core": {
"Type": "interface",
"Definitions": ["SAMPLE" 1,
"Includes": ["@prefix@/include"]

b
"sample": {
"Type": "dylib",
"Requires": [":sample-core"],
"Configurations": {
"Optimized": {
"Location”:
"@prefix@/1ib64/libsample.so0.1.2.0"
b
"Debug": {
"Location”:
"@prefix@/1ib64/libsample_d.so0.1.2.0"
}

}

"Configurations": ["Optimized", "Debug"],

52

Proposed approaches (cont'd)

cxx-libmanR1

Llibman, A Dependency Manager - Build
System Bridge

A merged Qt5

Author: Colby Pike Type: Package

e Text files with a specific syntax
e Two concepts:

o Packages and Libraries

Name: Qt5 # Boost.System
Date: 2019 .
Namespace: Qt5 Type: Library
Some things we might require Name: system
Requires: OpenSSL Uses: Boost/boost
Requires: Xcb Path: 1lib/libboost_system.a

Qt libraries

Library: Core.lml

Library: Widgets.lml

Library: Gui.lml

Library: Network.lml

Library: Quick.lml

... (Qt has many libraries)

53

Libman (cont'd)

1.3. Goals and Non-Goals
The following are the explicit goals of libman and this document:

1. Define a series of file formats which tell a build system how a library is to be "used"

2. Define the semantics of how a build system should interact and perform name-based package and depen-
dency lookup in a deterministic fashion with no dependence on "ambient" environment state.

3. Define the requirements from a PDM for generating a correct and coherent set of Libman files.

Perhaps just as important as the goals are the non-goals. In particular, 1ibman does not seek to do any of the
following:

1. Define the semantics of ABI and version compatibility between libraries

2. Facilitate dependency resolution beyond trivial name-based path lookup
3. Define a distribution or packaging method for pre-compiled binary packages
4. Define or aide package retrieval and extraction

5. Define or aide source-package building

54

The role of the package manager

/_Foo

]

o

~

~lib
e libfoo.so

" include

I— "~ foo

L foo.h

" cmake

FooConfig.cmake

Foo binary package /

[
.

Consumer }

55

The role of the package manager (cont'd)

We now have modern, dedicated C++ package managers
Dedicated support to build libraries from source
Ability to model ABI compatibility
Integrations with build systems...
Ability to resolve dependency-graphs with C++ concepts (visibility, transitiveness, package
variants/options).
There’s also a fundamental aspect:
o The package manager knows where

o O O O

c++ -DBOOST_ATOMIC_DYN_LINK -DBOOST_ATOMIC_NO_LIB -DBOOST_FILESYSTEM_DYN_LINK
-DBOOST_FILESYSTEM_NO_LIB -isystem| /path/to/boost/include |-MD -MT hello.cpp.o -MF
hello.cpp.o.d hello.cpp.o -c hello.cpp

c++ -W1, -search_paths_first -Wl,-headerpad_max_install names hello.cpp.o -o hello
—W1.—rDathJ/Dath/to/boost/lib”/Dath/to/boost/lib/libboost filesvstem.dvliﬂ
/path/to/boost/1lib/libboost_atomic.dylib

56

The role of the package manager (cont'd)

o

/_Foo \

b

]

" include

e libfoo.so

I— "~ foo

L foo.h

"~ share

descriptor

Dependencies

Package and

Foo binary package /

>~ dependency
manager

H Consumer }

57

The role of the package manager (cont'd)

e Generated pkg-config, libtool and exported CMake files often contain

hardcoded absolute paths
o Pointing to locations that may only exist in the machine the package was built
o This must be known at package creation time (and in some cases, at compile time)
o Imposing constraints on where consumers can place precompiled binary packages
e This may be okay in some scenarios:
o System wide package managers (apt, homebrew, ...)
o Workflows that impose building from source on the machine consuming the package

58

Interoperability with Conan

C++ project

[requires]
zlib/1.12.12
boost/1.78.0
fmt/9.1.0

conanfile.txt

R

conan install .

Pkg-config .pc files
*-config.cmake files
Visual Studio .props files
Xcode .xconfig files

Autotools env flags

59

Interoperability with Conan (cont’'d)

e This functionality requires recipes expressing all the information that would

otherwise be contained in a package description file
o Transitive usage requirements: compile flags, include directories, dependencies between
library components

if self.options.qttools and self.options.gui and self.options.widgets:
self.cpp_info.components["qtLinguistTools"].set_property("cmake_target_name", "Qt6::LinguistTools")
self.cpp_info.components["qtLinguistTools"].names["cmake_find_package"] = "LinguistTools"
self.cpp_info.components["qtLinguistTools"].names ["cmake_find_package_multi"] = "LinguistTools"
_create_module("UiPlugin", ["Gui", "Widgets"])

self.cpp_info.components["qtUiPlugin"].libs = [I]
self.cpp_info.components["qtUiPlugin"].libdirs = []
_create_module("UiTools", ["UiPlugin", "Gui", "Widgets"])
_create_module("Designer", ["Gui", "UiPlugin", "Widgets", "Xml"])
_create_module("Help", ["Gui", "Sql", "Widgets"])

github.com/conan-io/conan-center-index: Conan recipe for Qt6

60

Interoperability with Conan (cont’'d)

This functionality requires recipes expressing all the information that would

otherwise be contained in a package description file
o Transitive usage requirements: compile flags, include directories, dependencies between
library components

if self.options.qttools and self.options.gui and self.options.widgets:
self.cpp_info.components["qtLinguistTools"].set_property("cmake_target_name", "Qt6::LinguistTools")
self.cpp_info.components["qtLinguistTools"].names["cmake_find_package"] = "LinguistTools"
self.cpp_info.components["qtLinguistTools"].names ["cmake_find_package_multi"] = "LinguistTools"
_create_module("UiPlugin", ["Gui", "Widgets"])

self.cpp_info.components["qtUiPlugin”].libs = [] # f
self.cpp_info.components["qtUiPlugin"].libdirs = []
_create_module("UiTools", ["UiPlugin", "Gui", "Widgets"])
_create_module("Designer", ["Gui", "UiPlugin", "Widgets", "Xml"])
_create_module("Help", ["Gui", "Sql", "Widgets"])

github.com/conan-io/conan-center-index: Conan recipe for Qt6)
Recipes need to

“Duplicate” information that the
library’s build system already 61
knows about

Interoperability

e Libraries don’t provide this information in a standard way
e A lot of the heavy lifting is done by repository maintainers to “connect”
things together

o Conan Center Index recipes, vcpkg ports, homebrew formulas, Linux distro packages, Conda
recipes, your local “infra” team

e This leads to “lock-in” - hard for teams to try out different solutions

62

Closing remarks

e There’s no standard way for libraries to communicate usage requirements to

consumers
o CMake exported targets work really well - for CMake
o Otherwise developers fall back to a myriad of suboptimal ways to consume dependencies
o Repository maintainers have been successful at creating isolated ecosystems
e The concept of a library has evolved over the years
o Handled at different levels that are completely decoupled from each other
o C++ modules are adding a new level of complexity!
e There have been proposals to fix this

o But have gained very little traction in years
o Difficult to get the scope right

o Let’s fix this!

63

Thank you

Any questions?

Acknowledgements

Icons made by Iconixar from www.flaticon.com

66

https://www.flaticon.com/authors/iconixar
http://www.flaticon.com

