
?

4David Sackstein – CppCon 2022

Introduction

• My name is David Sackstein (davids@codeprecise.com)

• I am an independent consultant, developer and instructor.

• I work with C++ and a few other languages

• And I am passionate about writing clean code!

5David Sackstein – CppCon 2022

Implementation of the STL

• APIs are extremely well designed and thoroughly
reviewed.

• Consistent and compatible over many platforms

• Efficient as possible.

• Complies with many of the core guidelines

• But…

6David Sackstein – CppCon 2022

Implementation of the STL

• Classes and functions are long.

• Cyclomatic complexity is often high

• Header files are very long

- chrono has almost 6000 lines

- algorithm over 9000.

• Excessive use of macros and compilation flags.

• Very repetitive

7David Sackstein – CppCon 2022

Agenda

• Clean Code in Context

• Best Practices for C++ Programming

• Develop an application and clean it.

• Lessons learnt.

• Discussion

8David Sackstein – CppCon 2022

Clean code tradeoffs

Core Library Code

Project Library Code

Components

Greater need for readability

Reviews more thorough

Specialized constraints:
- Backward compatibility
- Multi platform support
- Efficiency

Maintainers more expert

Implementation more stable

9David Sackstein – CppCon 2022

Best Practices for Software Design

• SOLID - Coined by Robert Martin and Michael Feathers

- S ingle Responsibility Principle – small pieces that do one thing.

- O pen Closed Principle – define abstractions for extensibility.

- L iskov Substitution Principle – be careful with what you inherit.

- I nterface Segregation Principle – like SRP but with interfaces.

- D ependency Inversion Principle – depend on abstractions.

• In addition, for C++

- The C++ Core Guidelines
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

10David Sackstein – CppCon 2022

The clean-it repo

• https://github.com/david-sackstein/clean-it.git

• Uses

- Platform Toolset: Visual Studio 2022 (v143)

- Language setting: ISO C++20 Standard (/std:c++20)

- GoogleTest for unit tests

- Resharper Tools for C++ with clang-tidy checks and fixes enabled.

• Code lives in the ci namespace

• There are tags for each step – these appear on the slides.

https://github.com/david-sackstein/clean-it.git

11David Sackstein – CppCon 2022

The VOD Application

• The VODServer

- Accepts a connection from VODClients

- Provides a list of available movies to a connected client.

- Streams a movie to a connected client.

- A movie can be stopped by the client and the client can disconnect.

• We will develop:

- MovieReader – reads the movies from disk.

- VODServer, VODClient

12David Sackstein – CppCon 2022

Use the compiler and tooling

• Make warnings errors

• Run clang-tidy directly or through a tool.

• Turn on warnings and fix options (Resharper does this well).

• Apart from cleaning the code you can learn from them too.

The initial solution

… and a test

git tag: v1-MovieReader

MovieReader.h

Missing include file

15David Sackstein – CppCon 2022

Managing headers

• A header should include all the headers it depends on.

• A header should NOT include headers it does not depend on.

• Use pimpl or an interface to represent dependencies to avoid
needing to include implementation headers.

• Separate internal headers from API headers.

• See the implementation at git tag: v2-header-ordering

Use modules!

readMovies does many things:
1. Loops over movie files
2. Opens a file
3. Reads a line
4. Parses the line

Comments are needed to
explain what the code does

An exception in the loop ends
the loop.

High cyclomatic complexity

MovieReader.cpp

17David Sackstein – CppCon 2022

Improving error handling

• Advantages of exceptions

- Allow programmers to focus on the business logic.

- Exceptions require immediate and exclusive attention.

• Disadvantages

- The exceptional path is slow (not necessarily a problem)

- Local handling litters the code with try/catch clauses.

- Not always supported in free-standing environments.

• Proposed guideline:

- Use exceptions for the exceptional

- Use expected for the expected.

18David Sackstein – CppCon 2022

std::expected is expected in C++ 23

• Proposed for the standard in 2017, expected in C++23

• See CppCon 2018: Andrei Alexandrescu “Expect the expected”

• std::expected<T,E> is a class template that contains either:

- A value of type T - the expected value type; or

- A value of type E - an error type used when an unexpected outcome
occurs

• We will use an implementation by Sy Brand at:
https://github.com/TartanLlama/expected

https://github.com/TartanLlama/expected

MovieReader.cpp

git tag: v3-with-tl-expected

MovieReader.cpp

MovieReader.cpp

Each function
does only one thing!

22David Sackstein – CppCon 2022

Use lazy iteration with a generator

git tag: v4-using-generator

MovieReader.cpp

The test can use
ranges algorithms
on the generator

main.cpp

24David Sackstein – CppCon 2022

Use generators for lazy iteration

• Lazy evaluation avoids storing all elements in memory.

• Generators can be used to invert dependencies

• Use a library rather then reinvent

• The famous cppcoro library by Lewis Baker is not maintained.

• The following fork has many bug fixes and supports C++20

https://github.com/andreasbuhr/cppcoro

https://github.com/andreasbuhr/cppcoro

25David Sackstein – CppCon 2022

More improvements for error handling

• Using the generator, we actually overlooked the exception
that might be thrown by the directory_iterator.

• We have no choice but to catch the exception.

• Here is a fail-fast method to catch and return an expected.

Extracted expected.hexpected.h

27David Sackstein – CppCon 2022

Avoid Primitive Obsession

• Primitive Obsession is a code smell in which primitive data
types are used excessively to represent data models.

• Movie uses an int to represent seconds.

• Movie itself does not validate its invariants (the duration
must be within a certain range)

• We can fix this by hiding the constructor and use expect() on
a static factory method.

The constructor is
private. It validates or
throws.

A static factory
method uses expect to
handle validation
exceptions

MovieReader.h

git tag:
v5-avoid-primitive-obsession

29David Sackstein – CppCon 2022

Building the VODServer and VODClient

• The VODServer will use the MovieReader to stream movies
to the clients.

• It stores a weak_ptr to the client so that it can provide async
notifications regarding the streaming of a movie.

• The client must call Connect, Disconnect, Play and
GetMovies in the right order to get a positive response.

30David Sackstein – CppCon 2022

VOD Server State Machine

Idle

Connected

Playing

Connect GetMovies

Play

StopDisconnect

Start

Declares too much in one file

Implementation inheritance is
not recommended.

VODServer.h

git tag: v5-VODServer-VODClient

The lambda does many
things:
1. Manages notifications
2. Does the streaming

VODServer.cpp Play does many things:
1. Manages state
2. Starts a thread

33David Sackstein – CppCon 2022

Refactoring Step

• Minimize the API (ISP)

- Define an interface for IVODServer

- Split interface definitions into separate files.

- Define a factory method that returns an IVODServer

• Use extract method so that methods do one thing (SRP).

• Separation of test and production code.

- The clean-it project is now a DLL

- The DLL exposes one method only – the factory method

Define an interface

Expose a factory method
to create the interface

git tag: v6-use-dependency-injection

IVODServer.hIMovieObserver.h

VODExport.h

Separated tests
from implementation

git tag:
v5-split-test-production

The VODClient is
part of the test project

Tests use the factory to
create a IVODServer

VODServerTests.cpp

VODClient.cpp

But we have a problem: Tests are slow.

The streaming test takes 20 seconds!

38David Sackstein – CppCon 2022

Dependency Injection

• The objective is to decrease coupling between components
and their implementations.

• Components should depend on abstractions not concrete
types.

• C++ provides two abstraction models:

- Compile time using templates.

- Run time using virtual functions.

• We will use virtual functions in this project.

• See git tag: v6-dependency injection for the implementation

39David Sackstein – CppCon 2022

Constructor injection

• A component declares the implementations it requires as interfaces
which are arguments to its constructor.

• The component stores a pointer or reference to the interface.

• The lifetime of the interface must cover the lifetime of the component.

• The benefits:

- The caller can specify which implementation will be used.

- Dependencies are explicit and easy to find.

• The challenge:

- Composing objects is complex and … breaks encapsulation.

- When constructors change, the wiring up code needs to change.

40David Sackstein – CppCon 2022

Inversion of Control Container

• IOC containers resolve the challenges of DI.

• An IOC container is a factory with two aspects:

- Register methods:
Specify which objects should be instantiated for which interface.

- Resolve methods:
Build objects specified by interface based on the specifications.

• How does this solve the complexities of composition?

- The number of specifications is proportional to the number of
abstractions – not to the number of types that need to be resolved.

41David Sackstein – CppCon 2022

Hypodermic

• https://github.com/ybainier/Hypodermic

• Hypodermic is a non-intrusive header-only IoC container for
C++.

• It provides dependency injection to existing designs
by managing the creation of components and their
dependencies in the right order

• This spares you the trouble of writing and maintaining boiler
plate code.

https://github.com/ybainier/Hypodermic

Sample Code for Register and Resolve

git tag: v7-use-ioc-container

vodServer

43David Sackstein – CppCon 2022

Usage in clean-it

• VODServer accepts an IStreamer in its constructor.

• The test defines an IStreamer mock.

• The test code uses the IOC container to register the mock as the
implementation of IStreamer.

• The test requests the container to resolve an IVODServer.

• This container

- Resolves the IVODServer type to the VODServer type.

- Creates an instance of Streamer and passes it to the constructor of VODServer.

- Returns the instance as an IVODServer.

• See git tag: v7-use-ioc-container

44David Sackstein – CppCon 2022

So, what about inheritance?

• Cpp Core Guidelines (C.129): “When designing a class
hierarchy, distinguish between implementation inheritance
and interface inheritance”.

• Implementation inheritance can be replaced with private
composition. This is better because it hides the
implementation details.

• Interface inheritance can be achieved using:

- Run time polymorphism: Pure virtual methods.

- Static polymorphism: CRTP

Implementation Inheritance introduces tight coupling

1. The Derived class reuses the Base class code but the Derived
class cannot be reused independently of the Base.

2. The Derived class cannot be tested with different
implementations.

git tag: v8-prefer-composition-over-inheritance

Logger.h

The implementation ILogWriter is injected

git tag: v7-use-ioc-container

47David Sackstein – CppCon 2022

Using Modules

• The final two tags in the repo make two improvements in the
code:

• v9-use-header-unit-for-std

- In this commit, a static library is added which contains all standard
headers as a header unit, which are then imported as a module in
the clean-it dynamic link library.

• v10-VOD-as-a-module

- In this commit, the VODServer is exported as a module and
imported by the clean-it-tests as a module.

48David Sackstein – CppCon 2022

Lessons Learnt

• Use SOLID principles to guide your design.

• Use the Core CPP Guidelines and tools that help you implement them.

• Organize headers to reduce coupling.

• Use modules for new projects.

• Consider using std::expected for expected errors.

• Use generators for lazy iteration and for inversion of dependencies.

• Avoid Primitive Obsession.

• Use interfaces on component boundaries.

• Inject implementation dependencies.

• Prefer composition over implementation inheritance.

• Consider the use of Inversion of Control Containers to construct objects.

49David Sackstein – CppCon 2022

Lessons Learnt

1. Use SOLID principles to guide your design.

2. Use the Core CPP Guidelines and tools that help you implement them.

3. Organize headers to reduce coupling.

4. Use modules for new projects.

5. Consider using std::expected for expected errors.

6. Use generators for lazy iteration and for inversion of dependencies.

7. Avoid Primitive Obsession.

8. Use interfaces on component boundaries.

9. Inject implementation dependencies.

10. Prefer composition over implementation inheritance.

11. Consider the use of Inversion of Control Containers to construct objects.

50David Sackstein – CppCon 2022

Discussion

