Parallelism Safety-Critical
Guidelines for C++

MICHAEL WONG, ANDREAS WEIS,
ILYA BURYLOV& CHRISTOF MEERWALD

The C++ Conference 2 2 September 12th-16th

Staff Engineer
at Woven Planet

= /) ComicSansMS
© @DerGhulbus

/M Co-organizer of the Munich C++ User
Group (MUC++)

Member of WG21 (ISO C++) and MISRA C++

Working on the Runtime framework for the
Arene platform at Woven Planet

| woven
’) planet

Andreas Weis (he/him)

Principle Engineer

An architect of C++ software solutions for autonomous
driving market

Contribution into functional safety MISRA standard

Contribution into WG21 in threading, vectorization and
numerics.

Contribution into SYCL

llya Burylov

Distinguished Engineer .
° Chair of SYCL Heterogeneous Programming IVI I c h a e I Wo ng

Language

° RISC-V Datacenter/CLoud COmputign Chair) . .
. . / P 'g Argonne and Oak Ridge National Laboratories Award
s ISO C++ Directions Group past Chair Codeplay® Software to Further Strengthen SYCL™
o Past CEO OpenMP Support Extending the Open Standard Software for NSITEXE. Kroto Mi et and Codent
. , Kyoto Microcomputer and Codeplay
i ISOCPP'Org DII’ECtOF, VP AMD GPUs Software are bringing open standards programming to
http://isocpp.org/wiki/faq/wg21#tmichael-wong TGS RISC-V Vector processor for HPC and Al systems
29 October 2020
° michael@codeplay.com '
e fraggamuffin@gmail.com Argonne @ B EOdeploy B N KNG © codeplay’
° Head of Delegation for C++ Standard for Canada
e Chair of Programming Languages for Standards R Nar sty) e ok T P 7 oo srenion BTN parGL and YL or el 1S rcasors i ok e o
Council of Canada
Chair of WG21 SG19 Machine Learning NERSC, ALCF, Codeplay Partner on SYCL for Next-
Chair of WG21 SG14 Games Dev/Low generation Supercomputers
Latency/Financial Trading/Embedded 02 February 2021

° Editor: C++ SG5 Transactional Memory Technical
Specification

° Editor: C++ SG1 Concurrency Technical Specification

. MISRA C++ and AUTOSAR :

o Chair of Standards Council Canada TC22/SC32 The National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory (Berkeley Lab), in

Electrical and electronic components (SOTIF) Zﬂi:s:mmi:ﬁ::x(L::ffymmgvccui:pgﬂi::m(;;Z:\:::?;";:\engf:gn::Sggﬂgw’hasSigmmnmw
° Chair of UL4600 Object Tracking
* htip:/wongmichael.com/about We build GPU compilers for some of the most powerful

° C++11 book in Chinese:

https://www.amazon.cn/dp/BOOETOV20Q supercomputers in the world

http://isocpp.org/wiki/faq/wg21
mailto:michael@codeplay.com
mailto:fraggamuffin@gmail.com
http://wongmichael.com/about

Senio_r Softwa_re Engineer Christof Meerwald
at Edison Design Group

C++ Compiler Front End Development

Member of WG21 (ISO C++ - Core Working Group)

Agenda

e Adding safety to parallelism for both MISRA and C++ CG
o This year: focus on what we intend to do for C++CG by hazards

e Deep dive to C++CG rules
o Deadlocks and rejected rules
o Lifetime violation and new/modified rules

e CG+MISRA: the close to ideal safety partners

o Ongoing analysis of future C++ parallelism for safety

Safety Crltlcal API Evolutlon

™ = Va) /e;\‘ -

New Generation Safety
Critical APIs for Graphics, 4 A
Compute and Display

minimize API surface area , reduce
ambiguity. UB, increase determlmsm

Industry Need e \“"'i : l £
for CPU/GPU Acceleration APIs designed T E
\ to ease system safety certification

|

Rendermg Compute D1splay

<

International
Organization for
Standardization

UNECE WP.29 ISO 26262

N
2 ‘ SYCL. 1SO/PAs 21448 %

UL 4600 NNNNNNNNNNNNNN

JTC1/SC42
elligence

Comparing coding standards

Coding Standard
Autosar

Misra

High Integrity CPP
JSF

C++ CG

CERT C++

C++ Versions

C++14 dormant

C++03 (working to C++17)
C++11 dormant

C++03 dormant
C++11/14/17/20/Iatest

C++14 dormant

10

MISRAC ++ParallelConcurrencyHeteroRulesOverview =

File Edit View

“~ o~ AP 100% ~

Outline

0.1 Language Independent Issues

0.2 General

Insert Format Tools Add-ons Help

Normal text

1

0.2.1 [1] Think in terms of tasks, ...

0.2.2 [2] Do not use platform sp...

0.3 Thread

0.3.1 0.3.x [82] Make std::thread...

03.2

0.3.3

0.3.4 [3] A thread shall not acce...
0.3.5 [4] Thread callable object ...
0.3.6 [5] Do not use std::thread ...

0.3.7 [6] Use high_integrity::thre...

Last edit was made seconds ago by Michael Wong

B I UA» o«cQQBN-

v 1 2 3 4 5 6 v

v Arial - 279 ~

4

Note: this is an early draft WIP. It's known to be incomplet and incorrekt, and it has lots of

badformatting.

Table of Content

0.1 Language Independent Issues 5

0.2 General 5
0.2.1 [1] Think in terms of tasks, rather than threads 5
0.2.2 [2] Do not use platform specific multi-threading facilities L

0.3 Thread 6
0.3.1 [3] Join std::thread before going out of scope of all locally declared objects passed to
thread callable object via pointer or reference Think of a joining thread as a scoped
container 6
0.3.2 [4] Thread callable object may receive only global and static objects via pointer or
reference, if std::thread will be detached Think of a thread as a global container I
0.3.3 [5] Do not use std::thread Prefer gsl::joining_thread over std::thread 8
0.3.4 [6] Use high_integrity::thread in place of std::thread 9
0.3.5 [7] Do not call std::thread::detach() function Don't detach() a thread 9
0.3.6 [8] Verify resource management assumptions of std::thread with the implementation of
standard library of choice 10

7

~

CaE3O

1= .. VAR NI Table of contents X

Heading numbers format 1.23 — m

Display until level 6 —
0.1 Language Independent Issues A O
0.2 General

0.2.1 [1] Think in terms of tasks, rather thar
0.2.2 [2] Do not use platform specific multi-
0.3 Thread

0.3.1 0.3.x [82] Make std::threads unjoinabl
0.3.2

0.3.3

0.3.4 [3] A thread shall not access objects v
0.3.5 [4] Thread callable object may receive
0.3.6 [5] Do not use std::thread Prefer gsl:;j
0.3.7 [6] Use high_integrity::thread in place
0.3.8 [7] Do not call std::thread::detach() fui
0.3.9 [8] Verify resource management assu

0.4 Mutex

0.4.1 [9] Do not call member functions of st
0.4.2 [10] Do not access the members of st
0.4.3 [11] Use std::lock(), std::try_lock() or <
0.4.4 [12] Do not destroy objects of the follc
0.4.5 [13] Mutexes locked with std::lock or ¢
0.4.6 [14] Do not call virtual functions and c
0.4.7 [15] Avoid deadlock by locking in a pr
0.4.8 [16] Objects of std::lock_guards, std:x
0.4.9 [17] Define a mutex together with the
0.4.10 [18] Do not speculatively lock a non-
0.4.11 [19] There shall be no code path whi
0.4.12 [20] The order of nested locks unlocl
0.4.13 [21] std::recursive_mutex and std:re

Stage 1: extensive deep analysis of 81 rules

e Started in 2019 at a MISRA meeting
* Why are there no rules for parallelism in MISRA?
* 2019-2021: Phase 1 complete
* Reviewed 81 rules pulled from
e C++CG
* HIC++
* REphrase H2020 project
* CERTC++
* JSF++ (no parallel rules)
* WG23 (no parallel rules)
 Added some from our own contributions
* Many joined, average 5-8 per meeting
* Also consulted outside concurrency and safety experts
e Shared Drive of Phase 1 analysis:
* https://docs.google.com/document/d/14E0BYgsH_d7fMKvXvaZWoNW1tIC65c
YBwO0aZp4dlev0Q /edit#theading=h.ytOhxah53p9e

https://docs.google.com/document/d/14E0BYqsH_d7fMKvXvaZWoNWtIC65cYBw0aZp4dlev0Q/edit#heading=h.yt0hxah53p9e
https://docs.google.com/document/d/14E0BYqsH_d7fMKvXvaZWoNWtIC65cYBw0aZp4dlev0Q/edit#heading=h.yt0hxah53p9e

MISRAC ++ParallelConcurrencyHeteroRulesStatusPhasel % & & 5 ©@- @

File Edit View Insert Format Data Tools Add-ons Help Last edit was 3 days ago

e o~ | P O100% v po % .0 .00 123v Arial -l 12 ~- B ISA L - Evlelp-Yr o @MW Y3 Py- A
A6 - | Jx 0.3.6 [5] Do not use std::thread
A I B \ c D [E \ F \ G
1 |Rule Category decidable via human review decidable via tools status Destination: Tools vs C++ Core guideline Reason for keeping and 1

2 0.2.2[2] Do not use platform specific multi-threading facilities partially consider later only partially detectable, e.¢

3 0.3.10.3.x [82] Make std::threads unjoinable on all paths yes, on system level consider later use [7] instead

: 034 [3] A thread shall not access objects whose lifetime has expired partially it may exclude certain techr

s 035 [4] Thread callable object may receive only global or static objects via pointer or . partially consider later complex behavior of detach

6 |0.3.6 [5] Do not use std::thread | straightforward and decidat =)
7 0.3.8[7] Do not call std::thread::d h() fi ion? Join on all Available exit paths required better than [82] in decidabili

5 0.3.9 [8] Verify resource Io] ptic of std::thread with the impl directi consider later directive - keep directive for

s 041 [9] Do not call member functions of std::mutex, std::timed_mutex, std::recursive_ required straightforward and decidak +

0043 [11] Use std::lock(), std::try_lock() or std::scoped_lock to acquire multiple mutex: required
044 [12] Do not destroy objects of the following types std::mutex, std::timed_mutex,
12 0.4.5 [13] Mutexes locked with std::lock or std::try_lock shall be wrapped with std::loci required
13 0.4.6 [14] Do not call virtual fi jons and callable objects p d by argument of the 1 yes, on system level consider later
4 04.8 [16] Objects of std::lock_guards, std. ique_locks, std::shared_lock and std::sc required
5049 [17] Define a mutex together with the data it guards. Use synchronized_value<T> directive
16 :0.4. 11 [19] There shall be no code path which results in locking of the non-recursive m
17 0.4.12 [20] The order of nested locks unlock shall form a DAG

18 0.4.13 [21] std::recursive_mutex and std::recursive_timed_mutex should not be used
19 0.4.14 [22] There should be a code path, where at least one member functions is callea yes, on system level drop not a safety concern
0 0.5.1 [23] std::condition_variable::wait, std::condition_variable::wait_for, std::conditio required
2 053 [25] std::conditional_variable::notify_one() can be used if all threads must perforim the same set of oper ? ? consider later

straightforward and decidak

yes, on system level clear UB related

straightforward and decidak

straightforward and decidak

consider later related APl is not yet confint

es, on system level clear UB related
yes, on system level should enspire tools detecti

a sign of too complex soluti

straightforward and decidak

2 0.5.4 [26] Do not use std::condition_variable_any on a std::mutex straightforward and decidat
5 0.6.1 [27]Use only std::memory_order_seq_cst for atomic operations required straightforward and decidat

24 0 7.1 [28] Use a future to return a value from a concurrent task ? ? drop hardly formalizable

25 0.7.2 [29] Use an async() to sp a rent task ? ? drop to be replace with [5]

26 :0.8.1 [30] Don't try to use volatile for synchronization ? ? drop to be replace with [32]

27 0.8.2 [31] Use volatile only to talk to non-C++ memory ? ? drop should not be in scope of p:

28 :0.8.3 [32] Volatile variables shall not be accessed from different threads. required may be. on system level _ should enspire tools detecti

29 0.9.1 [33] Bit-fields of the same object, which are not separated by not-bit-field or zero required may be, on system level consider later very small use case 7

30 09 2r341 Sunchronize to dara shared h h ds usinag a sinale lock AR IS AME T -~ >ncidac tator nat narfacthy farmalizahla X

+ = Nuer! ~ 2

Rule decidability

« Human review
* Generally simple rules
* Code snippets
* Basic syntax matches intention

« Automated tool
» Static scope: can be convoluted but doable and simple for this generation of tools
* Dynamic scope: much more complex, hard even for tools of this generation, may be
doable with whole program analysis

* |ntention is hidden
« Both Human and Automated tools

* Generally simple cases
* Intention is shown in syntax

« Neither are good

* Very hard cases, dynamic scope, whole program analysis

* Intention is not clear
* Inthese cases we wonder if an [[intention:]] attribute might help

Where should parallel/concurrency/hetero rules go?

Human decidable
Easy

Easy

Hard

Hard

Tool decidable
Easy

Hard

Easy

Hard

Suitable tools in order of preference
C++CG, MISRA tools

C++CG, Tools will be meta or undecidable,
lots of false positive
May be bad rule for tools

MISRA tools, CG Meta

Neither, META directive; Code guidelines
Obvious rules, but hard to verify

Might not be a good rule anyway

Need a new [[intention::] attribute

Stage 2: collate

» Category
 Mandatory: 8
* Required: 12
e Advisory: 12
* Directive: 5
* Decidable by humans
* Easy: 27
e Medium: 1
e Complex: 20
* Unknownyet: 9
e Decidable via automated
tools
* Yes, on alocal level: 20
* Yes, on asystem level: 6
* Maybe, on a system
level: 7
* No:8
* Unknown yet: 11

Category Lo
Ignore rows - 1 +
1 Count 1l Distribution

»” Most W Least
VALUE FREQUENCY
required 12
advisory 12
mandatory 8
directive 5

decidable via human review < >

Ignore rows - 1 +

i Count i Distribution

30

10

? complex easy medium

»* Most Wy Least
VALUE FREQUENCY
easy 27
complex 20
? 9
medium 1

decidable via tools

3 2

Ignore rows - 1 +

il Count

1h Distribution

»* Most

VALUE
yes, on local level
?

no

may be, on syst...

yes, on system |...

W Least

FREQUENCY

20

11

8

CG, Misra, both or neither
e Accepted: for initial entry 24

e CG+tools: 12
* Tools+CG: 5
* Modifies CG: 4
* Same as CG: 3
* Deferred for future: 26
* Rejected: 18
* Shared drive of Status from
Phase 1:
* https://docs.google.com/sp
readsheets/d/1f-NX2z6axly
v5PO0Mmh4aeNfKO7KLSVSTtZr

TwS2YO002M/edit#gid=0

status < >

Ignore rows - 1 +

il Count i Distribution

10
0
accept for consider drop
initia later
revision

»* Most s Least
VALUE FREQUENCY
consider later 26
accept for initial... 24
drop 18

Destination: Toolsvs C++C... < >

Ignore rows | — 1 +

i Count il Distribution

0
3¢ & ¢
.;p‘& & o £

»~* Most “ Least
VALUE FREQUENCY
CG+Tools 2
Tools+CG 5
Modifies CG 4
Same as CG 3

https://docs.google.com/spreadsheets/d/1f-NX2z6axIyv5P0mh4aeNfKO7KLSVSTtZrTwS2YO02M/edit#gid=0
https://docs.google.com/spreadsheets/d/1f-NX2z6axIyv5P0mh4aeNfKO7KLSVSTtZrTwS2YO02M/edit#gid=0
https://docs.google.com/spreadsheets/d/1f-NX2z6axIyv5P0mh4aeNfKO7KLSVSTtZrTwS2YO02M/edit#gid=0
https://docs.google.com/spreadsheets/d/1f-NX2z6axIyv5P0mh4aeNfKO7KLSVSTtZrTwS2YO02M/edit#gid=0

More focus on CG contribution in 2022

e We had 24 rules ready for MISRA and C+CG in

2021
e C++ CGis thin on parallel, only 4 sections have
about 36 rules, rest ??? placeholders for future

©)
©)

Mostly contributed by Bjarne/Herb

We aim to contribute new, or modify, or add to ?? in these
section ongoing basis

Many parallelism experts, but only very few of those are also
safety critical/guideline experts

We aim to grow both CG and Misra

Concurrency and parallelism rule summary:
CP.coro: Coroutines

e CP.1:Assume that your code will run as part of a multi-threaded program

‘ I I ‘ G a ra I IeI e CP.2: Avoid data races
p e CP.3: Minimize explicit sharing of writable data

e CP4:Think in terms of tasks, rather than threads
e CP8:Don't try to use volatile for synchronizati

This section focuses on uses of coroutines.
Coroutine rule summary:

e CP.51: Do not use capturing lambdas that are coroutines

* CP.52: Do not hold locks or other synchronization primitives across suspension
points

* CP.53: Parameters to coroutines should not be passed by reference

Concurrency rule summary:

e CP.9: Whenever feasible use tools to validatexOur concurrent code

CP.20: Use RAII, never plain lock()/unlo
CP21: Use std::lock() or std::scoped_lock to acqur ltiple mutex es See also:
CP.22: Never call unknown code while holding a lock (e.g., a callback)
CP.23: Think of a joining thread as a scoped container T~— CP.con: Concurrency
CP.24:Think of a thread as a global container

CP.par: Parallelism

e CP.coro: Coroutines “ ism” i i .
o CP25: Prefer gs1: :joining_thread over std::thread : By “parallelism” we refer to performing a task (more or less) simultaneously (“in parallel
« CP26:Don't detach() athread e CPpar: Parallelism with”) on many data items.
¢ CP31: Pass small amounts of data between threads by value, rather than by e CPmess: Message passing Parallelism rule summary:
eference ot polnter o CPvec: Vectorization

® CP.32:To share ownership between unrelated threads use shared_ptr . .«
* CP40: Minimize context switching ¢ CPfree: Lock-free programming .« 77
it e L S * CPetc: Etc. concurrenky rules * Where appropriate, prefer the standard-library parallel algorithms
* CP42:Don't wait without a condition §

o . . * Use algorithms that are designed for parallelism, not algorithms with unnecessary
* CP.43: Minimize time spent in a critical section

dependency on linear evaluation

CP.44: Remember to name your lock_guardsand unique_lock s

® CP.50: Define a mutex together with the data it guards. Use ve(:torlzatlon r € Summary
synchronized_value<T> where possible Message paSSing rules Summary:
* 727 when to use a spinlock
® 722 when to use try_lock() L] ??7
* 722 when to prefer lock_guard over unique_lock e CP60:Use a future to return a value from a concurrent task
« 222 Time multiplexing e 277
* 27?2 when/how to use new thread Shoa ® Mﬁyﬁ() tO SDaWn Concurrent taSkS

’ * message queues
Lock-free programming rule summary:
* messaging libraries

e CP.100: Don't use lock-free programming unless you absolutely have to

e CP.101: Distrust your hardware/compiler combination

e CP.102: Carefully study the literature CP.etc: Etc. concurrency rules

e how/when to use atomics

o iaveidistarvation These rules defy simple categorization:

* use a lock-free data structure rather than hand-crafting specific lock-free access

e CP.110: Do not write your own double-checked locking for initialization

e CP.111:Use a conventional pattern if you really need double-checked locking e CP.201:7?? Signals

* how/when to compare and swap

e CP200: Use volatile only to talk to non-C++ memory

C++CG parallelism rules By hazard

e e e e e e e e e e e e e e e e e

Row Labels v Count of hazards}
Deadlocks |
Elegance guidelines/bad design/ excessive complicated design ZE
Expert Only 1

Lifetime violations |
REJECTED for CG Undefined Behaviour |
undefined behavior DEADLOCKS 1i
(blank) |
Grand Total 13,

N

w

IS

o

o

~

1 0.4.5 [13] Mutexes locked with std::lock or std::try_lock shall be wraﬂ required

10.12.11 [58] Objects of type std::mutex shall not have dynamic stora

Of the 24 accepted initially, 18 for CG

decidable via human re decidable via tools hazards Destination: Tc

Rule Category

0.3.4 [3] A thread shall not access objects whose lifetime has explreg‘ required
0.3.6 [5] Do not use std::thread

0.3.8 [7] Do not call std::thread::detach() function? Join on all Availarequired
0.4.1 [9] Do not call member functions of std::mutex, std::timed_mutrequired
0.4.3 [11] Use std::lock(), std::try_lock() or std::scoped_lock to acquirequired
0.4.4 [12] Do not destroy objects of the following types std::mutex,

, on system level

0.4.8 [16] Objects of std::lock_guards, std::unique_locks, std::sharq‘ required
0.4.11 [19] There shall be no code path which results in locking of t yes, on system level
0.4.12 [20] The order of nested locks unlock shall form a DAG yes, on system level
0.4.13 [21] std::recursive_mutex and std::recursive_timed_mutex s
0.5.1 [23] std::condition_variable::wait, std::condition_variable::wait required
0.5.4 [26] Do not use std::condition_variable_any on a std::mutex
0.6.1 [27]Use only std::memory_order_seq_cst for atomic operation:required

0.8.3 [32] Non-Atomic Volatile variables shall not be accessed from q"required may be, on system level
0.10.5 [39] Use std::call_once to ensure a function is called exactly may be, on system level
0.12.4 [51] Always explicitly specify a launch policy for std::async required
0.12.5 [52] Access to mutable members shall be synchronised in co

undefined behavior [

0.13.1 [64] Use higher-level standard facilities to implement parallelli directive
0.13.5 [68] Functor used with a parallel algorithm shall always retur
0.13.7 [70] Catch handlers enclosing algorithms with execution poli
0.13.8 [71] The binary_op used with std::reduce or std::transform_re directive
0.13.9 [72] The Function argument used with an algorithm shall not
0.14.9 [81] Do not discard the result of mutex types' try_lock* functi

may be, on system level

Reason

good for CG, no (

Agenda

e Adding safety to parallelism for both MISRA and C++ CG
o This year: focus on what we intend to do for C++CG by hazards

e Deep dive to C++CG rules
o Deadlocks and rejected rules
o Lifetime violation and new/modified rules

e CG+MISRA: the close to ideal safety partners

o Ongoing analysis of future C++ parallelism for safety

Deadlocks

Current CG focused on deadlocks prevention:

CP.20: Use RAIl, never plain 1ock()/unlock()

CP.21: Use std: :lock() or std: :scoped_lock to acquire multiple mutexes

CP.22: Never call unknown code while holding a lock (e.g., a callback)

CP.50: Define a mutex together with the data it guards. Use synchronized_value<T> where
possible

e CP.52: Do not hold locks or other synchronization primitives across suspension points

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-raii
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-lock
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-unknown
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-mutex
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-mutex
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rcoro-locks

RAIl for mutexes

Do not call member functions of std::mutex, std::timed_mutex, std::recursive_mutex, std::recursive_timed_mutex,

std::shared_mutex and std::shared_timed_mutex objects.

o

CP.20: Use RAII, never plain 1lock()/unlock()

N J
Y

Modification to be proposed:
CP.20: Use RAII, never plain locking and unlocking member functions of mutexes

Effects:

e Extends the scope of the rule to timed mutexes
e Encourages RAIl for try_lock() use cases
e std::lock() was in the grey area of CP.20 rule, now it is explicitly out of its scope

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-raii

Multiple mutexes

Use std::lock(), std::try_lock() or std::scoped_lock to acquire multiple mutexes in same scope.

o

CP.21: Use std::lock() or std::scoped_lock to acquire multiple mutexes

~

Modification to be proposed:
CP.21: Use std::lock(), std::try_lock() or std::scoped_lock to acquire multiple mutexes

Effects:

e std::try lock() is the reasonable straightforward way to try to acquire multiple mutexes or do
something else, if it does not happen
o mutexes can be easily adopted by std::scoped_lock, on success

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-lock
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-lock
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-lock

Destroying locked mutexes

Do not destroy objects of the following types std::mutex, std::timed_mutex, std::recursive_mutex,

std::recursive_timed_mutex, std::shared_mutex, std::shared_timed_mutex if object is in locked or shared locked

state.

We decided to keep that rule for MISRA but Reject it for CG.

The reason:
e The rule is correct - you should never do that, but...
e Itis not a rule for a human - no one will do that on purpose.
e Such thing in the code will be marked as a bug regardless of the rule existence
e At the same time MISRA rule will encourage code analysis tools to develop methodologies for

automatic detection of such hard to find cases

Correct order for locking and unlocking

The order of nested locks unlock shall form a DAG.

We do not have definite conclusion for CG - there are reasons to Reject it in the current form.
But there are more reasons to keep it in MISRA...

The reasons:

e This rule is too generic to be easily applied by human.
o Having it in CG may not be useful enough
e This rule is too specific to be easily applied by a tool.
o Itis almost impossible to build a full graph of the application to check its properties
o But keeping it in MISRA may inspire tool developers to check such properties at least on
visible subgraphs

Agenda

e Adding safety to parallelism for both MISRA and C++ CG
o This year: focus on what we intend to do for C++CG by hazards

e Deep dive to C++CG rules
o Deadlocks and rejected rules
o Lifetime violation and new/modified rules

e CG+MISRA: the close to ideal safety partners

o Ongoing analysis of future C++ parallelism for safety

Lifetime rules

MISRA: A thread shall not access objects whose lifetime has expired

e Rule is Undecidable by tools, requires System-level analysis

e Required for MISRA as it catches dangerous undefined behavior in code

e Quality of actual diagnostics depends on the quality of implementation of the
checker tool

e Core Guidelines wants rules that can be decided efficiently through local
reasoning

= Required for MISRA, but rejected for Core Guidelines

Lifetime rules

Current CG rules for lifetime :

e CP.23: Think of a joining thread as a scoped container
e CP.24: Think of a thread as a global container
e CP.26: Don’'t detach() a thread

Promotes scope-based reasoning about lifetimes

But what does it mean?

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-join
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-detach
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-detached_thread

Scope-based reasoning for lifetimes

void f () | For data accessed by a thread:
Lifetime of the data must not end
MyClass obj; before the lifetime of the thread

std::jthread t([&obj] () Is this example safe?

do work (obj) ; e Yes, because lifetime of the thread is
B clearly bounded (same as with a
1) function call)

e Unless you detach the jthread

CP.23: Think of a joining thread as a scoped container

Enforcement: Forbid detach() of joining threads.

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-join

Thread and Joining Thread

CP.24: Think of a thread as a global container

Enforcement: Disallow capturing of local variables

CP.26: Don't detach() a thread

If a tool can prove that CP.26 was followed, a thread can be treated as a joining
thread.

But why the analogy with local and global containers?

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-detach
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-detached_thread

Core Guidelines Lifetime Model

cppcon®

Writing Good C++14... By Default

-‘/ .A
N 4
‘EJ‘" A\ ':
SHERB SUTTER
*Wwww.HerbSutter.com
4 - - V)

Writing Good | Herb Sutter
C++14...

By Default

Core Guidelines Lifetime Model

Core Guidelines: Pro.lifetime: Lifetime safety

P1179R1 Lifetime safety: Preventing common dangling

e Assumption: Checker already enforces lifetime profile for containers
e If all threads are scoped, the same check used for lifetime of data stored by
containers can also be used for checking lifetime of data captured by thread

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1179r1.pdf

Lifetime checking in MISRA

e MISRA currently does not have a lifetime safety profile a la P1179
e \We decided not to follow the mental model of CG here but instead stick with
the general (Undecidable, System)-rule

Modification to be proposed: Adjust the rules to mention std: :jthread
alongside gsl::joining thread.

New Core Guideline rules

0.4.5 [13] Mutexes locked with std::lock or std::try_lock shall be wrapped with
std::lock_guard, std::unique_lock or std::shared_lock with adopt_lock tag within the same
scope

0.4.13 [21] std::recursive_mutex and std::recursive_timed_mutex should not be used

0.5.4 [26] Do not use std::condition_variable_any on a std::mutex

0.6.1 [27]Use only std::memory_order_seq_cst for atomic operations

0.12.4 [51] Always explicitly specify a launch policy for std::async

0.12.11 [58] Objects of type std::mutex shall not have dynamic storage duration.

Modifications to existing Core Guidelines rules

0.4.8 [16] Objects of std::lock_guards, std::unique_locks, std::shared_lock and
std::scoped_lock classes shall always be named Remember to name your lock_guards and
unique_locks

o CP.44: Remember to name your lock_guards and unique_locks
0.10.5 [39] Use std::call_once to ensure a function is called exactly once (rather than the
Double-Checked Locking pattern)

o CP.110: Do not write your own double-checked locking for

initialization

0.4.13 [21] std::recursive_mutex and std::recursive_timed_mutex should not be used

O CP.22: Never call unknown code while holding a lock (e.q., a
callback)

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-name
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-double
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-double
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-unknown
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-unknown

MISRA exclusive rules

These are rules that we accepted for MISRA, but decided that they are not a good
match for the Core Guidelines

e 0.4.4[12] Do not destroy objects of the following types std::mutex, std::timed_mutex,
std::recursive_mutex, std::recursive_timed_mutex, std::shared_mutex,
std::shared_timed_mutex if object is in locked or shared locked state

e 0.4.11 [19] There shall be no code path which results in locking of the non-recursive mutex
within the scope when this mutex is already locked

e 0.4.12 [20] The order of nested locks unlock shall form a DAG

Agenda

e Adding safety to parallelism for both MISRA and C++ CG
o This year: focus on what we intend to do for C++CG by hazards
e Deep dive to C++CG rules

o Deadlocks and rejected rules
o Lifetime violation and new/modified rules

e CG+MISRA: the close to ideal safety partners

o Ongoing analysis of future C++ parallelism for safety

Safety for Parallel/concurrency for C++20

Asynchronous
Agents

C++11: thread,lambda
function, TLS, async

C++ 20: Jthreads
+interrupt _token:,
stop_source,stop_token,
stop_callback,
request_stop(),stop_requ
ested(), coroutines

Concurrent collections Mutable shared state/low

C++11: Async, packaged tasks,
promises, futures, atomics,

C++ 17: ParallelSTL, control false
sharing

C++ 20: Vec execution policy,
Algorithm un-sequenced policy, span

Latency

C++11: locks, memory model, mutex,
condition variable, atomics, static init/term,

C++ 14: shared_lock/shared_timed_mutex,
OOTA, atomic_signal_fence,

C++ 17: scoped _lock, shared_mutex,
ordering of memory models, progress
guarantees, TOE, execution policies
C++20: atomic_ref, Latches and barriers,
:atomic<std::shared_ptr<T>>,
atomic<std::weak_ptr<T>>

Atomics & padding bits

Simplified atomic init

Atomic C/C++ compatibility

Semaphores, atomic<T> waiting: var.wait(),
var.notify_one(), var.notify_all()

Fixed gaps in memory model , Improved
atomic flags, Repair memory model

Heterogeneous/Dis
tributed/Accel

C++11: lambda
C++14: generic lambda

C++17: , progress guarantees,
TOE, execution policies

C++20: atomic_ref,, span

Ongoing work but we do know a few things

« atomic<std::shared_ptr<T>>

- May or may not be lock free
- If lock-free, likely not end-to-end lockfree
- Slow under high contention

« Atomic_ref: all access access to that object must use atomic_ref
« Semaphores: attempting to acquire a slot when the count is O will either
block or fail

« Jthreads: surprising if you are used to pthreads, but not if you know RAII
- Cooperative cancellation, if target doesn’t check, nothing happens!

CP.coro: Coroutines

This section focuses on uses of coroutines.
Coroutine rule summary:

e CP.51: Do not use capturing lambdas that are coroutines

e CP.52: Do not hold locks or other synchronization primitives across suspension
points

e CP.53: Parameters to coroutines should not be passed by reference

How to use future C++ parallel + TS2 (or IS26) safely

Deferred reclamation can be applied readily to most concurrent linked data structures

o HP

Not hard to convert ref count to HP
No blocking concerns as Reclamation objects are bounded
HP now being amenable to synchronous cleanup in future Cannot have external dependencies in destructors

Reader might block reclamation if unbounded, so an unbounded amount of memory might remain unclaimed

But in safety critical, memory is bounded by the maximum duration of RCU read-side critical section X max amount of
memory retired per unit of time

In safety if you use static allocation then you will not have new injections and this is actually good as it will not block
reclamation

If you recycle a fixed number of statically allocated blocks, then blocking in an RCU reader is less damaging to updates
than blocking in an reader-writer-locking reader.

An RCU reader typically only blocks recycling of memory, allowing updates to proceed concurrently with RCU readers.
In contrast, a reader-writer-locking reader blocks updates entirely.

o Coroutines:

Similar to things like std::mutex, RCU readers should not span a coroutine suspension point (unless special
non-standard extensions or use cases are applied).

Similar to reference counting, hazard pointers can be held across coroutine suspension points, and further can be
passed from one thread to another.

o Both hazard pointers and RCU can have debugging issues due to thread switching

What is the difference C++CG and MISRA C++

« These are the best 2 guidelines, both are actively updated
. CG is a coding guideline, safety is a by-product

Human evaluation and some machine evaluation

State rules in positive: e.g. Do this

Aim for more elegance which can be safe but not necessarily safe

Updated as new C++ comes out, does not maintain older C++ versions

Relies on local static analysis, MS has implemented a lot of it, and one is in clang,-tidy
Need to do for good design

Lots of sequential rules with a few parallel rules

Top down

« MISRA is a safety guideline, not about elegance

Trap accidental coding mistakes that can kill

State rules mostly in negative: Don’t do this ...

Aim for Machine automated checkable, large number of rules hard for anyone to check
individually

Updated slower then C++CG because safety compilers support is at least one level behind
Coverity, sonarsource, Klocwork, Helix QAC, Axivion ...

Kind of mechanical, makes money for tool makers

Bottom up

2022: all sequential, with ours as the only parallel which will enter after MISRA NEXT

Conclusion

What you need for safety:

You need both

MISRA C++ to have a good sense of what can be

automatically checked now, and
e Use MISRA certified tools to support APl safety

* work with safety certified compilers for ABI safety which might be
C++17 today or older

C++ CG to see what is coming, what makes code

elegant and by extension safe
* To reduce the amount of changes in future

* Overlapping coverage using both to cover safety with elegance
* See Bjarne’s keynote.

