


Andreas Weis (he/him)
Staff Engineer
at Woven Planet

     /       ComicSansMS
      
     @DerGhulbus

      Co-organizer of the Munich C++ User 
Group (MUC++)

Member of WG21 (ISO C++) and MISRA C++

Working on the Runtime framework for the 
Arene platform at Woven Planet



Ilya Burylov
Principle Engineer
An architect of C++ software solutions for autonomous 
driving market

Contribution into functional safety MISRA standard 

Contribution into WG21 in threading, vectorization and 
numerics.

Contribution into SYCL 

 



Michael Wong
Distinguished Engineer

● Chair of SYCL Heterogeneous Programming 
Language

● RISC-V Datacenter/CLoud COmputign Chair
● ISO C++ Directions Group past Chair
● Past CEO OpenMP
● ISOCPP.org Director, VP 

http://isocpp.org/wiki/faq/wg21#michael-wong
● michael@codeplay.com
● fraggamuffin@gmail.com
● Head of Delegation for C++ Standard for Canada
● Chair of Programming Languages for Standards 

Council of Canada
Chair of WG21 SG19 Machine Learning
Chair of WG21 SG14 Games Dev/Low 
Latency/Financial Trading/Embedded

● Editor: C++ SG5 Transactional Memory Technical 
Specification

● Editor: C++ SG1 Concurrency Technical Specification 
● MISRA C++ and AUTOSAR
● Chair of Standards Council Canada TC22/SC32 

Electrical and electronic components (SOTIF)
● Chair of UL4600 Object Tracking
● http://wongmichael.com/about
● C++11 book in Chinese: 

https://www.amazon.cn/dp/B00ETOV2OQ

We build GPU compilers for some of the most powerful 
supercomputers in the world

http://isocpp.org/wiki/faq/wg21
mailto:michael@codeplay.com
mailto:fraggamuffin@gmail.com
http://wongmichael.com/about


Christof MeerwaldSenior Software Engineer 
at Edison Design Group

C++ Compiler Front End Development

Member of WG21 (ISO C++ - Core Working Group)



Agenda
● Adding safety to parallelism for both MISRA and C++ CG

○ This year: focus on what we intend to do for C++CG by hazards

● Deep dive to C++CG rules
○ Deadlocks and rejected rules
○ Lifetime violation and new/modified rules

● CG+MISRA: the close to ideal safety partners
○ Ongoing analysis of future C++ parallelism for safety



Safety Critical API Evolution

minimize API surface area , reduce 
ambiguity, UB, increase determinism

New Generation Safety 
Critical APIs for Graphics, 

Compute and Display 

Industry Need 
for CPU/GPU Acceleration APIs designed 

to ease system safety certification 

Rendering Compute Display



Comparing coding standards

Coding Standard C++ Versions

Autosar C++14 dormant

Misra C++03 (working to C++17)

High Integrity CPP C++11 dormant

JSF C++03 dormant

C++ CG C++11/14/17/20/latest

CERT C++ C++14 dormant





Stage 1: extensive deep analysis of 81 rules

• Started in 2019 at a MISRA meeting
• Why are there no rules for parallelism in MISRA?

• 2019-2021: Phase 1 complete
• Reviewed 81 rules pulled from

• C++CG
• HIC++
• REphrase H2020 project 
• CERT C++
• JSF++ (no parallel rules)
• WG23 (no parallel rules)
• Added some from our own contributions

• Many joined, average 5-8 per meeting
• Also consulted outside concurrency and safety experts

• Shared Drive of Phase 1 analysis:
• https://docs.google.com/document/d/14E0BYqsH_d7fMKvXvaZWoNWtIC65c

YBw0aZp4dlev0Q/edit#heading=h.yt0hxah53p9e

https://docs.google.com/document/d/14E0BYqsH_d7fMKvXvaZWoNWtIC65cYBw0aZp4dlev0Q/edit#heading=h.yt0hxah53p9e
https://docs.google.com/document/d/14E0BYqsH_d7fMKvXvaZWoNWtIC65cYBw0aZp4dlev0Q/edit#heading=h.yt0hxah53p9e




Rule decidability
• Human review

• Generally simple rules
• Code snippets
• Basic syntax matches intention

• Automated tool
• Static scope: can be convoluted but doable and simple for this generation  of tools
• Dynamic scope: much more complex, hard even for tools of this generation, may be 

doable with whole program analysis
• Intention is hidden

• Both Human and Automated tools
• Generally simple cases
• Intention is shown in syntax

• Neither are good
• Very hard cases, dynamic scope, whole program analysis
• Intention is not clear

• In these cases we wonder if an [[intention:]] attribute  might help



Where should parallel/concurrency/hetero rules go?
Human decidable Tool decidable Suitable tools in order of preference

Easy Easy C++CG, MISRA tools 

Easy Hard C++CG, Tools will be meta or undecidable, 
lots of false positive
May be bad rule for tools

Hard Easy MISRA tools, CG Meta

Hard Hard Neither, META directive; Code guidelines
Obvious rules, but hard to verify
Might not be a good rule anyway
Need a new [[intention::] attribute



Stage 2:  collate
• Category

• Mandatory: 8
• Required: 12
• Advisory: 12
• Directive: 5

• Decidable by humans
• Easy: 27
• Medium: 1
• Complex: 20
• Unknown yet: 9

• Decidable via automated 
tools

• Yes, on a local level: 20
• Yes, on a system level: 6
• Maybe, on a system 

level: 7
• No: 8
• Unknown yet: 11



CG, Misra, both or neither
• Accepted: for initial entry 24

• CG+tools: 12
• Tools+CG: 5
• Modifies CG: 4
• Same as CG: 3

• Deferred for future: 26
• Rejected: 18

• Shared drive of Status from 
Phase 1:
• https://docs.google.com/sp

readsheets/d/1f-NX2z6axIy
v5P0mh4aeNfKO7KLSVSTtZr
TwS2YO02M/edit#gid=0

https://docs.google.com/spreadsheets/d/1f-NX2z6axIyv5P0mh4aeNfKO7KLSVSTtZrTwS2YO02M/edit#gid=0
https://docs.google.com/spreadsheets/d/1f-NX2z6axIyv5P0mh4aeNfKO7KLSVSTtZrTwS2YO02M/edit#gid=0
https://docs.google.com/spreadsheets/d/1f-NX2z6axIyv5P0mh4aeNfKO7KLSVSTtZrTwS2YO02M/edit#gid=0
https://docs.google.com/spreadsheets/d/1f-NX2z6axIyv5P0mh4aeNfKO7KLSVSTtZrTwS2YO02M/edit#gid=0


● We had 24 rules ready for MISRA and C+CG in 
2021

● C++ CG is thin on parallel, only 4 sections have 
about 36 rules, rest ??? placeholders for future
○ Mostly contributed by Bjarne/Herb
○ We aim to contribute new, or modify, or add to ?? in these 

section ongoing basis
○ Many parallelism experts, but only very few of those are also 

safety critical/guideline experts
○ We aim to grow both CG and Misra

More focus on CG contribution in 2022



C++CG parallel



C++CG parallelism rules By  hazard



Of the 24 accepted initially, 18 for CG



Agenda
● Adding safety to parallelism for both MISRA and C++ CG

○ This year: focus on what we intend to do for C++CG by hazards

● Deep dive to C++CG rules
○ Deadlocks and rejected rules
○ Lifetime violation and new/modified rules

● CG+MISRA: the close to ideal safety partners
○ Ongoing analysis of future C++ parallelism for safety



Deadlocks
Current CG focused on deadlocks prevention:

● CP.20: Use RAII, never plain lock()/unlock()
● CP.21: Use std::lock() or std::scoped_lock to acquire multiple mutexes
● CP.22: Never call unknown code while holding a lock (e.g., a callback)
● CP.50: Define a mutex together with the data it guards. Use synchronized_value<T> where 

possible
● CP.52: Do not hold locks or other synchronization primitives across suspension points

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-raii
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-lock
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-unknown
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-mutex
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-mutex
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rcoro-locks


RAII for mutexes
Do not call member functions of std::mutex, std::timed_mutex, std::recursive_mutex, std::recursive_timed_mutex, 

std::shared_mutex and std::shared_timed_mutex objects.

CP.20: Use RAII, never plain lock()/unlock()

CP.20: Use RAII, never plain locking and unlocking member functions of mutexes

Effects:

● Extends the scope of the rule to timed mutexes
● Encourages RAII for try_lock() use cases   
● std::lock() was in the grey area of CP.20 rule, now it is explicitly out of its scope

Modification to be proposed:

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-raii


Multiple mutexes
Use std::lock(), std::try_lock() or std::scoped_lock to acquire multiple mutexes in same scope.

CP.21: Use std::lock() or std::scoped_lock to acquire multiple mutexes

CP.21: Use std::lock(), std::try_lock() or std::scoped_lock to acquire multiple mutexes

Effects:

● std::try_lock() is the reasonable straightforward way to try to acquire multiple mutexes or do 
something else, if it does not happen

○ mutexes can be easily adopted by std::scoped_lock, on success

Modification to be proposed:

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-lock
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-lock
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-lock


Destroying locked mutexes
Do not destroy objects of the following types std::mutex, std::timed_mutex, std::recursive_mutex, 

std::recursive_timed_mutex, std::shared_mutex, std::shared_timed_mutex if object is in locked or shared locked 

state.

The reason:

● The rule is correct - you should never do that, but…
● It is not a rule for a human - no one will do that on purpose.
● Such thing in the code will be marked as a bug regardless of the rule existence
● At the same time MISRA rule will encourage code analysis tools to develop methodologies for 

automatic detection of such hard to find cases

We decided to keep that rule for MISRA but Reject it for CG.



Correct order for locking and unlocking
The order of nested locks unlock shall form a DAG.

The reasons:

● This rule is too generic to be easily applied by human.
○ Having it in CG may not be useful enough

● This rule is too specific to be easily applied by a tool.
○ It is almost impossible to build a full graph of the application to check its properties
○ But keeping it in MISRA may inspire tool developers to check such properties at least on 

visible subgraphs

We do not have definite conclusion for CG - there are reasons to Reject it in the current form.

But there are more reasons to keep it in MISRA…



Agenda
● Adding safety to parallelism for both MISRA and C++ CG

○ This year: focus on what we intend to do for C++CG by hazards

● Deep dive to C++CG rules
○ Deadlocks and rejected rules
○ Lifetime violation and new/modified rules

● CG+MISRA: the close to ideal safety partners
○ Ongoing analysis of future C++ parallelism for safety



Lifetime rules
MISRA: A thread shall not access objects whose lifetime has expired

● Rule is Undecidable by tools, requires System-level analysis
● Required for MISRA as it catches dangerous undefined behavior in code
● Quality of actual diagnostics depends on the quality of implementation of the 

checker tool
● Core Guidelines wants rules that can be decided efficiently through local 

reasoning

⇒ Required for MISRA, but rejected for Core Guidelines



Lifetime rules
Current CG rules for lifetime :

● CP.23: Think of a joining thread as a scoped container
● CP.24: Think of a thread as a global container
● CP.26: Don’t detach() a thread

Promotes scope-based reasoning about lifetimes

But what does it mean?

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-join
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-detach
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-detached_thread


Scope-based reasoning for lifetimes
void f() {

  MyClass obj;

  std::jthread t([&obj]() {

    do_work(obj);

  });

}

For data accessed by a thread: 
Lifetime of the data must not end 
before the lifetime of the thread

Is this example safe?

● Yes, because lifetime of the thread is 
clearly bounded (same as with a 
function call)

● Unless you detach the jthread

CP.23: Think of a joining thread as a scoped container

Enforcement: Forbid detach() of joining threads.

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-join


Thread and Joining Thread
CP.24: Think of a thread as a global container

Enforcement: Disallow capturing of local variables

CP.26: Don’t detach() a thread

If a tool can prove that CP.26 was followed, a thread can be treated as a joining 
thread.

But why the analogy with local and global containers?

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-detach
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-detached_thread


Core Guidelines Lifetime Model



Core Guidelines Lifetime Model
Core Guidelines: Pro.lifetime: Lifetime safety

P1179R1 Lifetime safety: Preventing common dangling

● Assumption: Checker already enforces lifetime profile for containers
● If all threads are scoped, the same check used for lifetime of data stored by 

containers can also be used for checking lifetime of data captured by thread

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1179r1.pdf


Lifetime checking in MISRA
● MISRA currently does not have a lifetime safety profile à la P1179
● We decided not to follow the mental model of CG here but instead stick with 

the general (Undecidable, System)-rule

Modification to be proposed: Adjust the rules to mention std::jthread 
alongside gsl::joining_thread.



New Core Guideline rules

● 0.4.5 [13] Mutexes locked with std::lock or std::try_lock shall be wrapped with 
std::lock_guard, std::unique_lock or std::shared_lock with adopt_lock tag within the same 
scope

● 0.4.13 [21] std::recursive_mutex and std::recursive_timed_mutex should not be used
● 0.5.4 [26] Do not use std::condition_variable_any on a std::mutex
● 0.6.1 [27]Use only std::memory_order_seq_cst for atomic operations
● 0.12.4 [51] Always explicitly specify a launch policy for std::async
● 0.12.11 [58] Objects of type std::mutex shall not have dynamic storage duration.



Modifications to existing Core Guidelines rules

● 0.4.8 [16] Objects of std::lock_guards, std::unique_locks, std::shared_lock and 
std::scoped_lock classes shall always be named Remember to name your lock_guards and 
unique_locks

○ CP.44: Remember to name your lock_guards and unique_locks
● 0.10.5 [39] Use std::call_once to ensure a function is called exactly once (rather than the 

Double-Checked Locking pattern)
○ CP.110: Do not write your own double-checked locking for 

initialization

● 0.4.13 [21] std::recursive_mutex and std::recursive_timed_mutex should not be used
○ CP.22: Never call unknown code while holding a lock (e.g., a 

callback)

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-name
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-double
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-double
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-unknown
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-unknown


MISRA exclusive rules
These are rules that we accepted for MISRA, but decided that they are not a good 
match for the Core Guidelines

● 0.4.4 [12] Do not destroy objects of the following types std::mutex, std::timed_mutex, 
std::recursive_mutex, std::recursive_timed_mutex, std::shared_mutex, 
std::shared_timed_mutex if object is in locked or shared locked state

● 0.4.11 [19] There shall be no code path which results in locking of the non-recursive mutex 
within the scope when this mutex is already locked

● 0.4.12 [20] The order of nested locks unlock shall form a DAG



Agenda
● Adding safety to parallelism for both MISRA and C++ CG

○ This year: focus on what we intend to do for C++CG by hazards

● Deep dive to C++CG rules
○ Deadlocks and rejected rules
○ Lifetime violation and new/modified rules

● CG+MISRA: the close to ideal safety partners
○ Ongoing analysis of future C++ parallelism for safety



© 2018 Codeplay Software Ltd.38

Safety for Parallel/concurrency for C++20
Asynchronous 
Agents

Concurrent collections Mutable shared state/low 
Latency

Heterogeneous/Dis
tributed/Accel

C++11: thread,lambda 
function, TLS, async

C++ 20: Jthreads 
+interrupt _token:, 
stop_source,stop_token, 
stop_callback, 
request_stop(),stop_requ
ested(), coroutines

C++11: Async, packaged tasks, 
promises, futures, atomics, 

C++ 17: ParallelSTL, control false 
sharing

C++ 20: Vec execution policy, 
Algorithm un-sequenced policy, span

C++11: locks, memory model, mutex, 
condition variable, atomics, static init/term, 

C++ 14: shared_lock/shared_timed_mutex, 
OOTA, atomic_signal_fence, 
C++ 17: scoped _lock, shared_mutex, 
ordering of memory models, progress 
guarantees, TOE, execution policies
C++20: atomic_ref, Latches and barriers, 
:atomic<std::shared_ptr<T>>, 
atomic<std::weak_ptr<T>>
Atomics & padding bits 
Simplified atomic init 
Atomic C/C++ compatibility 
Semaphores, atomic<T> waiting: var.wait(), 
var.notify_one(), var.notify_all()
Fixed gaps in memory model , Improved 
atomic flags, Repair memory model 

C++11: lambda

C++14: generic lambda

C++17: , progress guarantees, 
TOE, execution policies

C++20: atomic_ref,, span



© 2018 Codeplay Software Ltd.39

• atomic<std::shared_ptr<T>>
- May or may not be lock free
- If lock-free, likely not end-to-end lockfree
- Slow under high contention

• Atomic_ref: all access access to that object must use atomic_ref

• Semaphores:  attempting to acquire a slot when the count is 0 will either 

block or fail

• Jthreads: surprising if you are used to pthreads, but not if you know RAII
- Cooperative cancellation, if target doesn’t check, nothing happens!

Ongoing work but we do know a few things



How to use future C++ parallel +  TS2 ( or IS26)  safely
Deferred reclamation can be applied readily to most concurrent linked data structures

○ HP
■ Not hard to convert ref count to HP
■ No blocking concerns as Reclamation objects are bounded 
■ HP now being amenable to synchronous cleanup in future Cannot have external dependencies in destructors

○ RCU 
■ Reader might block reclamation if unbounded, so an unbounded amount of memory might remain unclaimed 
■ But in safety critical,memory is bounded by the maximum duration of RCU read-side critical section X max amount of 

memory retired per unit of time
■ In safety if you use static allocation then you will not have new injections and this is actually good as it will not block 

reclamation
■ If you recycle a fixed number of statically allocated blocks, then blocking in an RCU reader is less damaging to updates 

than blocking in an reader-writer-locking reader.
■ An RCU reader typically only blocks recycling of memory, allowing updates to proceed concurrently with RCU readers.
■ In contrast, a reader-writer-locking reader blocks updates entirely.

○ Coroutines:
■ Similar to things like std::mutex, RCU readers should not span a coroutine suspension point (unless special 

non-standard extensions or use cases are applied).
■ Similar to reference counting, hazard pointers can be held across coroutine suspension points, and further can be 

passed from one thread to another.
○ Both hazard pointers and RCU can have debugging issues due to thread switching



What is the difference C++CG and MISRA C++
• These are the best 2 guidelines, both are actively updated
• CG is a coding guideline, safety is a by-product

• Human evaluation and some machine evaluation
• State rules in positive: e.g. Do this ….
• Aim for more elegance which can be safe but not necessarily safe
• Updated as new C++ comes out, does not maintain older C++ versions
• Relies on local static analysis, MS has implemented a lot of it, and one is in clang,-tidy
• Need to do for good design
• Lots of sequential rules with a few parallel rules
• Top down

• MISRA is a safety guideline, not about elegance
• Trap accidental coding mistakes that can kill
• State rules mostly in negative: Don’t do this …
• Aim for Machine automated checkable, large number of rules hard for anyone to check 

individually
• Updated slower then C++CG because safety compilers support is at least one level behind
• Coverity, sonarsource, Klocwork, Helix QAC, Axivion …
• Kind of mechanical, makes money for tool makers
• Bottom up
• 2022: all sequential, with ours as the only parallel which will enter after MISRA NEXT



Conclusion

What you need for safety:

• You need both 
• MISRA C++ to have a good sense of what can be 

automatically checked now, and
• Use MISRA certified tools to support API safety
• work with safety certified compilers for ABI safety which might be 

C++17 today or older

• C++ CG to see what is coming, what makes code 
elegant and by extension safe 

• To reduce the amount of changes in future 
• Overlapping coverage using both to cover safety with elegance
• See Bjarne’s keynote.


