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Highly coupled have program units dependent on each other.

Loosely coupled are made up of units that are independent
or almost independent.

Modules are independent if they can function completely
without the presence of the other.
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An indication of the strength of interconnections between
program units.

A component should implement a single logical function or
single logical entity.

All the parts should contribute to the implementation.
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"One goal of design is to minimize coupling between parts

and to maximize cohesion within them."
Multi-Paradigm Design for C++ James Coplien

An indication of the strength of interconnections between
program units.

Cohesion is how much one part of a code base forms an
atomic program unit

Coupling is how much a single program unit depends upon
other program units



Simplified Example

Result
SomeClass::
process_packet(Packet const & packet)

{
¥

// Packet processing code
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Can You Say Code Review?

Result
SomeClass::
process_packet(Packet const & packet)
{
launch_rocket(
global_rocket_launcher,
random_coordinates());
// Packet processing code
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More or_Less Scary

Result
Some(Class::
process_packet(Packet const & packet)

{

1t (packet.timestamp() >= compression_timestamp &&
Header(packet).1s_compressed())

1
¥

// packet processing code

return process_packet(Cuncompress(packet));
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Compose small, cohesive program units

Check
Timestamp

process_packet uNCoMpress
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A Particular Design and How to Implement that Design
Emphasis on the former
Less than | want on the latter

Key concept - adding a feature should require zero/little
change to the existing implementation

Very low coupling, very high cohesion

Recount parts of a 32 year quest
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Journey Before Destination
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The most important words a man can say are, “l will do
better.” These are not the most important words any man
can say. | am a man, and they are what | needed to say.
The ancient code of the Knights Radiant says “journey
before destination.” Some may call it a simple platitude,
but it is far more. A journey will have pain and failure. It is
not only the steps forward that we must accept. It is the
stumbles. The trials. The knowledge that we will fail. That
we will hurt those around us. But if we stop, If we accept
the person we are when we fall, the journey ends. That
failure becomes our destination. To love the journey is to
accept no such end. | have found, through painful
experience, that the most important step a person can

take Is always the next one.
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tmp = a
a=>b
b =tmp
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mp := a;
a:.=Db;
b :=tmp;
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Add feature(s) so existing applications can be distributed
across any number of hosts

Original plan was to design/implement a distributed
architecture. Massive code changes.

My goal - add feature with little or no change to existing
design and/or implementation

Fortunately, they had used System V IPC
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Message queues
System V message queues allow data to be exchanged in units
called messages. Each messages can have an associated priority,
POSIX message queues provide an alternative API for achieving the
same result; see mqg_overview(7).

The System V message queue API consists of the following system
calls:

msgget(2)
Create a new message queue or obtain the ID of an existing

message queue. This call returns an identifier that is
used in the remaining APIs.

msgsnd(2)
Add a message to a queue.

msgrcv(2)
Remove a message from a queue.

msgct1(2)
Perform various control operations on a queue, including
deletion.

https://man7.org/linux/man-pages/man7/sysvipc.7.html
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Semaphore sets
System V semaphores allow processes to synchronize their actions.
System V semaphores are allocated in groups called sets; each
semaphore in a set is a counting semaphore. POSIX semaphores
provide an alternative API for achieving the same result; see
sem_overview(7).

The System V semaphore API consists of the following system
calls:

semget(2)
Create a new set or obtain the ID of an existing set.
This call returns an identifier that is used in the
remaining APIs.

semop(2)
Perform operations on the semaphores in a set.

semct1(2)
Perform various control operations on a set, including
deletion.

https://man7.org/linux/man-pages/man7/sysvipc.7.html



Shared memory segments

System V shared memory allows processes to share a region a
memory (a "segment"). POSIX shared memory is an alternative API
for achieving the same result; see shm_overview(7).

The System V shared memory API consists of the following system
calls:

shmget(2)
Create a new segment or obtain the ID of an existing
segment. This call returns an identifier that is used in
the remaining APIs.

shmat(2)

Attach an existing shared memory object into the calling
process's address space.

shmdt(2)
Detach a segment from the calling process's address space.

shmct1(2)

Perform various control operations on a segment, including
deletion.

https://man7.org/linux/man-pages/man7/sysvipc.7.html
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System V IPC

https://man7.org/linux/man-pages/man7/sysvipc.7.html
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Message Queue

int msgget(key_t key, int msgflg)
{ /* implementation */ }

int msgsnd(int msqgqid, const void *msgp, size_t msgsz,
int msgflg)
{ /* implementation */ }

ssize_t msgrcv(int msgid, void *msgp, size_t msgsz, long
msgtyp, int msgflg)
{ /* 1mplementation */ }

int msgctl(int msqgid, int cmd, struct msqid_ds *buf)
{ /* implementation */ }
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Semaphore

int semget(key_t key, int nsems, int semflg)
{ /* 1mplementation */ }

int semop(int semid, struct sembuf *sops, size_t nsops)
{ /* implementation */ }

int semctl(int semid, int semnum, int cmd, ...)
{ /* 1mplementation */ }
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Multi-Paradigm Design for C++ James Coplien
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STREAMS Programming Guide - Oracle
https://docs.oracle.com/cd/E26502_01/htmI/E35856/index.html
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STREAMS Programming Guide - Oracle
https://docs.oracle.com/cd/E26502_01/htmI/E35856/index.html

Lots of other PDF resources available online
google is your friend
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<  ADDISON-WESLEY PROFESSIONAL COMPUTING SERIES
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STREAMS Resources
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C++ Network
Programming

Volume 2
Systematic Reuse with ACE and Frameworks

Douglas C. Schmidt

Stephen D. Huston
Foreword by Frank Buschmann

G+ In-Depth Series « Bjarne Stroustrup
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#include <sys/fcntl.h>
#include <stdio.h>

main()

{
char buf[1024];

int fd, count;

if ((fd = open("/dev/ttya", O RDWR)) < 0) {
perror("open failed");

exit(1);
}
while ((count = read(fd, buf, sizeof(buf))) > 0) {
if (write(fd, buf, count) !'= count) {
perror("write failed");
break;
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#include <sys/fcntl.h>
#include <stdio.h>

main()

{
char buf[1024];

int fd, count;

if ((fd = open("/dev/ttya", O RDWR)) < 0) {
perror("open failed");

exit(1);
}
while ((count = read(fd, buf, sizeof(buf))) > 0) {
if (write(fd, buf, count) !'= count) {
perror("write failed");
break;
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Remember the library to intercept SYSV IPC?

New requirement - reliability

Multiple network cards

Use available network cards to recovery from failures
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Remember the library to intercept SYSV IPC?

New requirement - reliability

Multiple network cards

Use available network cards to recovery from failures
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Remember the library to intercept SYSV IPC?

dcom.a
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Remember the library to intercept SYSV IPC?

dcom.a

: 4 user
C

kernel
DCOM

UDP

68



Remember the library to intercept SYSV IPC?

dcom.a

: 4 user
C

UDP

kernel
Q DCOM
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Me and C++ andcSTREAMS Sitting in a Tree

> YouTube Search

https://www.youtube.com/watch?v=Pd0VBm8gU5o0
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STREAMS driver
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Device
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We got what we wanted - reliability in light of hardware failure
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We got what we wanted - reliability in light of hardware failure

We got extra - almost N-times performance in non-failure
conditions

Didn't change a single line of code in our applications

Not just our applications - every application

ftp was the demo app
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"One goal of design is to minimize coupling between parts
and to maximize cohesion within them."

Multi-Paradigm Design for C++ James Coplien
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The Hinnant Rule

compiler implicitly declares

user declares

default destructor copy copy move move
constructor constructor |assignment | constructor |assignment
defaulted | defaulted | defaulted | defaulted | defaulted | defaulted
Nnot
declared defaulted | defaulted | defaulted | defaulted | defaulted
defaulted | defaulted | defaulted | defaulted | defaulted
not not
defaulted defaulted | defaulted declared declared
Not Not Nnot
declared detaulted detaulted declared declared
not not
defaulted | defaulted | defaulted T - T
not not
T B—- defaulted deleted deleted SeelEree
Not
defaulted | defaulted deleted deleted declared
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If this design is so great, why don't | know anything about it?
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If this design is so great, why don't | know anything about it?

My personal opinions and guesses...
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If this design is so great, why don't | know anything about it?

STREAMS is kernel only

The user space interface has none of the awesomeness

You must load and run your modules in the kernel

Recommendation was no more than 6-7 modules
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If this design is so great, why don't | know anything about it?

Poor Linux Support
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If this design is so great, why don't | know anything about it?

Poor Linux Support

Initial LiS implementation soured many

Linux Fast-STREAMS 2006 - great throughput

Still kernel only

33
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If this design is so great, why don't | know anything about it?

Lack of user-space availability

Some implementations available - ACE

OK on throughput, not on latency

Java style object oriented - difficult to compose
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If this design is so great, why don't | know anything about it?

Performance

Full implementation is hard

Can require custom scheduler for service routines

Less chance for compiler optimizations

Function calls and runtime checks via opagque messages
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Packet

Packet w/
Compression

Check Flag Check

Timestamp
Packet

Packet

Flag

Compressed
Packet

Packet
process_packet uNncompress

Packet
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All parents think their baby is beautiful
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All parents think their baby is beautiful

| am under no such illusion

Difficult to use wrong :-)

Difficult to use right :-(
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Check.Timestamp

auto check_timestamp = []J(Cauto & fw, Packet const & pkt)
-> decltype(

add_tag<HasCompressionFlag>(fw, pkt),

bool {supports_compression(pkt)},

void())

{
1f (supports_compression(pkt)) {

put_next(fw, add_tag<HasCompressionFlag>(fw, pkt));
} else {
put_next(fw, pkt);

}
s

38
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> decltype(
add_tag<HasCompressionFlag>(fw, pkt),

bool{supports_compression(pkt)},
void())

{
1f (supports_compression(pkt)) {

put_next(fw, add_tag<HasCompressionFlag>(fw, pkt));
} else {
put_next(fw, pkt);

}
s
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Check.Timestamp

auto check_timestamp = []J(Cauto & fw, Packet const & pkt)

-> decltype(
add_tag<HasCompressionFlag>(fw, pkt),

bool{supports_compression(pkt)},
void())
i

1f (supports_compression(pkt)) {

put_next(fw, add_tag<HasCompressionFlag>(fw, pkt));
} else {

put_next(fw, pkt);
5
s

39



Check.Timestamp

auto check_timestamp = []J(Cauto & fw, Packet const & pkt)
-> decltype(
add_tag<HasCompressionFlag>(fw, pkt),

bool{supports_compression(pkt)},

void())

{
1f (supports_compression(pkt)) {

put_next(fw, add_tag<HasCompressionFlag>(fw, pkt));
} else {
put_next(fw, pkt);
¥
¥
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Check.Timestamp

auto check_timestamp = []J(Cauto & fw, Packet const & pkt)
-> decltype(

add_tag<HasCompressionFlag>(fw, pkt),

bool {supports_compression(pkt)},

{
1f (supports_compression(pkt)) {

put_next(fw, add_tag<HasCompressionFlag>(fw, pkt));
} else {
put_next(fw, pkt);
3
5
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Check.Timestamp

auto check_timestamp = []J(Cauto & fw, Packet const & pkt)
-> decltype(

add_tag<HasCompressionFlag>(fw, pkt),

bool {supports_compression(pkt)},

void())
{

1f (supports_compression(pkt)) {

put_next(fw, add_tag<HasCompressionFlag>(fw, pkt));
} else {

put_next(fw, pkt);
5
s
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Check.Timestamp

auto check_timestamp = []J(Cauto & fw, Packet const & pkt)
-> decltype(

add_tag<HasCompressionFlag>(fw, pkt),

bool {supports_compression(pkt)},

void())

{
1f (supports_compression(pkt)) {

} else {
put_next(fw, pkt);
¥
55
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Check.Timestamp

auto check_timestamp = []J(Cauto & fw, Packet const & pkt)
-> decltype(

add_tag<HasCompressionFlag>(fw, pkt),

bool {supports_compression(pkt)},

void())

{
1f (supports_compression(pkt)) {

put_next(fw, add_tag<HasCompressionFlag>(fw, pkt));
} else {

put_next(fw, pkt);
5

s
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Check Flag

auto check_flag = []Cauto & fw, auto const & ev)

-> decltype(
check_tagged<HasCompressionFlag>(fw, ev),
bool{should_compress(event_for(fw, ev))},

void())

{
1f (should_compress(event_for(fw, ev))) {

put_next(
fw,
add_tag<Compressed>(
fw,
remove_tag<HasCompressionFlag>(fw, ev)));
} else {
put_next(fw, ev);

}
b
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Check Flag

auto check_flag = []Cauto & fw, auto const & ev)
-> decltype(
check_tagged<HasCompressionFlag>(fw, ev),

bool{should_compress(event_for(fw, ev))},

void())

1t (should_compress(event_for(fw, ev))) {
put_next(
fw,
add_tag<Compressed>(
fw,
remove_tag<HasCompressionFlag>(fw, ev)));
} else {
put_next(fw, ev);

}
s
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auto check_flag = []Cauto & fw, auto const & ev)
-> decltype(

check_tagged<HasCompressionFlag>(fw, ev),

bool{should_compress(event_for(fw, ev))},

void())

{
1f (should_compress(event_for(fw, ev))) {

put_next(
fw,
add_tag<Compressed>(
fw,
remove_tag<HasCompressionFlag>(fw, ev)));
} else {
put_next(fw, ev);

}
s
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Check Flag

auto check_flag = []Cauto & fw, auto const & ev)
-> decltype(

check_tagged<HasCompressionFlag>(fw, ev),

bool{should_compress(event_for(fw, ev))},

void())
{
1t (should_compress(event_for(fw, ev))) {
put_next(
fw,
add_tag<Compressed>(
fw,
remove_tag<HasCompressionFlag>(fw, ev)));
} else {
put_next(fw, ev);
3
s
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Check Flag

auto check_flag = []Cauto & fw, auto const & ev)

-> decltype(
check_tagged<HasCompressionFlag>(fw, ev),
bool{should_compress(event_for(fw, ev))},

void())

1f (should_compress(event_for(fw, ev))) {
put_next(
fw,

add_tag<Compressed>(
fw,
remove_tag<HasCompressionFlag>(fw, ev)));

put_next(fw, ev);

}
s
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Check Flag

auto check_flag = []Cauto & fw, auto const & ev)

-> decltype(
check_tagged<HasCompressionFlag>(fw, ev),
bool{should_compress(event_for(fw, ev))},

void())
1

1f (should_compress(event_for(fw, ev))) {
put_next(

fw,
add_tag<Compressed>(
fw,
remove_tag<HasCompressionFlag>(fw, ev)));
} else {
put_next(fw, ev);
5
5
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Check Flag

auto check_flag = []Cauto & fw, auto const & ev)

-> decltype(
check_tagged<HasCompressionFlag>(fw, ev),
bool{should_compress(event_for(fw, ev))},

void())

{
1f (should_compress(event_for(fw, ev))) {

put_next(
fw,
add_tag<Compressed>(
fw,

remove_tag<HasCompressionFlag>(fw, ev)));
} else {

put_next(fw, ev);

}
s
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Check Flag

auto check_flag = []Cauto & fw, auto const & ev)

-> decltype(
check_tagged<HasCompressionFlag>(fw, ev),
bool{should_compress(event_for(fw, ev))},

void())

{
1f (should_compress(event_for(fw, ev))) {

put_next(
fw,
add_tag<Compressed>
fw,

remove_tag<HasCompressionFlag>(fw, ev)));

} else {
put_next(fw, ev);

}
s
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Check Flag

auto check_flag = []Cauto & fw, auto const & ev)

-> decltype(
check_tagged<HasCompressionFlag>(fw, ev),
bool{should_compress(event_for(fw, ev))},

void())

{
1f (should_compress(event_for(fw, ev))) {

_hex
fw,
add_tag<Compressed>(

fw,
remove_tag<HasCompressionFlag>(fw, ev)));
} else {
put_next(fw, ev);
}
5
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Check Flag

auto check_flag = []Cauto & fw, auto const & ev)

-> decltype(
check_tagged<HasCompressionFlag>(fw, ev),
bool{should_compress(event_for(fw, ev))},

void())

{
1f (should_compress(event_for(fw, ev))) {

put_next(
fw,
add_tag<Compressed>(
fw,
remove_tag<HasCompressionFlag>(fw, ev)));
} else {

put_next(fw, ev);

}
s
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Uneompress

auto uncompress = []J(Cauto & fw, auto const & ev)
-> decltype(
check_tagged<Compressed>(fw, ev),
uncompress(event_for(fw, ev)),

void())

i
put_next(

fw,
remove_tag<Compressed>(
fw,
tag_as(fw, ev)(
uncompress(event_for(fw, ev)))));

s
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Uneompress

auto uncompress = []JCauto & fw, auto const & ev)
-> decltype(
check_tagged<Compressed>(fw, ev),

uncompress(event_for(fw, ev)),

void())

1
put_next(

fw,
remove_tag<Compressed>(
fw,
tag_as(fw, ev)(
uncompress(event_for(fw, ev)))));

s

104



Uneompress

auto uncompress = []J(Cauto & fw, auto const & ev)
-> decltype(

check_tagged<Compressed>(fw, ev),

uncompress(event_for(fw, ev)),

void())

i
put_next(

fw,
remove_tag<Compressed>(
fw,
tag_as(fw, ev)(
uncompress(event_for(fw, ev)))));

s
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Uneompress

auto uncompress = []J(Cauto & fw, auto const & ev)
-> decltype(

check_tagged<Compressed>(fw, ev),

uncompress(event_for(fw, ev)),

void())

i
put_next(

fw,
remove_tag<Compressed>(
fw,
tag_as(fw, ev)(
uncompress(event_for(fw, ev)))));

s
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Uneompress

auto uncompress = []JCauto & fw, auto const & ev)
-> decltype(
check_tagged<Compressed>(fw, ev),
uncompress(event_for(fw, ev)),

void())

put_next(
fw,
remove_tag<Compressed>(

fw,
tag_as(fw, ev)(
uncompress(event_for(fw, ev)))));
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Uneompress

auto uncompress = []J(Cauto & fw, auto const & ev)
-> decltype(
check_tagged<Compressed>(fw, ev),
uncompress(event_for(fw, ev)),

void())

i
put_next(

fw,
remove_tag<Compressed>(
fw,
tag_as(fw, ev)(
55
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Uneompress

auto uncompress = []J(Cauto & fw, auto const & ev)
-> decltype(
check_tagged<Compressed>(fw, ev),
uncompress(event_for(fw, ev)),

void())
{
put_next(
fw,
remove_tag<Compressed>(
fw
uncompress(event_for(fw, ev)))));
5
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Uneompress

auto uncompress = []JCauto & fw, auto const & ev)
-> decltype(
check_tagged<Compressed>(fw, ev),
uncompress(event_for(fw, ev)),

void())

i
put_next(

fw,
remove_tag<Compressed>(
fw,

tag_as(fw, ev)(
uncompress(event_for(fw, ev)))));
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Uneompress

auto uncompress = []JCauto & fw, auto const & ev)
-> decltype(
check_tagged<Compressed>(fw, ev),
uncompress(event_for(fw, ev)),

void())

put_next(
fw,
remove_tag<Compressed>(

fw,
tag_as(fw, ev)(
uncompress(event_for(fw, ev)))));
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Process Packet

auto process_packet = [J(Cauto & fw, Packet const & pkt)
{

s

dependency<ExchangeFooSesson>(fw).process_packet(pkt);
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Building the Stream

auto strm = StreamHead
check_timestamp
check_flag
uncompress
process_packet
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auto strm = StreamHead
check_timestamp
check_flag
uncompress
process_packet

These are all one-way; auto deduced - Easy Button
Can make modules directly with much more optons

Can create modules whose put takes variadic arguments
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No - but it looks like a grail, and acts like a graill,
and when | close my eyes | can hear
the sound of coconuts clapping together
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The most important words a man can say are, “l will do
better.” These are not the most important words any man
can say. | am a man, and they are what | needed to say.
The ancient code of the Knights Radiant says “journey
before destination.” Some may call it a simple platitude,
but it is far more. A journey will have pain and failure. It is
not only the steps forward that we must accept. It is the
stumbles. The trials. The knowledge that we will fail. That

we will hurt those around us.

-BRANDON SANDERSON, OATHBRINGER

115



Many Unanswered Questions
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The answer to most of them is, yes, | have a working
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The answer to most of them is, yes, | have a working
framework

I've had a "working" framework for a long time,
| just still don't like the impositions on the user

C++ 20 promises to help greatly
but | can't use C++ 20 at work, so I've held off

Other Questions?
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Using Modern C++ to
Revive and Old Design

AKA: Coupling and Cohesion are Guiding Lights

Jody Hagins
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