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"One primary goal of design is to minimize coupling between 
parts and to maximize cohesion within them."

Multi-Paradigm Design for C++ James Coplien
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Highly coupled have program units dependent on each other.

Modules are independent if they can function completely 
without the presence of the other.

Loosely coupled are made up of units that are independent 
or almost independent.
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A component should implement a single logical function or 
single logical entity.

All the parts should contribute to the implementation.

An indication of the strength of interconnections between 
program units.

CSE 403 - Washington University
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"One goal of design is to minimize coupling between parts 
and to maximize cohesion within them."

Multi-Paradigm Design for C++ James Coplien

Cohesion is how much one part of a code base forms an 
atomic program unit

An indication of the strength of interconnections between 
program units.

Coupling is how much a single program unit depends upon 
other program units
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Result
SomeClass::
process_packet(Packet const & packet)
{
    // Packet processing code
}
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Result
SomeClass::
process_packet(Packet const & packet)
{
    launch_rocket(
        global_rocket_launcher,
        random_coordinates());
    // Packet processing code
}
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A Solution
• A Particular Design and How to Implement that Design

• Emphasis on the former

• Less than I want on the latter

• Key concept - adding a feature should require zero/little 
change to the existing implementation

• Very low coupling, very high cohesion

• Recount parts of a 32 year quest
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The most important words a man can say are, “I will do 
better.” These are not the most important words any man 
can say. I am a man, and they are what I needed to say. 
The ancient code of the Knights Radiant says “journey 

before destination.” Some may call it a simple platitude, 
but it is far more. A journey will have pain and failure. It is 
not only the steps forward that we must accept. It is the 
stumbles. The trials. The knowledge that we will fail. That 
we will hurt those around us. But if we stop, if we accept 
the person we are when we fall, the journey ends. That 

failure becomes our destination. To love the journey is to 
accept no such end. I have found, through painful 

experience, that the most important step a person can 
take is always the next one.

-BRANDON SANDERSON, OATHBRINGER
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tmp = a

a = b

b = tmp
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tmp := a;

a := b;

b := tmp;
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•c / cfront

•get off punch cards
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Hagins, Biswas, Yu, Model-Based Diagnosis in the Process-Ontology Framework,

The Second AAAI Workshop on Model Based Reasoning, Boston, MA, July 1990


Biswas, Yu, Hagins, Strobel, Kendall, Cannon, Bezdek, An Efficient Scheme for Characterizing 
Hydrocarbon Plays for Analogical Analysis

AAPG Annual Convention, San Francisco, CA, June 1990


Biswas, Yu, Hagins, Strobel, Kendall, Cannon, Bezdek, PLAYMAKER: A Knowledge-Based 
Approach to Characterizing Hydrocarbon Plays

Applications of AI VIII (SPIE), Orlando, FL, April 1990


Biswas, Strobel, Hagins, Kendall, Cannon, Bezdek, An Associational Scheme for Characterizing 
Hydrocarbon Plays for Analogical Reasoning

IEEE Expert, March 1990


Biswas, Hagins, Debelak, Qualitative Modeling in Engineering Applications

1989 IEEE Conference on Systems, Man, and Cybernetics, Cambridge, MA, November 1989


Weinberg, Hagins, Biswas, Extending Temporal Reasoning in Process-Oriented Qualitative 
Reasoning

Proceedings of IJCAI-89 Workshop on Model Based Reasoning, Detroit, MI, August 1989


Debelak, Biswas, Hagins, Qualitative Modeling in Chemical Engineering Applications

American Institute of Chemical Engineers: 1989 Summer National Meeting, August 20, 1989
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Message Queue
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int msgget(key_t key, int msgflg)
{ /* implementation */ }

int msgsnd(int msqid, const void *msgp, size_t msgsz,
    int msgflg)
{ /* implementation */ }

ssize_t msgrcv(int msqid, void *msgp, size_t msgsz, long 
msgtyp, int msgflg)
{ /* implementation */ }

int msgctl(int msqid, int cmd, struct msqid_ds *buf)
{ /* implementation */ }



Semaphore
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int semget(key_t key, int nsems, int semflg)
{ /* implementation */ }

int semop(int semid, struct sembuf *sops, size_t nsops)
{ /* implementation */ }

int semctl(int semid, int semnum, int cmd, ...)
{ /* implementation */ }
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STREAMS Programming Guide - Oracle

https://docs.oracle.com/cd/E26502_01/html/E35856/index.html

Lots of other PDF resources available online 
google is your friend
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We got what we wanted - reliability in light of hardware failure

We got extra - almost N-times performance in non-failure 
conditions

Didn't change a single line of code in our applications

Not just our applications - every application

ftp was the demo app
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"One goal of design is to minimize coupling between parts 
and to maximize cohesion within them."

Multi-Paradigm Design for C++ James Coplien
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If this design is so great, why don't I know anything about it?

STREAMS is kernel only

The user space interface has none of the awesomeness

You must load and run your modules in the kernel

Recommendation was no more than 6-7 modules
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If this design is so great, why don't I know anything about it?

Poor Linux Support

Initial LiS implementation soured many

Linux Fast-STREAMS 2006 - great throughput

Still kernel only
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84

If this design is so great, why don't I know anything about it?

Lack of user-space availability

Some implementations available - ACE

OK on throughput, not on latency

Java style object oriented - difficult to compose



What's the Catch?

85

If this design is so great, why don't I know anything about it?

Performance



What's the Catch?

85

If this design is so great, why don't I know anything about it?

Performance

Full implementation is hard



What's the Catch?

85

If this design is so great, why don't I know anything about it?

Performance

Full implementation is hard

Can require custom scheduler for service routines



What's the Catch?

85

If this design is so great, why don't I know anything about it?

Performance

Full implementation is hard

Can require custom scheduler for service routines

Less chance for compiler optimizations



What's the Catch?

85

If this design is so great, why don't I know anything about it?

Performance

Full implementation is hard

Can require custom scheduler for service routines

Less chance for compiler optimizations

Function calls and runtime checks via opaque messages
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auto uncompress = [](auto & fw, auto const & ev)
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auto process_packet = [](auto & fw, Packet const & pkt)
{
  dependency<ExchangeFooSesson>(fw).process_packet(pkt);
};
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    auto strm = StreamHead
        | check_timestamp
        | check_flag
        | uncompress
        | process_packet
        ;

These are all one-way; auto deduced - Easy Button

Can make modules directly with much more optons

Can create modules whose put takes variadic arguments
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No - but it looks like a grail, and acts like a grail,

and when I close my eyes I can hear


the sound of coconuts clapping together
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The most important words a man can say are, “I will do 
better.” These are not the most important words any man 
can say. I am a man, and they are what I needed to say. 
The ancient code of the Knights Radiant says “journey 

before destination.” Some may call it a simple platitude, 
but it is far more. A journey will have pain and failure. It is 
not only the steps forward that we must accept. It is the 
stumbles. The trials. The knowledge that we will fail. That 
we will hurt those around us. But if we stop, if we accept 
the person we are when we fall, the journey ends. That 

failure becomes our destination. To love the journey is to 
accept no such end. I have found, through painful 

experience, that the most important step a person can 
take is always the next one.

-BRANDON SANDERSON, OATHBRINGER
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The answer to most of them is, yes, I have a working

framework

I've had a "working" framework for a long time,

I just still don't like the impositions on the user

C++ 20 promises to help greatly

but I can't use C++ 20 at work, so I've held off

Other Questions?
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