

Using Modern C++ to
Revive and Old Design

CppCon 2022

2

Jody Hagins 
jhagins@maystreet.com  
coachhagins@gmail.com

AKA: Coupling and Cohesion are Guiding Lights

The Holy Grail

3

Low Coupling, High Cohesion,
Composable, Testable, Reusable,
Functional, Modular, Easy to Use,
Easy to Change, High Throughput,
Low Latency, Optimal Code
Generation: Pick All of Them!

Low Coupling, High Cohesion,
Composable, Testable, Reusable,
Functional, Modular, Easy to Use,
Easy to Change, High Throughput,
Low Latency, Optimal Code
Generation: Pick All of Them!

The Holy Grail

3

Low Coupling, High Cohesion,
Composable, Testable, Reusable,
Functional, Modular, Easy to Use,
Easy to Change, High Throughput,
Low Latency, Optimal Code
Generation: Pick All of Them!

The Holy Grail

3

C++ Design

4

Coupling vs. Cohesion

5

"One goal of design is to minimize coupling between parts
and to maximize cohesion within them."

Multi-Paradigm Design for C++ James Coplien

Coupling vs. Cohesion

5

"One primary goal of design is to minimize coupling between
parts and to maximize cohesion within them."

Multi-Paradigm Design for C++ James Coplien

Coupling vs. Cohesion

6

CSE 403 - Washington University

Coupling vs. Cohesion

6

CSE 403 - Washington University

An indication of the strength of interconnections between
program units.

An indication of the strength of interconnections between
program units.

CSE 403 - Washington University

Coupling

7

An indication of the strength of interconnections between
program units.

CSE 403 - Washington University

Coupling

7

Highly coupled have program units dependent on each other.

An indication of the strength of interconnections between
program units.

CSE 403 - Washington University

Coupling

7

Highly coupled have program units dependent on each other.

Loosely coupled are made up of units that are independent
or almost independent.

An indication of the strength of interconnections between
program units.

CSE 403 - Washington University

Coupling

7

Highly coupled have program units dependent on each other.

Modules are independent if they can function completely
without the presence of the other.

Loosely coupled are made up of units that are independent
or almost independent.

Cohesion

8

An indication of the strength of interconnections between
program units.

CSE 403 - Washington University

Cohesion

8

A component should implement a single logical function or
single logical entity.

An indication of the strength of interconnections between
program units.

CSE 403 - Washington University

Cohesion

8

A component should implement a single logical function or
single logical entity.

All the parts should contribute to the implementation.

An indication of the strength of interconnections between
program units.

CSE 403 - Washington University

Coupling vs. Cohesion

9

"One goal of design is to minimize coupling between parts
and to maximize cohesion within them."

Multi-Paradigm Design for C++ James Coplien

An indication of the strength of interconnections between
program units.

Coupling vs. Cohesion

9

"One goal of design is to minimize coupling between parts
and to maximize cohesion within them."

Multi-Paradigm Design for C++ James Coplien

Cohesion is how much one part of a code base forms an
atomic program unit

An indication of the strength of interconnections between
program units.

Coupling vs. Cohesion

9

"One goal of design is to minimize coupling between parts
and to maximize cohesion within them."

Multi-Paradigm Design for C++ James Coplien

Cohesion is how much one part of a code base forms an
atomic program unit

An indication of the strength of interconnections between
program units.

Coupling is how much a single program unit depends upon
other program units

Simplified Example

10

Result
SomeClass::
process_packet(Packet const & packet)
{
 // Packet processing code
}

Can You Say Code Review?

11

Result
SomeClass::
process_packet(Packet const & packet)
{
 launch_rocket(
 global_rocket_launcher,
 random_coordinates());
 // Packet processing code
}

Less Scary

12

Result
SomeClass::
process_packet(Packet const & packet)
{
 if (Header(packet).is_compressed()) {
 return process_packet(uncompress(packet));
 }
 // packet processing code
}

Less Scary

12

Result
SomeClass::
process_packet(Packet const & packet)
{
 if (Header(packet).is_compressed()) {
 return process_packet(uncompress(packet));
 }
 // packet processing code
}

Less Scary

12

Result
SomeClass::
process_packet(Packet const & packet)
{
 if (Header(packet).is_compressed()) {
 return process_packet(uncompress(packet));
 }
 // packet processing code
}

Less Scary

13

Result
SomeClass::
process_packet(Packet const & packet)
{
 if (Header(packet).is_compressed()) {
 return process_packet(uncompress(packet));
 }
 // packet processing code
}

More or Less Scary

14

Result
SomeClass::
process_packet(Packet const & packet)
{
 if (packet.timestamp() >= compression_timestamp &&
 Header(packet).is_compressed())
 {
 return process_packet(uncompress(packet));
 }
 // packet processing code
}

More or Less Scary

14

Result
SomeClass::
process_packet(Packet const & packet)
{
 if (packet.timestamp() >= compression_timestamp &&
 Header(packet).is_compressed())
 {
 return process_packet(uncompress(packet));
 }
 // packet processing code
}

The code block is the program unit that can create both the
greatest coupling and the least cohesion.

More or Less Scary

14

Result
SomeClass::
process_packet(Packet const & packet)
{
 if (packet.timestamp() >= compression_timestamp &&
 Header(packet).is_compressed())
 {
 return process_packet(uncompress(packet));
 }
 // packet processing code
}

The code block is the program unit that can create both the
greatest coupling and the least cohesion.

Coupling vs. Cohesion

15

Check
Timestamp

Check

Flag

process_packet uncompress

Compose small, cohesive program units

Coupling vs. Cohesion

15

Check
Timestamp

Check

Flag

process_packet uncompress

Packet

Compose small, cohesive program units

Coupling vs. Cohesion

15

Check
Timestamp

Check

Flag

process_packet uncompress

Packet

Packet

Compose small, cohesive program units

Coupling vs. Cohesion

15

Check
Timestamp

Check

Flag

process_packet uncompress

Packet Packet

Compose small, cohesive program units

Coupling vs. Cohesion

15

Check
Timestamp

Check

Flag

process_packet uncompress

Packet Packet

Packet

Compose small, cohesive program units

Coupling vs. Cohesion

15

Check
Timestamp

Check

Flag

process_packet uncompress

Packet Packet

Packet

Compose small, cohesive program units

Coupling vs. Cohesion

15

Check
Timestamp

Check

Flag

process_packet uncompress

Packet Packet

Packet

Packet

Compose small, cohesive program units

Coupling vs. Cohesion

16

Compose small, cohesive program units

Check
Timestamp

Check

Flag

process_packet uncompress

Coupling vs. Cohesion

16

Compose small, cohesive program units

Check
Timestamp

Check

Flag

process_packet uncompress

Packet

Coupling vs. Cohesion

16

Compose small, cohesive program units

Check
Timestamp

Check

Flag

process_packet uncompress

Packet
Packet w/

Compression

Flag

Coupling vs. Cohesion

16

Compose small, cohesive program units

Check
Timestamp

Check

Flag

process_packet uncompress

Packet
Packet w/

Compression

Flag

Compressed

Packet

Coupling vs. Cohesion

16

Compose small, cohesive program units

Check
Timestamp

Check

Flag

process_packet uncompress

Packet
Packet w/

Compression

Flag

Compressed

Packet

Packet

Coupling vs. Cohesion

16

Compose small, cohesive program units

Check
Timestamp

Check

Flag

process_packet uncompress

Packet

Coupling vs. Cohesion

16

Compose small, cohesive program units

Check
Timestamp

Check

Flag

process_packet uncompress

Packet

Packet

Coupling vs. Cohesion

16

Compose small, cohesive program units

Check
Timestamp

Check

Flag

process_packet uncompress

Packet

Packet
Packet

Coupling vs. Cohesion

16

Compose small, cohesive program units

Check
Timestamp

Check

Flag

process_packet uncompress

Packet

Packet
Packet

Packet

A Solution

17

A Solution
• A Particular Design and How to Implement that Design

17

A Solution
• A Particular Design and How to Implement that Design

• Emphasis on the former

17

A Solution
• A Particular Design and How to Implement that Design

• Emphasis on the former

• Less than I want on the latter

17

A Solution
• A Particular Design and How to Implement that Design

• Emphasis on the former

• Less than I want on the latter

• Key concept - adding a feature should require zero/little
change to the existing implementation

17

A Solution
• A Particular Design and How to Implement that Design

• Emphasis on the former

• Less than I want on the latter

• Key concept - adding a feature should require zero/little
change to the existing implementation

• Very low coupling, very high cohesion

17

A Solution
• A Particular Design and How to Implement that Design

• Emphasis on the former

• Less than I want on the latter

• Key concept - adding a feature should require zero/little
change to the existing implementation

• Very low coupling, very high cohesion

• Recount parts of a 32 year quest

17

Journey Before Destination

18

Journey Before Destination

18

The most important words a man can say are, “I will do
better.” These are not the most important words any man
can say. I am a man, and they are what I needed to say.
The ancient code of the Knights Radiant says “journey

before destination.” Some may call it a simple platitude,
but it is far more. A journey will have pain and failure. It is
not only the steps forward that we must accept. It is the
stumbles. The trials. The knowledge that we will fail. That
we will hurt those around us. But if we stop, if we accept
the person we are when we fall, the journey ends. That

failure becomes our destination. To love the journey is to
accept no such end. I have found, through painful

experience, that the most important step a person can
take is always the next one.

-BRANDON SANDERSON, OATHBRINGER

Journey Before Destination

19

The most important words a man can say are, “I will do
better.” These are not the most important words any man
can say. I am a man, and they are what I needed to say.
The ancient code of the Knights Radiant says “journey

before destination.” Some may call it a simple platitude,
but it is far more. A journey will have pain and failure. It is
not only the steps forward that we must accept. It is the
stumbles. The trials. The knowledge that we will fail. That
we will hurt those around us. But if we stop, if we accept
the person we are when we fall, the journey ends. That

failure becomes our destination. To love the journey is to
accept no such end. I have found, through painful

experience, that the most important step a person can
take is always the next one.

-BRANDON SANDERSON, OATHBRINGER

Journey Before Destination

20

The most important words a man can say are, “I will do
better.” These are not the most important words any man
can say. I am a man, and they are what I needed to say.
The ancient code of the Knights Radiant says “journey

before destination.” Some may call it a simple platitude,
but it is far more. A journey will have pain and failure. It is
not only the steps forward that we must accept. It is the
stumbles. The trials. The knowledge that we will fail. That
we will hurt those around us. But if we stop, if we accept
the person we are when we fall, the journey ends. That

failure becomes our destination. To love the journey is to
accept no such end. I have found, through painful

experience, that the most important step a person can
take is always the next one.

-BRANDON SANDERSON, OATHBRINGER

Journey Before Destination

21

The most important words a man can say are, “I will do
better.” These are not the most important words any man
can say. I am a man, and they are what I needed to say.
The ancient code of the Knights Radiant says “journey

before destination.” Some may call it a simple platitude,
but it is far more. A journey will have pain and failure. It is
not only the steps forward that we must accept. It is the
stumbles. The trials. The knowledge that we will fail. That
we will hurt those around us. But if we stop, if we accept
the person we are when we fall, the journey ends. That

failure becomes our destination. To love the journey is to
accept no such end. I have found, through painful

experience, that the most important step a person can
take is always the next one.

-BRANDON SANDERSON, OATHBRINGER

Journey Before Destination

22

The most important words a man can say are, “I will do
better.” These are not the most important words any man
can say. I am a man, and they are what I needed to say.
The ancient code of the Knights Radiant says “journey

before destination.” Some may call it a simple platitude,
but it is far more. A journey will have pain and failure. It is
not only the steps forward that we must accept. It is the
stumbles. The trials. The knowledge that we will fail. That
we will hurt those around us. But if we stop, if we accept
the person we are when we fall, the journey ends. That

failure becomes our destination. To love the journey is to
accept no such end. I have found, through painful

experience, that the most important step a person can
take is always the next one.

-BRANDON SANDERSON, OATHBRINGER

Journey Before Destination

23

The most important words a man can say are, “I will do
better.” These are not the most important words any man
can say. I am a man, and they are what I needed to say.
The ancient code of the Knights Radiant says “journey

before destination.” Some may call it a simple platitude,
but it is far more. A journey will have pain and failure. It is
not only the steps forward that we must accept. It is the
stumbles. The trials. The knowledge that we will fail. That
we will hurt those around us. But if we stop, if we accept
the person we are when we fall, the journey ends. That

failure becomes our destination. To love the journey is to
accept no such end. I have found, through painful

experience, that the most important step a person can
take is always the next one.

-BRANDON SANDERSON, OATHBRINGER

A Three-Way Love Affair

24

A Three-Way Love Affair

24

A Three-Way Love Affair

24

A Three-Way Love Affair

24

A Three-Way Love Affair

25

A Three-Way Love Affair

25

A Beginning...

26

A Beginning...

27

tmp = a

a = b

b = tmp

A Beginning...

28

tmp := a;

a := b;

b := tmp;

My Early Use of C++

29

•c / cfront

•get off punch cards

Grad School and the AI Winter

30

Grad School and Publications

31

Hagins, Biswas, Yu, Model-Based Diagnosis in the Process-Ontology Framework,

The Second AAAI Workshop on Model Based Reasoning, Boston, MA, July 1990

Biswas, Yu, Hagins, Strobel, Kendall, Cannon, Bezdek, An Efficient Scheme for Characterizing
Hydrocarbon Plays for Analogical Analysis

AAPG Annual Convention, San Francisco, CA, June 1990

Biswas, Yu, Hagins, Strobel, Kendall, Cannon, Bezdek, PLAYMAKER: A Knowledge-Based
Approach to Characterizing Hydrocarbon Plays

Applications of AI VIII (SPIE), Orlando, FL, April 1990

Biswas, Strobel, Hagins, Kendall, Cannon, Bezdek, An Associational Scheme for Characterizing
Hydrocarbon Plays for Analogical Reasoning

IEEE Expert, March 1990

Biswas, Hagins, Debelak, Qualitative Modeling in Engineering Applications

1989 IEEE Conference on Systems, Man, and Cybernetics, Cambridge, MA, November 1989

Weinberg, Hagins, Biswas, Extending Temporal Reasoning in Process-Oriented Qualitative
Reasoning

Proceedings of IJCAI-89 Workshop on Model Based Reasoning, Detroit, MI, August 1989

Debelak, Biswas, Hagins, Qualitative Modeling in Chemical Engineering Applications

American Institute of Chemical Engineers: 1989 Summer National Meeting, August 20, 1989

Grad School and Winning the Lottery

32

SVR4 SMP Unix Kernel

33

Cool Stuff!!!

34

Siemens Stromberg-Carlson

35

Goal

36

Goal
• Take set of applications running one host

36

Goal
• Take set of applications running one host

• Add feature(s) so existing applications can be distributed
across any number of hosts

36

Goal
• Take set of applications running one host

• Add feature(s) so existing applications can be distributed
across any number of hosts

• Original plan was to design/implement a distributed
architecture. Massive code changes.

36

Goal
• Take set of applications running one host

• Add feature(s) so existing applications can be distributed
across any number of hosts

• Original plan was to design/implement a distributed
architecture. Massive code changes.

• My goal - add feature with little or no change to existing
design and/or implementation

36

Goal
• Take set of applications running one host

• Add feature(s) so existing applications can be distributed
across any number of hosts

• Original plan was to design/implement a distributed
architecture. Massive code changes.

• My goal - add feature with little or no change to existing
design and/or implementation

• Fortunately, they had used System V IPC

36

System V IPC

37

https://man7.org/linux/man-pages/man7/sysvipc.7.html

System V IPC

38

https://man7.org/linux/man-pages/man7/sysvipc.7.html

System V IPC

39

https://man7.org/linux/man-pages/man7/sysvipc.7.html

System V IPC

40

https://man7.org/linux/man-pages/man7/sysvipc.7.html

System V IPC

40

https://man7.org/linux/man-pages/man7/sysvipc.7.html

System V IPC

40

https://man7.org/linux/man-pages/man7/sysvipc.7.html

System V IPC

40

https://man7.org/linux/man-pages/man7/sysvipc.7.html

Message Queue

41

int msgget(key_t key, int msgflg)
{ /* implementation */ }

int msgsnd(int msqid, const void *msgp, size_t msgsz,
 int msgflg)
{ /* implementation */ }

ssize_t msgrcv(int msqid, void *msgp, size_t msgsz, long
msgtyp, int msgflg)
{ /* implementation */ }

int msgctl(int msqid, int cmd, struct msqid_ds *buf)
{ /* implementation */ }

Semaphore

42

int semget(key_t key, int nsems, int semflg)
{ /* implementation */ }

int semop(int semid, struct sembuf *sops, size_t nsops)
{ /* implementation */ }

int semctl(int semid, int semnum, int cmd, ...)
{ /* implementation */ }

Relink

43

g++ blah blah blah -ldcom.a

Relink

43

g++ blah blah blah -ldcom.a

Kernel STREAMS module: DCOM

Relink

43

g++ blah blah blah -ldcom.a

Kernel STREAMS module: DCOM

But, even without the STREAMS implementation, 
we are left with a stunning result

Relink

43

g++ blah blah blah -ldcom.a

Kernel STREAMS module: DCOM

But, even without the STREAMS implementation, 
we are left with a stunning result

The original plan was to rewrite

Relink

43

g++ blah blah blah -ldcom.a

Kernel STREAMS module: DCOM

But, even without the STREAMS implementation, 
we are left with a stunning result

We didn't change a single line of existing code!!!

The original plan was to rewrite

Relink

43

g++ blah blah blah -ldcom.a

Kernel STREAMS module: DCOM

But, even without the STREAMS implementation, 
we are left with a stunning result

We didn't change a single line of existing code!!!

The original plan was to rewrite

We didn't change a single line of existing code!!!

Coupling vs. Cohesion

44

"One goal of design is to minimize coupling between parts
and to maximize cohesion within them."

Multi-Paradigm Design for C++ James Coplien

Love at First Sight

45

Love at First Sight

45

Love at First Sight

45

Love at First Sight

45

Love at First Sight

45

Love at First Sight

46

Love at First Sight

46

STREAMS Resources

47

STREAMS Resources

47

STREAMS Programming Guide - Oracle

https://docs.oracle.com/cd/E26502_01/html/E35856/index.html

STREAMS Resources

47

STREAMS Programming Guide - Oracle

https://docs.oracle.com/cd/E26502_01/html/E35856/index.html

Lots of other PDF resources available online 
google is your friend

STREAMS Resources

47

STREAMS Resources

48

STREAMS Resources

49

STREAMS Resources

50

STREAMS Resources

51

STREAMS Resources

52

Love at First Sight

53

Love at Second Sight?

54

Love at Second Sight?

55
https://www.youtube.com/watch?v=89eEa3RvCF4

Love at Second Sight?

55

Pseudo-TTY in STREAMS

56

Pseudo-TTY in STREAMS

57

Pseudo-TTY in STREAMS

58

Pseudo-TTY in STREAMS

59

Pseudo-TTY in STREAMS

59

Pseudo-TTY in STREAMS

60

Pseudo-TTY in STREAMS

61

Pseudo-TTY in STREAMS

62

Pseudo-TTY in STREAMS

62

TCP/UDP in STREAMS

63Solaris Internals

TCP/UDP in STREAMS

63Solaris Internals

TCP/UDP in STREAMS

63Solaris Internals

TCP/UDP in STREAMS

64Solaris Internals

Reliability

65

Remember the library to intercept SYSV IPC?

Reliability

65

Remember the library to intercept SYSV IPC?

New requirement - reliability

Reliability

65

Remember the library to intercept SYSV IPC?

New requirement - reliability

Multiple network cards

Reliability

65

Remember the library to intercept SYSV IPC?

New requirement - reliability

Multiple network cards

Use available network cards to recovery from failures

Reliability

66
3COM ETHERLINK III

Reliability

67

Remember the library to intercept SYSV IPC?

New requirement - reliability

Multiple network cards

Use available network cards to recovery from failures

Reliability

68

Remember the library to intercept SYSV IPC?

dcom.a

Reliability

68

Remember the library to intercept SYSV IPC?

dcom.a

DCOM

UDP

user

kernel

Reliability

68

Remember the library to intercept SYSV IPC?

dcom.a

DCOM

UDP

user

kernel

Me and C++ and STREAMS Sitting in a Tree

69
https://www.youtube.com/watch?v=Pd0VBm8gU5o

Me and C++ and STREAMS Sitting in a Tree

69

Reliability

70Solaris Internals

DCOM

DCOM
Socket

Reliability

71Solaris Internals

DCOM
w/ Recovery

DCOM
Socket

Reliability

72Solaris Internals

DCOM

DCOM
Socket

Recovery

Reliability

73Solaris Internals

DCOM

DCOM
Socket

Recovery

Reliability

74Solaris Internals

DCOM

DCOM
Socket

Recovery

Reliability

75Solaris Internals

DCOM

DCOM
Socket

R E C O V E R Y

Reliability

76Solaris Internals

DCOM

DCOM
Socket

V E N M

Reliability

77Solaris Internals

DCOM

DCOM
Socket

V E N M

Reliability

78

We got what we wanted - reliability in light of hardware failure

Reliability

78

We got what we wanted - reliability in light of hardware failure

We got extra - almost N-times performance in non-failure
conditions

Reliability

78

We got what we wanted - reliability in light of hardware failure

We got extra - almost N-times performance in non-failure
conditions

Didn't change a single line of code in our applications

Reliability

78

We got what we wanted - reliability in light of hardware failure

We got extra - almost N-times performance in non-failure
conditions

Didn't change a single line of code in our applications

Not just our applications - every application

Reliability

78

We got what we wanted - reliability in light of hardware failure

We got extra - almost N-times performance in non-failure
conditions

Didn't change a single line of code in our applications

Not just our applications - every application

ftp was the demo app

Coupling vs. Cohesion

79

"One goal of design is to minimize coupling between parts
and to maximize cohesion within them."

Multi-Paradigm Design for C++ James Coplien

The Hinnant Rule

80

What's the Catch?

81

If this design is so great, why don't I know anything about it?

What's the Catch?

81

If this design is so great, why don't I know anything about it?

My personal opinions and guesses...

What's the Catch?

82

If this design is so great, why don't I know anything about it?

STREAMS is kernel only

What's the Catch?

82

If this design is so great, why don't I know anything about it?

STREAMS is kernel only

The user space interface has none of the awesomeness

What's the Catch?

82

If this design is so great, why don't I know anything about it?

STREAMS is kernel only

The user space interface has none of the awesomeness

You must load and run your modules in the kernel

What's the Catch?

82

If this design is so great, why don't I know anything about it?

STREAMS is kernel only

The user space interface has none of the awesomeness

You must load and run your modules in the kernel

Recommendation was no more than 6-7 modules

What's the Catch?

83

If this design is so great, why don't I know anything about it?

Poor Linux Support

What's the Catch?

83

If this design is so great, why don't I know anything about it?

Poor Linux Support

Initial LiS implementation soured many

What's the Catch?

83

If this design is so great, why don't I know anything about it?

Poor Linux Support

Initial LiS implementation soured many

Linux Fast-STREAMS 2006 - great throughput

What's the Catch?

83

If this design is so great, why don't I know anything about it?

Poor Linux Support

Initial LiS implementation soured many

Linux Fast-STREAMS 2006 - great throughput

Still kernel only

What's the Catch?

84

If this design is so great, why don't I know anything about it?

Lack of user-space availability

What's the Catch?

84

If this design is so great, why don't I know anything about it?

Lack of user-space availability

Some implementations available - ACE

What's the Catch?

84

If this design is so great, why don't I know anything about it?

Lack of user-space availability

Some implementations available - ACE

OK on throughput, not on latency

What's the Catch?

84

If this design is so great, why don't I know anything about it?

Lack of user-space availability

Some implementations available - ACE

OK on throughput, not on latency

Java style object oriented - difficult to compose

What's the Catch?

85

If this design is so great, why don't I know anything about it?

Performance

What's the Catch?

85

If this design is so great, why don't I know anything about it?

Performance

Full implementation is hard

What's the Catch?

85

If this design is so great, why don't I know anything about it?

Performance

Full implementation is hard

Can require custom scheduler for service routines

What's the Catch?

85

If this design is so great, why don't I know anything about it?

Performance

Full implementation is hard

Can require custom scheduler for service routines

Less chance for compiler optimizations

What's the Catch?

85

If this design is so great, why don't I know anything about it?

Performance

Full implementation is hard

Can require custom scheduler for service routines

Less chance for compiler optimizations

Function calls and runtime checks via opaque messages

Coupling vs. Cohesion

86

Check
Timestamp

Check

Flag

process_packet uncompress

Packet
Packet w/

Compression

Flag

Compressed

Packet

Packet

Packet
Packet

Packet

Ever Seen an Ugly Baby?

87

All parents think their baby is beautiful

Ever Seen an Ugly Baby?

87

All parents think their baby is beautiful

I am under no such illusion

Ever Seen an Ugly Baby?

87

All parents think their baby is beautiful

I am under no such illusion

Difficult to use wrong :-)

Ever Seen an Ugly Baby?

87

All parents think their baby is beautiful

I am under no such illusion

Difficult to use wrong :-)

Difficult to use right :-(

Check Timestamp

88

auto check_timestamp = [](auto & fw, Packet const & pkt)
-> decltype(
 add_tag<HasCompressionFlag>(fw, pkt),
 bool{supports_compression(pkt)},
 void())
{
 if (supports_compression(pkt)) {
 put_next(fw, add_tag<HasCompressionFlag>(fw, pkt));
 } else {
 put_next(fw, pkt);
 }
};

Check Timestamp

88

auto check_timestamp = [](auto & fw, Packet const & pkt)
-> decltype(
 add_tag<HasCompressionFlag>(fw, pkt),
 bool{supports_compression(pkt)},
 void())
{
 if (supports_compression(pkt)) {
 put_next(fw, add_tag<HasCompressionFlag>(fw, pkt));
 } else {
 put_next(fw, pkt);
 }
};

Check Timestamp

89

auto check_timestamp = [](auto & fw, Packet const & pkt)
-> decltype(
 add_tag<HasCompressionFlag>(fw, pkt),
 bool{supports_compression(pkt)},
 void())
{
 if (supports_compression(pkt)) {
 put_next(fw, add_tag<HasCompressionFlag>(fw, pkt));
 } else {
 put_next(fw, pkt);
 }
};

Check Timestamp

90

auto check_timestamp = [](auto & fw, Packet const & pkt)
-> decltype(
 add_tag<HasCompressionFlag>(fw, pkt),
 bool{supports_compression(pkt)},
 void())
{
 if (supports_compression(pkt)) {
 put_next(fw, add_tag<HasCompressionFlag>(fw, pkt));
 } else {
 put_next(fw, pkt);
 }
};

Check Timestamp

91

auto check_timestamp = [](auto & fw, Packet const & pkt)
-> decltype(
 add_tag<HasCompressionFlag>(fw, pkt),
 bool{supports_compression(pkt)},
 void())
{
 if (supports_compression(pkt)) {
 put_next(fw, add_tag<HasCompressionFlag>(fw, pkt));
 } else {
 put_next(fw, pkt);
 }
};

Check Timestamp

92

auto check_timestamp = [](auto & fw, Packet const & pkt)
-> decltype(
 add_tag<HasCompressionFlag>(fw, pkt),
 bool{supports_compression(pkt)},
 void())
{
 if (supports_compression(pkt)) {
 put_next(fw, add_tag<HasCompressionFlag>(fw, pkt));
 } else {
 put_next(fw, pkt);
 }
};

Check Timestamp

93

auto check_timestamp = [](auto & fw, Packet const & pkt)
-> decltype(
 add_tag<HasCompressionFlag>(fw, pkt),
 bool{supports_compression(pkt)},
 void())
{
 if (supports_compression(pkt)) {
 put_next(fw, add_tag<HasCompressionFlag>(fw, pkt));
 } else {
 put_next(fw, pkt);
 }
};

Check Timestamp

94

auto check_timestamp = [](auto & fw, Packet const & pkt)
-> decltype(
 add_tag<HasCompressionFlag>(fw, pkt),
 bool{supports_compression(pkt)},
 void())
{
 if (supports_compression(pkt)) {
 put_next(fw, add_tag<HasCompressionFlag>(fw, pkt));
 } else {
 put_next(fw, pkt);
 }
};

Check Flag

95

auto check_flag = [](auto & fw, auto const & ev)
-> decltype(
 check_tagged<HasCompressionFlag>(fw, ev),
 bool{should_compress(event_for(fw, ev))},
 void())
{
 if (should_compress(event_for(fw, ev))) {
 put_next(
 fw,
 add_tag<Compressed>(
 fw,
 remove_tag<HasCompressionFlag>(fw, ev)));
 } else {
 put_next(fw, ev);
 }
};

Check Flag

95

auto check_flag = [](auto & fw, auto const & ev)
-> decltype(
 check_tagged<HasCompressionFlag>(fw, ev),
 bool{should_compress(event_for(fw, ev))},
 void())
{
 if (should_compress(event_for(fw, ev))) {
 put_next(
 fw,
 add_tag<Compressed>(
 fw,
 remove_tag<HasCompressionFlag>(fw, ev)));
 } else {
 put_next(fw, ev);
 }
};

Check Flag

96

auto check_flag = [](auto & fw, auto const & ev)
-> decltype(
 check_tagged<HasCompressionFlag>(fw, ev),
 bool{should_compress(event_for(fw, ev))},
 void())
{
 if (should_compress(event_for(fw, ev))) {
 put_next(
 fw,
 add_tag<Compressed>(
 fw,
 remove_tag<HasCompressionFlag>(fw, ev)));
 } else {
 put_next(fw, ev);
 }
};

Check Flag

97

auto check_flag = [](auto & fw, auto const & ev)
-> decltype(
 check_tagged<HasCompressionFlag>(fw, ev),
 bool{should_compress(event_for(fw, ev))},
 void())
{
 if (should_compress(event_for(fw, ev))) {
 put_next(
 fw,
 add_tag<Compressed>(
 fw,
 remove_tag<HasCompressionFlag>(fw, ev)));
 } else {
 put_next(fw, ev);
 }
};

Check Flag

98

auto check_flag = [](auto & fw, auto const & ev)
-> decltype(
 check_tagged<HasCompressionFlag>(fw, ev),
 bool{should_compress(event_for(fw, ev))},
 void())
{
 if (should_compress(event_for(fw, ev))) {
 put_next(
 fw,
 add_tag<Compressed>(
 fw,
 remove_tag<HasCompressionFlag>(fw, ev)));
 } else {
 put_next(fw, ev);
 }
};

Check Flag

99

auto check_flag = [](auto & fw, auto const & ev)
-> decltype(
 check_tagged<HasCompressionFlag>(fw, ev),
 bool{should_compress(event_for(fw, ev))},
 void())
{
 if (should_compress(event_for(fw, ev))) {
 put_next(
 fw,
 add_tag<Compressed>(
 fw,
 remove_tag<HasCompressionFlag>(fw, ev)));
 } else {
 put_next(fw, ev);
 }
};

Check Flag

100

auto check_flag = [](auto & fw, auto const & ev)
-> decltype(
 check_tagged<HasCompressionFlag>(fw, ev),
 bool{should_compress(event_for(fw, ev))},
 void())
{
 if (should_compress(event_for(fw, ev))) {
 put_next(
 fw,
 add_tag<Compressed>(
 fw,
 remove_tag<HasCompressionFlag>(fw, ev)));
 } else {
 put_next(fw, ev);
 }
};

Check Flag

101

auto check_flag = [](auto & fw, auto const & ev)
-> decltype(
 check_tagged<HasCompressionFlag>(fw, ev),
 bool{should_compress(event_for(fw, ev))},
 void())
{
 if (should_compress(event_for(fw, ev))) {
 put_next(
 fw,
 add_tag<Compressed>(
 fw,
 remove_tag<HasCompressionFlag>(fw, ev)));
 } else {
 put_next(fw, ev);
 }
};

Check Flag

102

auto check_flag = [](auto & fw, auto const & ev)
-> decltype(
 check_tagged<HasCompressionFlag>(fw, ev),
 bool{should_compress(event_for(fw, ev))},
 void())
{
 if (should_compress(event_for(fw, ev))) {
 put_next(
 fw,
 add_tag<Compressed>(
 fw,
 remove_tag<HasCompressionFlag>(fw, ev)));
 } else {
 put_next(fw, ev);
 }
};

Check Flag

103

auto check_flag = [](auto & fw, auto const & ev)
-> decltype(
 check_tagged<HasCompressionFlag>(fw, ev),
 bool{should_compress(event_for(fw, ev))},
 void())
{
 if (should_compress(event_for(fw, ev))) {
 put_next(
 fw,
 add_tag<Compressed>(
 fw,
 remove_tag<HasCompressionFlag>(fw, ev)));
 } else {
 put_next(fw, ev);
 }
};

Uncompress

104

auto uncompress = [](auto & fw, auto const & ev)
-> decltype(
 check_tagged<Compressed>(fw, ev),
 uncompress(event_for(fw, ev)),
 void())
{
 put_next(
 fw,
 remove_tag<Compressed>(
 fw,
 tag_as(fw, ev)(
 uncompress(event_for(fw, ev)))));
};

Uncompress

104

auto uncompress = [](auto & fw, auto const & ev)
-> decltype(
 check_tagged<Compressed>(fw, ev),
 uncompress(event_for(fw, ev)),
 void())
{
 put_next(
 fw,
 remove_tag<Compressed>(
 fw,
 tag_as(fw, ev)(
 uncompress(event_for(fw, ev)))));
};

Uncompress

105

auto uncompress = [](auto & fw, auto const & ev)
-> decltype(
 check_tagged<Compressed>(fw, ev),
 uncompress(event_for(fw, ev)),
 void())
{
 put_next(
 fw,
 remove_tag<Compressed>(
 fw,
 tag_as(fw, ev)(
 uncompress(event_for(fw, ev)))));
};

Uncompress

106

auto uncompress = [](auto & fw, auto const & ev)
-> decltype(
 check_tagged<Compressed>(fw, ev),
 uncompress(event_for(fw, ev)),
 void())
{
 put_next(
 fw,
 remove_tag<Compressed>(
 fw,
 tag_as(fw, ev)(
 uncompress(event_for(fw, ev)))));
};

Uncompress

107

auto uncompress = [](auto & fw, auto const & ev)
-> decltype(
 check_tagged<Compressed>(fw, ev),
 uncompress(event_for(fw, ev)),
 void())
{
 put_next(
 fw,
 remove_tag<Compressed>(
 fw,
 tag_as(fw, ev)(
 uncompress(event_for(fw, ev)))));
};

Uncompress

108

auto uncompress = [](auto & fw, auto const & ev)
-> decltype(
 check_tagged<Compressed>(fw, ev),
 uncompress(event_for(fw, ev)),
 void())
{
 put_next(
 fw,
 remove_tag<Compressed>(
 fw,
 tag_as(fw, ev)(
 uncompress(event_for(fw, ev)))));
};

Uncompress

109

auto uncompress = [](auto & fw, auto const & ev)
-> decltype(
 check_tagged<Compressed>(fw, ev),
 uncompress(event_for(fw, ev)),
 void())
{
 put_next(
 fw,
 remove_tag<Compressed>(
 fw,
 tag_as(fw, ev)(
 uncompress(event_for(fw, ev)))));
};

Uncompress

110

auto uncompress = [](auto & fw, auto const & ev)
-> decltype(
 check_tagged<Compressed>(fw, ev),
 uncompress(event_for(fw, ev)),
 void())
{
 put_next(
 fw,
 remove_tag<Compressed>(
 fw,
 tag_as(fw, ev)(
 uncompress(event_for(fw, ev)))));
};

Uncompress

111

auto uncompress = [](auto & fw, auto const & ev)
-> decltype(
 check_tagged<Compressed>(fw, ev),
 uncompress(event_for(fw, ev)),
 void())
{
 put_next(
 fw,
 remove_tag<Compressed>(
 fw,
 tag_as(fw, ev)(
 uncompress(event_for(fw, ev)))));
};

Process Packet

112

auto process_packet = [](auto & fw, Packet const & pkt)
{
 dependency<ExchangeFooSesson>(fw).process_packet(pkt);
};

Building the Stream

113

 auto strm = StreamHead
 | check_timestamp
 | check_flag
 | uncompress
 | process_packet
 ;

Building the Stream

113

 auto strm = StreamHead
 | check_timestamp
 | check_flag
 | uncompress
 | process_packet
 ;

These are all one-way; auto deduced - Easy Button

Building the Stream

113

 auto strm = StreamHead
 | check_timestamp
 | check_flag
 | uncompress
 | process_packet
 ;

These are all one-way; auto deduced - Easy Button

Can make modules directly with much more optons

Building the Stream

113

 auto strm = StreamHead
 | check_timestamp
 | check_flag
 | uncompress
 | process_packet
 ;

These are all one-way; auto deduced - Easy Button

Can make modules directly with much more optons

Can create modules whose put takes variadic arguments

The Holy Grail?

114

No - but it looks like a grail, and acts like a grail,

and when I close my eyes I can hear

the sound of coconuts clapping together

Journey Before Destination

115

The most important words a man can say are, “I will do
better.” These are not the most important words any man
can say. I am a man, and they are what I needed to say.
The ancient code of the Knights Radiant says “journey

before destination.” Some may call it a simple platitude,
but it is far more. A journey will have pain and failure. It is
not only the steps forward that we must accept. It is the
stumbles. The trials. The knowledge that we will fail. That
we will hurt those around us. But if we stop, if we accept
the person we are when we fall, the journey ends. That

failure becomes our destination. To love the journey is to
accept no such end. I have found, through painful

experience, that the most important step a person can
take is always the next one.

-BRANDON SANDERSON, OATHBRINGER

Many Unanswered Questions

116

Many Unanswered Questions

116

The answer to most of them is, yes, I have a working

framework

Many Unanswered Questions

116

The answer to most of them is, yes, I have a working

framework

I've had a "working" framework for a long time,

I just still don't like the impositions on the user

Many Unanswered Questions

116

The answer to most of them is, yes, I have a working

framework

I've had a "working" framework for a long time,

I just still don't like the impositions on the user

C++ 20 promises to help greatly

but I can't use C++ 20 at work, so I've held off

Many Unanswered Questions

116

The answer to most of them is, yes, I have a working

framework

I've had a "working" framework for a long time,

I just still don't like the impositions on the user

C++ 20 promises to help greatly

but I can't use C++ 20 at work, so I've held off

Other Questions?

Using Modern C++ to
Revive and Old Design

CppCon 2022

117

Jody Hagins 
jhagins@maystreet.com  
coachhagins@gmail.com

AKA: Coupling and Cohesion are Guiding Lights

