Using Modern C++
to Revive an Old Design

JODY HAGINS

2 2 September 12th-16th

TTTTTTTTT

Using Modern C++ to
Revive and Old Design

AKA: Coupling and Cohesion are Guiding Lights

Jody Hagins
jhagins@maystreet.com
coachhagins@gmail.com

Low Coupling, High Cohesion,
Composable, Testable, Reusable,
Functional, Modular, Easy to Use,
Easy to Change, High Throughput,
Low Latency, Optimal Code
Generation: Pick All of Them!

Low Coupling, High Cohesion,
Composable, Testable, Reusable,
Functional, Modular, Easy to Use,
Easy to Change, High Throughput,
Low Latency, Optimal Code
Generation: Pick All of Them!

The-Holy Grall

Multi-Paradigm
DESIGN for (++
=

4! '
; - -
N
\ v o~\-‘n‘:’

e

e
) I \
P
‘4
:
-

- = ~ _
& '
- e . - .
» /-‘ ’.'-\‘. ' \
e
.’ L. N -—
)
:

"One goal of design is to minimize coupling between parts
and to maximize cohesion within them."

Multi-Paradigm Design for C++ James Coplien

"One goal of design is to minimize coupling between
parts and to maximize cohesion within them."

Multi-Paradigm Design for C++ James Coplien

CSE 403 - Washington University

CSE 403 - Washington University

An indication of the strength of interconnections between
program units.

CSE 403 - Washington University

An indication of the strength of interconnections between
program units.

CSE 403 - Washington University

An indication of the strength of interconnections between
program units.

Highly coupled have program units dependent on each other.

CSE 403 - Washington University

An indication of the strength of interconnections between
program units.

Highly coupled have program units dependent on each other.

Loosely coupled are made up of units that are independent
or almost independent.

CSE 403 - Washington University

An indication of the strength of interconnections between
program units.

Highly coupled have program units dependent on each other.

Loosely coupled are made up of units that are independent
or almost independent.

Modules are independent if they can function completely
without the presence of the other.

CSE 403 - Washington University

An indication of the strength of interconnections between
program units.

CSE 403 - Washington University

An indication of the strength of interconnections between
program units.

A component should implement a single logical function or
single logical entity.

CSE 403 - Washington University

An indication of the strength of interconnections between
program units.

A component should implement a single logical function or
single logical entity.

All the parts should contribute to the implementation.

"One goal of design is to minimize coupling between parts

and to maximize cohesion within them."
Multi-Paradigm Design for C++ James Coplien

An indication of the strength of interconnections between
program units.

"One goal of design is to minimize coupling between parts

and to maximize cohesion within them."
Multi-Paradigm Design for C++ James Coplien

An indication of the strength of interconnections between
program units.

Cohesion is how much one part of a code base forms an
atomic program unit

"One goal of design is to minimize coupling between parts

and to maximize cohesion within them."
Multi-Paradigm Design for C++ James Coplien

An indication of the strength of interconnections between
program units.

Cohesion is how much one part of a code base forms an
atomic program unit

Coupling is how much a single program unit depends upon
other program units

Simplified Example

Result
SomeClass::
process_packet(Packet const & packet)

{
¥

// Packet processing code

10

Can You Say Code Review?

Result
SomeClass::
process_packet(Packet const & packet)
{
launch_rocket(
global_rocket_launcher,
random_coordinates());
// Packet processing code

11

Less Scary

Result
Some(Class::
process_packet(Packet const & packet)
{
1f (Header(packet).is_compressed()) {
return process_packet(uncompress(packet));

¥

// packet processing code

12

Less Scary

Result
Some(Class::
process_packet(Packet const & packet)

{
1f (Header(packet).is_compressed()) {

return process_packet(uncompress(packet));
¥

// packet processing code

12

Less Scary

Result
Some(Class::
process_packet(Packet const & packet)

{
1f (Header(packet).is_compressed()) {

return process_packetQuncompress(packet));
¥

// packet processing code

12

Less Scary

Result
Some(Class::
process_packet(Packet const & packet)
{
1f (Header(packet).is_compressed()) {
return process_packet(uncompress(packet));

¥

// packet processing code

13

More or_Less Scary

Result
Some(Class::
process_packet(Packet const & packet)

{

1t (packet.timestamp() >= compression_timestamp &&
Header(packet).1s_compressed())

1
¥

// packet processing code

return process_packet(Cuncompress(packet));

14

Result
SomeClass::
process_packet(Packet const & packet)

{

1t (packet.timestamp() >= compression_timestamp &&
Header(packet).1is_compressed())

1
¥

// packet processing code

return process_packet(uncompress(packet));

The code block is the program unit that can create both the
greatest coupling and the least cohesion.

14

More or_Less Scary

Result
Some(Class::
process_packet(Packet const & packet)

{

1t (packet.timestamp() >= compression_timestamp &&
Header(packet).1s_compressed())

1
¥

// packet processing code

return process_packet(Cuncompress(packet));

The code block is the program unit that can create both the
greatest coupling and the least cohesion.

14

Compose small, cohesive program units

Check
Timestamp

process_packet uNCoMpress

15

Packet

 ——

Compose small, cohesive program units

Check
Timestamp

process_packet uNCoMpress

15

Packet

 ——

Packet

Compose small, cohesive program units

Check
Timestamp

process_packet uNCoMpress

15

Packet

 ——

Compose small, cohesive program units

Packet

Check
Timestamp

process_packet uNCoMpress

15

Packet

 ——

Compose small, cohesive program units

Packet

Check
Timestamp

process_packet uNCoMpress

15

Packet

 ——

Compose small, cohesive program units

Packet

Check
Timestamp

process_packet uNCoMpress

15

Packet

 ——

Compose small, cohesive program units

Packet

Check
Timestamp

process_packet uNCoMpress

Packet

15

| Check Check
Timestamp Flag

Compose small, cohesive program units

process_packet uNCoMpress

16

Packet

| Check Check
Timestamp Flag

Compose small, cohesive program units

process_packet uNCoMpress

16

Packet

Compose small, cohesive program units

Packet w/
Compression

Check Flag Check
Timestamp Flag

process_packet uNCoMpress

16

Compose small, cohesive program units

Packet w/
Packet Compression

Check Flag Check
Timestamp Flag

Compressed
Packet

process_packet uNCoMpress

16

Compose small, cohesive program units

Packet w/
Packet Compression

Check Flag Check
Timestamp Flag

Compressed
Packet

process_packet uNCoMpress

Packet

16

Packet

| Check Check
Timestamp Flag

Compose small, cohesive program units

process_packet uNCoMpress

16

Packet

| Check Check
Timestamp Flag
P

Compose small, cohesive program units

acket l
process_packet uNncompress

16

Packet

| Check Check
Timestamp Flag
P

Compose small, cohesive program units

acket
Packetl

process_packet uNCoMpress

16

Compose small, cohesive program units

Packet

| Check Check
Timestamp Flag
P

acket
Packetl

Packet
process_packet uNncompress

16

e A Particular Design and

low to Implement that Design

17

e A Particular Design and

 Emphasis on the former

low to Implement that Design

17

e A Particular Design and How to Implement that Design
 Emphasis on the former

e Less than | want on the latter

17

A Particular Design and How to Implement that Design
Emphasis on the former
Less than | want on the latter

Key concept - adding a feature should require zero/little
change to the existing implementation

17

A Particular Design and How to Implement that Design
Emphasis on the former
Less than | want on the latter

Key concept - adding a feature should require zero/little
change to the existing implementation

Very low coupling, very high cohesion

17

A Particular Design and How to Implement that Design
Emphasis on the former
Less than | want on the latter

Key concept - adding a feature should require zero/little
change to the existing implementation

Very low coupling, very high cohesion

Recount parts of a 32 year quest

17

Journey Before Destination

18

The most important words a man can say are, “l will do
better.” These are not the most important words any man
can say. | am a man, and they are what | needed to say.
The ancient code of the Knights Radiant says “journey
before destination.” Some may call it a simple platitude,
but it is far more. A journey will have pain and failure. It is
not only the steps forward that we must accept. It is the
stumbles. The trials. The knowledge that we will fail. That
we will hurt those around us. But if we stop, If we accept
the person we are when we fall, the journey ends. That
failure becomes our destination. To love the journey is to
accept no such end. | have found, through painful
experience, that the most important step a person can

take Is always the next one.

18

These are not the most important words any man
can say. | am a man, and they are what | needed to say.
The ancient code of the Knights Radiant says “journey
before destination.” Some may call it a simple platitude,

but it is far more. A journey will have pain and failure. It is
not only the steps forward that we must accept. It is the
stumbles. The trials. The knowledge that we will fail. That
we will hurt those around us. But if we stop, If we accept
the person we are when we fall, the journey ends. That
failure becomes our destination. To love the journey is to
accept no such end. | have found, through painful
experience, that the most important step a person can

take Is always the next one.

19

The most important words a man can say are, “l will do
better.” These are not the most important words any man
can say. | am a man, and they are what | needed to say.
The ancient code of the Knights Radiant says “journey
before destination.” Some may call it a simple platitude,

but it is far more. A journey will have pain and failure.

That
we will hurt those around us. But if we stop, If we accept

the person we are when we fall, the journey ends. That
failure becomes our destination. To love the journey is to
accept no such end. | have found, through painful
experience, that the most important step a person can
take Is always the next one.

-BRANDON SANDERSON, OATHBRINGER

20

The most important words a man can say are, “l will do
better.” These are not the most important words any man
can say. | am a man, and they are what | needed to say.
The ancient code of the Knights Radiant says “journey
before destination.” Some may call it a simple platitude,
but it is far more. A journey will have pain and failure. It is
not only the steps forward that we must accept. It is the
stumbles. The trials. The knowledge that we will fail. That

we will hurt those around us.

. To love the journey is to
accept no such end. | have found, through painful
experience, that the most important step a person can
take Is always the next one.

-BRANDON SANDERSON, OATHBRINGER

Al

The most important words a man can say are, “l will do
better.” These are not the most important words any man
can say. | am a man, and they are what | needed to say.
The ancient code of the Knights Radiant says “journey
before destination.” Some may call it a simple platitude,
but it is far more. A journey will have pain and failure. It is
not only the steps forward that we must accept. It is the
stumbles. The trials. The knowledge that we will fail. That
we will hurt those around us. But if we stop, If we accept
the person we are when we fall, the journey ends. That
failure becomes our destination. To love the journey is to

accept no such end.

-BRANDON SANDERSON, OATHBRINGER

22

The most important words a man can say are, “l will do
better.” These are not the most important words any man
can say. | am a man, and they are what | needed to say.
The ancient code of the Knights Radiant says “journey
before destination.” Some may call it a simple platitude,
but it is far more. A journey will have pain and failure. It is
not only the steps forward that we must accept. It is the
stumbles. The trials. The knowledge that we will fail. That
we will hurt those around us. But if we stop, If we accept
the person we are when we fall, the journey ends. That
failure becomes our destination. To love the journey is to

accept no such end.

-BRANDON SANDERSON, OATHBRINGER

23

User space
Kernel space

Stream head

v T

L_I___
3

|
| STREAMS module

—J

STREAMS driver

24

User space
Kernel space

Stream head

v T

L_I___
3

I
| STREAMS module

—J

STREAMS driver

24

User space
Kernel space

Stream head

v T

|
| | STREAMS module

L_I___J

STREAMS driver

!

24

I
| STREAMS module

_—

i‘ STREAMS driver

!

Device

25

Kernel space

Stream head

|
. STREAMS module

STREAMS driver

INNIiNg...

A Beg

"\

-~

£
" .

3‘ :
\“

N

" }“:

‘»

¥

26

tmp = a
a=>b
b =tmp

27

mp := a;
a:.=Db;
b :=tmp;

28

c / cfront
*get off punch cards

AL

it
LT
L

y

Hagins, Biswas, Yu, Model-Based Diagnosis in the Process-Ontology Framework,
The Second AAAI Workshop on Model Based Reasoning, Boston, MA, July 1990

Biswas, Yu, Hagins, Strobel, Kendall, Cannon, Bezdek, An Efficient Scheme for Characterizing
Hydrocarbon Plays for Analogical Analysis
AAPG Annual Convention, San Francisco, CA, June 1990

Biswas, Yu, Hagins, Strobel, Kendall, Cannon, Bezdek, PLAYMAKER: A Knowledge-Based
Approach to Characterizing Hydrocarbon Plays
Applications of Al VIII (SPIE), Orlando, FL, April 1990

Biswas, Strobel, Hagins, Kendall, Cannon, Bezdek, An Associational Scheme for Characterizing
Hydrocarbon Plays for Analogical Reasoning
IEEE Expert, March 1990

Biswas, Hagins, Debelak, Qualitative Modeling in Engineering Applications
1989 |IEEE Conference on Systems, Man, and Cybernetics, Cambridge, MA, November 1989

Weinberg, Hagins, Biswas, Extending Temporal Reasoning in Process-Oriented Qualitative
Reasoning
Proceedings of I[JCAI-89 Workshop on Model Based Reasoning, Detroit, Ml, August 1989

Debelak, Biswas, Hagins, Qualitative Modeling in Chemical Engineering Applications
American Institute of Chemical Engineers: 1989 Summer National Meeting, August 20, 1989

32

<

‘ i

NI - ey

|

33

34

L)
L
.

..........

Siemens Stromberg-Carlson

4

) e -— ..._u-' .. 4 / ...
..0'.0" .-
. . \
miiiin LIRS ﬂ

39

* Take set of applications running one host

36

* Take set of applications running one host

* Add feature(s) so existing applications can be distributed
across any number of hosts

36

* Take set of applications running one host

* Add feature(s) so existing applications can be distributed
across any number of hosts

e Original plan was to design/implement a distributed
architecture. Massive code changes.

36

Take set of applications running one host

Add feature(s) so existing applications can be distributed
across any number of hosts

Original plan was to design/implement a distributed
architecture. Massive code changes.

My goal - add feature with little or no change to existing
design and/or implementation

36

Take set of applications running one host

Add feature(s) so existing applications can be distributed
across any number of hosts

Original plan was to design/implement a distributed
architecture. Massive code changes.

My goal - add feature with little or no change to existing
design and/or implementation

Fortunately, they had used System V IPC

36

Message queues
System V message queues allow data to be exchanged in units
called messages. Each messages can have an associated priority,
POSIX message queues provide an alternative API for achieving the
same result; see mqg_overview(7).

The System V message queue API consists of the following system
calls:

msgget(2)
Create a new message queue or obtain the ID of an existing

message queue. This call returns an identifier that is
used in the remaining APIs.

msgsnd(2)
Add a message to a queue.

msgrcv(2)
Remove a message from a queue.

msgct1(2)
Perform various control operations on a queue, including
deletion.

https://man7.org/linux/man-pages/man7/sysvipc.7.html

37

Semaphore sets
System V semaphores allow processes to synchronize their actions.
System V semaphores are allocated in groups called sets; each
semaphore in a set is a counting semaphore. POSIX semaphores
provide an alternative API for achieving the same result; see
sem_overview(7).

The System V semaphore API consists of the following system
calls:

semget(2)
Create a new set or obtain the ID of an existing set.
This call returns an identifier that is used in the
remaining APIs.

semop(2)
Perform operations on the semaphores in a set.

semct1(2)
Perform various control operations on a set, including
deletion.

https://man7.org/linux/man-pages/man7/sysvipc.7.html

Shared memory segments

System V shared memory allows processes to share a region a
memory (a "segment"). POSIX shared memory is an alternative API
for achieving the same result; see shm_overview(7).

The System V shared memory API consists of the following system
calls:

shmget(2)
Create a new segment or obtain the ID of an existing
segment. This call returns an identifier that is used in
the remaining APIs.

shmat(2)

Attach an existing shared memory object into the calling
process's address space.

shmdt(2)
Detach a segment from the calling process's address space.

shmct1(2)

Perform various control operations on a segment, including
deletion.

https://man7.org/linux/man-pages/man7/sysvipc.7.html

5

System V IPC

https://man7.org/linux/man-pages/man7/sysvipc.7.html

40

Message queues

System V message queues allow data to be exchanged in units
called messages. Each messages can have an associated priority,
POSIX message queues provide an alternative API for achieving the
same result; see mg_overview(7).

The System V message queue API consists of the following system
calls:

msgget(2)
Create a new message queue or obtain the ID of an existing

message queue. This call returns an identifier that is
used in the remaining APIs.

msgsnd(2)
Add a message to a queue.

msgrcv(2)
Remove a message from a queue.

msgct1(2)

Perform various control operations on a queue, including
deletion.

https://man7.org/linux/man-pages/man7/sysvipc.7.html

40

Semaphore sets
System V semaphores allow processes to synchronize their actions.
System V semaphores are allocated in groups called sets; each
semaphore in a set is a counting semaphore. POSIX semaphores
provide an alternative API for achieving the same result; see
sem_overview(7).

The System V semaphore API consists of the following system
calls:

semget(2)
Create a new set or obtain the ID of an existing set.
This call returns an identifier that is used in the
remaining APIs.

semop(2)
Perform operations on the semaphores in a set.

semct1(2)
Perform various control operations on a set, including
deletion.

https://man7.org/linux/man-pages/man7/sysvipc.7.html

Shared memory segments

System V shared memory allows processes to share a region a
memory (a '"segment"). POSIX shared memory is an alternative API
for achieving the same result; see shm_overview(7).

The System V shared memory API consists of the following system
calls:

shmget(2)
Create a new segment or obtain the ID of an existing

segment. This call returns an identifier that is used in
the remaining APIs.

shmat(2)

Attach an existing shared memory object into the calling
process's address space.

shmdt(2)
Detach a segment from the calling process's address space.

shmct1(2)

Perform various control operations on a segment, including
deletion.

https://man7.org/linux/man-pages/man7/sysvipc.7.html

40

Message Queue

int msgget(key_t key, int msgflg)
{ /* implementation */ }

int msgsnd(int msqgqid, const void *msgp, size_t msgsz,
int msgflg)
{ /* implementation */ }

ssize_t msgrcv(int msgid, void *msgp, size_t msgsz, long
msgtyp, int msgflg)
{ /* 1mplementation */ }

int msgctl(int msqgid, int cmd, struct msqid_ds *buf)
{ /* implementation */ }

41

Semaphore

int semget(key_t key, int nsems, int semflg)
{ /* 1mplementation */ }

int semop(int semid, struct sembuf *sops, size_t nsops)
{ /* implementation */ }

int semctl(int semid, int semnum, int cmd, ...)
{ /* 1mplementation */ }

42

g++ blah blah blah -ldcom.a

g++ blah blah blah -ldcom.a

Kernel STREAMS module; DCOM

43

g++ blah blah blah -ldcom.a

Kernel STREAMS module; DCOM

But, even without the STREAMS implementation,
we are left with a stunning result

43

g++ blah blah blah -ldcom.a

Kernel STREAMS module; DCOM

But, even without the STREAMS implementation,
we are left with a stunning result

The original plan was to rewrite

43

g++ blah blah blah -ldcom.a

Kernel STREAMS module; DCOM

But, even without the STREAMS implementation,
we are left with a stunning result

The original plan was to rewrite

We didn't change a single line of existing code!!!

43

g++ blah blah blah -ldcom.a

Kernel STREAMS module; DCOM

But, even without the STREAMS implementation,
we are left with a stunning result

The original plan was to rewrite

43

"One goal of design is to minimize coupling between parts
and to maximize cohesion within them."

Multi-Paradigm Design for C++ James Coplien

44

v I

L_I___
!

Device

User space
Kernel space

Stream head

|
| STREAMS module

—

STREAMS driver

45

User space
Kernel space

Stream head

v T

L_I___
!

Device

|
| STREAMS module

—

STREAMS driver

45

User space

|
| STREAMS module

—

L_I___

STREAMS driver

?

Device

45

User space
Kernel space

Stream head

Device

45

User space
Kernel space

Stream head

v T

|
| STREAMS module

STREAMS driver

Device

45

Device

User space

46

Device

User space

46

STREAMS Programming Guide - Oracle
https://docs.oracle.com/cd/E26502_01/htmI/E35856/index.html

47

STREAMS Programming Guide - Oracle
https://docs.oracle.com/cd/E26502_01/htmI/E35856/index.html

Lots of other PDF resources available online
google is your friend

47

SECOND FON

Solaris
Internals

47

STREAMS

MODULES
AND DRIVERS

UNIX" SVR4.2

48

49

< ADDISON-WESLEY PROFESSIONAL COMPUTING SERIES

50

STREAMS Resources

51

C++ Network
Programming

Volume 2
Systematic Reuse with ACE and Frameworks

Douglas C. Schmidt

Stephen D. Huston
Foreword by Frank Buschmann

G+ In-Depth Series « Bjarne Stroustrup

52

v I

L_I___
!

Device

User space
Kernel space

Stream head

|
| STREAMS module

—

STREAMS driver

53

#include <sys/fcntl.h>
#include <stdio.h>

main()

{
char buf[1024];

int fd, count;

if ((fd = open("/dev/ttya", O RDWR)) < 0) {
perror("open failed");

exit(1);
}
while ((count = read(fd, buf, sizeof(buf))) > 0) {
if (write(fd, buf, count) !'= count) {
perror("write failed");
break;

54

[
’ €

%

%

s
-

4 LN
%!".
o Var

o

g

A

v &

< s
M R BN 5
¥ B Wit 28 \ ' »

[e J
- £ 7 ... \' "

L

5 .‘.‘

Love at-Second Sight?

v PIRAL
/TAIQECA/E

&'

4

g

https //WWW youtube com/watch’?v 89eEa3RvCF4

vevo

99

#include <sys/fcntl.h>
#include <stdio.h>

main()

{
char buf[1024];

int fd, count;

if ((fd = open("/dev/ttya", O RDWR)) < 0) {
perror("open failed");

exit(1);
}
while ((count = read(fd, buf, sizeof(buf))) > 0) {
if (write(fd, buf, count) !'= count) {
perror("write failed");
break;

95

Client
process

Stream head

Hardware
emulation
module

Server
process
Stream head

User space
Kernel space

56

Client
process

Stream head

Line

discipline

Hardware
emulation
module

Server
process

User space
Kernel space

Stream head

— ———

| PCKT
| module

Master
PTM

Sf

Client
process

Stream head

Hardware
emulation
module

Server
process
Stream head

User space
Kernel space

58

Client
process

Stream head

Hardware
emulation
module

Server
process
Stream head

User space
Kernel space

59

Client
process

Stream head

Hardware
emulation
module

Server
process
Stream head

User space
Kernel space

59

Client Server
process process

Stream head Stream head

User space
Kernel space

Hardware
emulation
module

Master
PTM

Client
process

Stream head

Line
discipline

Hardware
emulation
module

Server
process
Stream head

Master
PTM

User space
Kernel space

61

Client Server
process process

Stream head Stream head

Line

discipline

— ———

| PCKT

| module
Hardware

emulation
module

I Master

PTM

User space
Kernel space

62

Client Server
process process

Stream head Stream head

Line

discipline

— ———

| PCKT

| module
Hardware

emulation
module

I Master

PTM

User space
Kernel space

62

" IP Device
. Driver

Driver

" NICA \

Y

- IP Device | IP Device
Driver Driver
IP Multiplexer

IP
Module

Driver

NICC \

Solaris Internals

63

- —

" IP Device
" Driver

Driver

" NICA \

Y

- IP Device | IP Device
Driver Driver
IP Multiplexer

IP
Module

Driver

NICC \

Solaris Internals

63

- —

" IP Device
. Driver

Driver

 NICA \

o L

- IP Device |
Driver

IP Multiplexer

IP Device
Driver

Driver

~ NICC \

Solaris Internals

63

- —

" IP Device
. Driver

Driver

IP Multiplexer

IP Device
Driver

Driver

~ NICC \

Solaris Internals

64

Remember the library to intercept SYSV IPC?

65

Remember the library to intercept SYSV IPC?

New requirement - reliabllity

65

Remember the library to intercept SYSV IPC?

New requirement - reliability

Multiple network cards

65

Remember the library to intercept SYSV IPC?

New requirement - reliability

Multiple network cards

Use available network cards to recovery from failures

65

EtherLink IIT

*d;
g
0
]
)
w
2
w
p= |
fe]
2
o
prs
LY

/s

% IComjl

ALL RIGHTS RESERVED

©1992 3CS@S-CoMBO

assy sesz- &) rev 1)

A=*0020RFOFESCH

i

SN=6TAOFESCSH
MADE IN U.S.A.

FCC ID: DF67CC3CS@sS-ComMBO

loz C22¢

e 41C
@i C21;

C2o'em

g "RSS
’ 13“_1“?}5: c26{y

) r':E‘ﬁTSH(Z2S'.A 1

P

3Com

8350-03
93508 49330404
AT&T 8350-03

1333333133333 444
SEALRIRtR Tttt atited

T T i
4 lc1y J: %
o[| vmn
3
)| * /)
PP N L U

3COM ETHERLINK 1l

66

Remember the library to intercept SYSV IPC?

New requirement - reliability

Multiple network cards

Use available network cards to recovery from failures

67

Remember the library to intercept SYSV IPC?

dcom.a

68

Remember the library to intercept SYSV IPC?

dcom.a

: 4 user
C

kernel
DCOM

UDP

68

Remember the library to intercept SYSV IPC?

dcom.a

: 4 user
C

UDP

kernel
Q DCOM

68

Me and C++ andcSTREAMS Sitting in a Tree

> YouTube Search

https://www.youtube.com/watch?v=Pd0VBm8gU5o0

69

STREAMS driver

!

Device

" IP Device
. Driver

Driver

" NICA \

App3

DCOM
Socket

Y

- IP Device | IP Device
Driver Driver
IP Multiplexer

IP
Module

Driver

NICC \

Solaris Internals

70

" IP Device
. Driver

Driver

" NICA \

App3

DCOM
Socket

Y

- IP Device | IP Device
Driver Driver
IP Multiplexer

IP
Module

Driver

NICC \

Solaris Internals

/1

" IP Device
. Driver

Driver

" NICA \

App3

DCOM
Socket

Y

- IP Device | IP Device
Driver Driver
IP Multiplexer

IP
Module

Driver

NICC \

Solaris Internals

(2

" IP Device
. Driver

Driver

" NICA \

App3

DCOM
Socket

Y

- IP Device | IP Device
Driver Driver
IP Multiplexer

IP
Module

Driver

NICC \

Solaris Internals

/3

" IP Device
. Driver

Driver

" NICA \

App3

DCOM
Socket

Y

- IP Device | IP Device
Driver Driver
IP Multiplexer

IP
Module

Driver

NICC \

Solaris Internals

74

App3

DCOM
Socket

Y

" IP Device " IP Device IP Device
" Driver Driver Driver

IP Multiplexer

IP
Module

E C OV E R

Driver Driver

" NICA \ | | NIC C \

Solaris Internals

75

" IP Device
. Driver

Driver

" NICA \

App3

DCOM
Socket

Y

- IP Device | IP Device
Driver Driver

IP Multiplexer
IP

Driver

NICC \

Solaris Internals

/6

" IP Device
. Driver

Driver

" NICA \

App3

DCOM
Socket

Y

- IP Device | IP Device
Driver Driver

IP Multiplexer
IP

Driver

NICC \

Solaris Internals

’r7

We got what we wanted - reliability in light of hardware failure

/8

We got what we wanted - reliability in light of hardware failure

We got extra - almost N-times performance in non-failure
conditions

/8

We got what we wanted - reliability in light of hardware failure

We got extra - almost N-times performance in non-failure
conditions

Didn't change a single line of code in our applications

/8

We got what we wanted - reliability in light of hardware failure

We got extra - almost N-times performance in non-failure
conditions

Didn't change a single line of code in our applications

Not just our applications - every application

/8

We got what we wanted - reliability in light of hardware failure

We got extra - almost N-times performance in non-failure
conditions

Didn't change a single line of code in our applications

Not just our applications - every application

ftp was the demo app

/8

"One goal of design is to minimize coupling between parts
and to maximize cohesion within them."

Multi-Paradigm Design for C++ James Coplien

79

The Hinnant Rule

compiler implicitly declares

user declares

default destructor copy copy move move
constructor constructor |assignment | constructor |assignment
defaulted | defaulted | defaulted | defaulted | defaulted | defaulted
Nnot
declared defaulted | defaulted | defaulted | defaulted | defaulted
defaulted | defaulted | defaulted | defaulted | defaulted
not not
defaulted defaulted | defaulted declared declared
Not Not Nnot
declared detaulted detaulted declared declared
not not
defaulted | defaulted | defaulted T - T
not not
T B—- defaulted deleted deleted SeelEree
Not
defaulted | defaulted deleted deleted declared

80

If this design is so great, why don't | know anything about it?

81

If this design is so great, why don't | know anything about it?

My personal opinions and guesses...

81

If this design is so great, why don't | know anything about it?

STREAMS is kernel only

82

If this design is so great, why don't | know anything about it?

STREAMS is kernel only

The user space interface has none of the awesomeness

82

If this design is so great, why don't | know anything about it?

STREAMS is kernel only

The user space interface has none of the awesomeness

You must load and run your modules in the kernel

82

If this design is so great, why don't | know anything about it?

STREAMS is kernel only

The user space interface has none of the awesomeness

You must load and run your modules in the kernel

Recommendation was no more than 6-7 modules

82

If this design is so great, why don't | know anything about it?

Poor Linux Support

33

If this design is so great, why don't | know anything about it?

Poor Linux Support

Initial LiS implementation soured many

33

If this design is so great, why don't | know anything about it?

Poor Linux Support

Initial LiS implementation soured many

Linux Fast-STREAMS 2006 - great throughput

33

If this design is so great, why don't | know anything about it?

Poor Linux Support

Initial LiS implementation soured many

Linux Fast-STREAMS 2006 - great throughput

Still kernel only

33

If this design is so great, why don't | know anything about it?

Lack of user-space availability

84

If this design is so great, why don't | know anything about it?

Lack of user-space availability

Some implementations available - ACE

84

If this design is so great, why don't | know anything about it?

Lack of user-space availability

Some implementations available - ACE

OK on throughput, not on latency

84

If this design is so great, why don't | know anything about it?

Lack of user-space availability

Some implementations available - ACE

OK on throughput, not on latency

Java style object oriented - difficult to compose

84

If this design is so great, why don't | know anything about it?

Performance

85

If this design is so great, why don't | know anything about it?

Performance

Full implementation is hard

85

If this design is so great, why don't | know anything about it?

Performance

Full implementation is hard

Can require custom scheduler for service routines

85

If this design is so great, why don't | know anything about it?

Performance

Full implementation is hard

Can require custom scheduler for service routines

Less chance for compiler optimizations

85

If this design is so great, why don't | know anything about it?

Performance

Full implementation is hard

Can require custom scheduler for service routines

Less chance for compiler optimizations

Function calls and runtime checks via opagque messages

85

Packet

Packet w/
Compression

Check Flag Check

Timestamp
Packet

Packet

Flag

Compressed
Packet

Packet
process_packet uNncompress

Packet

86

All parents think their baby is beautiful

87

All parents think their baby is beautiful

| am under no such illusion

87

All parents think their baby is beautiful

| am under no such illusion

Difficult to use wrong :-)

87

All parents think their baby is beautiful

| am under no such illusion

Difficult to use wrong :-)

Difficult to use right :-(

87

Check.Timestamp

auto check_timestamp = []J(Cauto & fw, Packet const & pkt)
-> decltype(

add_tag<HasCompressionFlag>(fw, pkt),

bool {supports_compression(pkt)},

void())

{
1f (supports_compression(pkt)) {

put_next(fw, add_tag<HasCompressionFlag>(fw, pkt));
} else {
put_next(fw, pkt);

}
s

38

Check.Timestamp

auto & fw, Packet const & pkt

auto check_timestamr
> decltype(
add_tag<HasCompressionFlag>(fw, pkt),

bool{supports_compression(pkt)},
void())

{
1f (supports_compression(pkt)) {

put_next(fw, add_tag<HasCompressionFlag>(fw, pkt));
} else {
put_next(fw, pkt);

}
s

38

Check.Timestamp

auto check_timestamp = []J(Cauto & fw, Packet const & pkt)

-> decltype(
add_tag<HasCompressionFlag>(fw, pkt),

bool{supports_compression(pkt)},
void())
i

1f (supports_compression(pkt)) {

put_next(fw, add_tag<HasCompressionFlag>(fw, pkt));
} else {

put_next(fw, pkt);
5
s

39

Check.Timestamp

auto check_timestamp = []J(Cauto & fw, Packet const & pkt)
-> decltype(
add_tag<HasCompressionFlag>(fw, pkt),

bool{supports_compression(pkt)},

void())

{
1f (supports_compression(pkt)) {

put_next(fw, add_tag<HasCompressionFlag>(fw, pkt));
} else {
put_next(fw, pkt);
¥
¥

90

Check.Timestamp

auto check_timestamp = []J(Cauto & fw, Packet const & pkt)
-> decltype(

add_tag<HasCompressionFlag>(fw, pkt),

bool {supports_compression(pkt)},

{
1f (supports_compression(pkt)) {

put_next(fw, add_tag<HasCompressionFlag>(fw, pkt));
} else {
put_next(fw, pkt);
3
5

91

Check.Timestamp

auto check_timestamp = []J(Cauto & fw, Packet const & pkt)
-> decltype(

add_tag<HasCompressionFlag>(fw, pkt),

bool {supports_compression(pkt)},

void())
{

1f (supports_compression(pkt)) {

put_next(fw, add_tag<HasCompressionFlag>(fw, pkt));
} else {

put_next(fw, pkt);
5
s

52

Check.Timestamp

auto check_timestamp = []J(Cauto & fw, Packet const & pkt)
-> decltype(

add_tag<HasCompressionFlag>(fw, pkt),

bool {supports_compression(pkt)},

void())

{
1f (supports_compression(pkt)) {

} else {
put_next(fw, pkt);
¥
55

93

Check.Timestamp

auto check_timestamp = []J(Cauto & fw, Packet const & pkt)
-> decltype(

add_tag<HasCompressionFlag>(fw, pkt),

bool {supports_compression(pkt)},

void())

{
1f (supports_compression(pkt)) {

put_next(fw, add_tag<HasCompressionFlag>(fw, pkt));
} else {

put_next(fw, pkt);
5

s

94

Check Flag

auto check_flag = []Cauto & fw, auto const & ev)

-> decltype(
check_tagged<HasCompressionFlag>(fw, ev),
bool{should_compress(event_for(fw, ev))},

void())

{
1f (should_compress(event_for(fw, ev))) {

put_next(
fw,
add_tag<Compressed>(
fw,
remove_tag<HasCompressionFlag>(fw, ev)));
} else {
put_next(fw, ev);

}
b

95

Check Flag

auto check_flag = []Cauto & fw, auto const & ev)
-> decltype(
check_tagged<HasCompressionFlag>(fw, ev),

bool{should_compress(event_for(fw, ev))},

void())

1t (should_compress(event_for(fw, ev))) {
put_next(
fw,
add_tag<Compressed>(
fw,
remove_tag<HasCompressionFlag>(fw, ev)));
} else {
put_next(fw, ev);

}
s

95

Check Flag

auto check_flag = []Cauto & fw, auto const & ev)
-> decltype(

check_tagged<HasCompressionFlag>(fw, ev),

bool{should_compress(event_for(fw, ev))},

void())

{
1f (should_compress(event_for(fw, ev))) {

put_next(
fw,
add_tag<Compressed>(
fw,
remove_tag<HasCompressionFlag>(fw, ev)));
} else {
put_next(fw, ev);

}
s

96

Check Flag

auto check_flag = []Cauto & fw, auto const & ev)
-> decltype(

check_tagged<HasCompressionFlag>(fw, ev),

bool{should_compress(event_for(fw, ev))},

void())
{
1t (should_compress(event_for(fw, ev))) {
put_next(
fw,
add_tag<Compressed>(
fw,
remove_tag<HasCompressionFlag>(fw, ev)));
} else {
put_next(fw, ev);
3
s

S

Check Flag

auto check_flag = []Cauto & fw, auto const & ev)

-> decltype(
check_tagged<HasCompressionFlag>(fw, ev),
bool{should_compress(event_for(fw, ev))},

void())

1f (should_compress(event_for(fw, ev))) {
put_next(
fw,

add_tag<Compressed>(
fw,
remove_tag<HasCompressionFlag>(fw, ev)));

put_next(fw, ev);

}
s

98

Check Flag

auto check_flag = []Cauto & fw, auto const & ev)

-> decltype(
check_tagged<HasCompressionFlag>(fw, ev),
bool{should_compress(event_for(fw, ev))},

void())
1

1f (should_compress(event_for(fw, ev))) {
put_next(

fw,
add_tag<Compressed>(
fw,
remove_tag<HasCompressionFlag>(fw, ev)));
} else {
put_next(fw, ev);
5
5

99

Check Flag

auto check_flag = []Cauto & fw, auto const & ev)

-> decltype(
check_tagged<HasCompressionFlag>(fw, ev),
bool{should_compress(event_for(fw, ev))},

void())

{
1f (should_compress(event_for(fw, ev))) {

put_next(
fw,
add_tag<Compressed>(
fw,

remove_tag<HasCompressionFlag>(fw, ev)));
} else {

put_next(fw, ev);

}
s

100

Check Flag

auto check_flag = []Cauto & fw, auto const & ev)

-> decltype(
check_tagged<HasCompressionFlag>(fw, ev),
bool{should_compress(event_for(fw, ev))},

void())

{
1f (should_compress(event_for(fw, ev))) {

put_next(
fw,
add_tag<Compressed>
fw,

remove_tag<HasCompressionFlag>(fw, ev)));

} else {
put_next(fw, ev);

}
s

101

Check Flag

auto check_flag = []Cauto & fw, auto const & ev)

-> decltype(
check_tagged<HasCompressionFlag>(fw, ev),
bool{should_compress(event_for(fw, ev))},

void())

{
1f (should_compress(event_for(fw, ev))) {

_hex
fw,
add_tag<Compressed>(

fw,
remove_tag<HasCompressionFlag>(fw, ev)));
} else {
put_next(fw, ev);
}
5

102

Check Flag

auto check_flag = []Cauto & fw, auto const & ev)

-> decltype(
check_tagged<HasCompressionFlag>(fw, ev),
bool{should_compress(event_for(fw, ev))},

void())

{
1f (should_compress(event_for(fw, ev))) {

put_next(
fw,
add_tag<Compressed>(
fw,
remove_tag<HasCompressionFlag>(fw, ev)));
} else {

put_next(fw, ev);

}
s

103

Uneompress

auto uncompress = []J(Cauto & fw, auto const & ev)
-> decltype(
check_tagged<Compressed>(fw, ev),
uncompress(event_for(fw, ev)),

void())

i
put_next(

fw,
remove_tag<Compressed>(
fw,
tag_as(fw, ev)(
uncompress(event_for(fw, ev)))));

s

104

Uneompress

auto uncompress = []JCauto & fw, auto const & ev)
-> decltype(
check_tagged<Compressed>(fw, ev),

uncompress(event_for(fw, ev)),

void())

1
put_next(

fw,
remove_tag<Compressed>(
fw,
tag_as(fw, ev)(
uncompress(event_for(fw, ev)))));

s

104

Uneompress

auto uncompress = []J(Cauto & fw, auto const & ev)
-> decltype(

check_tagged<Compressed>(fw, ev),

uncompress(event_for(fw, ev)),

void())

i
put_next(

fw,
remove_tag<Compressed>(
fw,
tag_as(fw, ev)(
uncompress(event_for(fw, ev)))));

s

105

Uneompress

auto uncompress = []J(Cauto & fw, auto const & ev)
-> decltype(

check_tagged<Compressed>(fw, ev),

uncompress(event_for(fw, ev)),

void())

i
put_next(

fw,
remove_tag<Compressed>(
fw,
tag_as(fw, ev)(
uncompress(event_for(fw, ev)))));

s

106

Uneompress

auto uncompress = []JCauto & fw, auto const & ev)
-> decltype(
check_tagged<Compressed>(fw, ev),
uncompress(event_for(fw, ev)),

void())

put_next(
fw,
remove_tag<Compressed>(

fw,
tag_as(fw, ev)(
uncompress(event_for(fw, ev)))));

107

Uneompress

auto uncompress = []J(Cauto & fw, auto const & ev)
-> decltype(
check_tagged<Compressed>(fw, ev),
uncompress(event_for(fw, ev)),

void())

i
put_next(

fw,
remove_tag<Compressed>(
fw,
tag_as(fw, ev)(
55

108

Uneompress

auto uncompress = []J(Cauto & fw, auto const & ev)
-> decltype(
check_tagged<Compressed>(fw, ev),
uncompress(event_for(fw, ev)),

void())
{
put_next(
fw,
remove_tag<Compressed>(
fw
uncompress(event_for(fw, ev)))));
5

109

Uneompress

auto uncompress = []JCauto & fw, auto const & ev)
-> decltype(
check_tagged<Compressed>(fw, ev),
uncompress(event_for(fw, ev)),

void())

i
put_next(

fw,
remove_tag<Compressed>(
fw,

tag_as(fw, ev)(
uncompress(event_for(fw, ev)))));

110

Uneompress

auto uncompress = []JCauto & fw, auto const & ev)
-> decltype(
check_tagged<Compressed>(fw, ev),
uncompress(event_for(fw, ev)),

void())

put_next(
fw,
remove_tag<Compressed>(

fw,
tag_as(fw, ev)(
uncompress(event_for(fw, ev)))));

111

Process Packet

auto process_packet = [J(Cauto & fw, Packet const & pkt)
{

s

dependency<ExchangeFooSesson>(fw).process_packet(pkt);

112

Building the Stream

auto strm = StreamHead
check_timestamp
check_flag
uncompress
process_packet

113

auto strm = StreamHead
check_timestamp
check_flag
uncompress
process_packet

These are all one-way; auto deduced - Easy Button

113

auto strm = StreamHead
check_timestamp
check_flag
uncompress
process_packet

These are all one-way; auto deduced - Easy Button

Can make modules directly with much more optons

113

auto strm = StreamHead
check_timestamp
check_flag
uncompress
process_packet

These are all one-way; auto deduced - Easy Button
Can make modules directly with much more optons

Can create modules whose put takes variadic arguments

113

No - but it looks like a grail, and acts like a graill,
and when | close my eyes | can hear
the sound of coconuts clapping together

114

The most important words a man can say are, “l will do
better.” These are not the most important words any man
can say. | am a man, and they are what | needed to say.
The ancient code of the Knights Radiant says “journey
before destination.” Some may call it a simple platitude,
but it is far more. A journey will have pain and failure. It is
not only the steps forward that we must accept. It is the
stumbles. The trials. The knowledge that we will fail. That

we will hurt those around us.

-BRANDON SANDERSON, OATHBRINGER

115

Many Unanswered Questions

116

The answer to most of them is, yes, | have a working
framework

116

The answer to most of them is, yes, | have a working
framework

I've had a "working" framework for a long time,
| just still don't like the impositions on the user

116

The answer to most of them is, yes, | have a working
framework

I've had a "working" framework for a long time,
| just still don't like the impositions on the user

C++ 20 promises to help greatly
but | can't use C++ 20 at work, so I've held off

116

The answer to most of them is, yes, | have a working
framework

I've had a "working" framework for a long time,
| just still don't like the impositions on the user

C++ 20 promises to help greatly
but | can't use C++ 20 at work, so I've held off

Other Questions?

116

TTTTTTTTT

Using Modern C++ to
Revive and Old Design

AKA: Coupling and Cohesion are Guiding Lights

Jody Hagins
jhagins@maystreet.com
coachhagins@gmail.com

117

