
test slide

1

https://s3.amazonaws.com/media-p.slid.es/videos/1171991/Q_jlnUxT/raiders-why-snakes-v1.mp4

2

www.scitec.com/join

Dave Steffen
Principal Software Engineer

dsteffen@scitec.com

3

Unit Testing is a Big Topic.
Aspects of Unit Testing

Why to write unit tests
Process for writing unit tests
Psychology of writing unit tests
Writing good unit test code
Making unit tests good tests

Writing unit tests that are good tests is fundamental

Because "It's a Bug Hunt"

This Talk

4

"It's A Bug Hunt"

5

https://s3.amazonaws.com/media-p.slid.es/videos/1171991/oxc-HtQE/briefing_short.mp4

"It's a bug hunt"
- Cpl. Dwayne Hicks (Michael Biehn)

< There will be spoilers! >

A cautionary tale of a bug hunt gone bad

"Aliens", 1986
Directed by James Cameron

20th Century Fox

6

Modern Science == Modern Testing
Popper's Falsifiability Criterion:

We cannot generally prove scientific theories true. We can only
prove them false.

Confidence tracks the quality and thoroughness of testing

Program testing can be used to show the presence of
bugs, but never to show their absence

-Edsger Dijkstra, Notes on Structured Programming 1970

We cannot prove our programs correct.
We can attempt to prove them incorrect and fail

7

Take a page from experimental science

A good unit test is:

Repeatable and Replicable
Accurate
Precise

These are the armor plating for your unit tests.

8

Repeatable and Replicable

Repeatable: you get the same answer every time

Replicable: your colleague gets the same answer you do

See my talk from last year:

9

Accuracy and Precision in Science : the Math

Accuracy: measurements are close to a specific value

Precision: measurements are close to each other
"Repeatability", "reproducibility"

Pe
ka

je
 a

t t
he

 E
ng

lis
h-

la
ng

ua
ge

 W
ik

ip
ed

ia
, G

FD
L

<h
tt

p:
//

w
w

w
.g

nu
.o

rg
/c

op
yl

ef
t/

fd
l.h

tm
l>

, v
ia

 W
ik

im
ed

ia
 C

om
m

on
s

ProbabilityProbability
densitydensity

AccuracyAccuracy

PrecisionPrecision
ValueValue

Reference valueReference value

10

high accuracy
low precision

low accuracy
high precision

By
 D

ar
kE

vi
l -

 P
ub

lic
 D

om
ai

n,
 h

tt
ps

://
co

m
m

on
s.

w
ik

im
ed

ia
.o

rg
/w

/in
de

x.
ph

p?
cu

ri
d=

14
20

11
7

By
 D

ar
kE

vi
l -

 P
ub

lic
 D

om
ai

n,
 h

tt
ps

://
co

m
m

on
s.

w
ik

im
ed

ia
.o

rg
/w

/in
de

x.
ph

p?
cu

ri
d=

14
20

10
4

Accuracy and Precision in science: intuition

Accuracy == equipment is correct
Precision == equipment is reliable

11

Accuracy for Unit Tests: Math

Accuracy:
Fraction of test results that match reality of code

"Tests should fail because the code under test fails, and
for no other reason" -- Titus Winters

"Rand Accuracy" =
P +T N +T P +F NF

P +T NT

True Positive : Test fails and there is a bug

True Negative : Test passes bercause there are no bugs

False Positive : Test fails but there is no bug

False Negative : Test passes but there are bugs

PT

NT

PF

NF

12

Precision for Unit Tests: Math

Precision, on the other hand, isn't mathematically defined for
binary classifiers

For unit tests, we generalize precision to mean

"getting a maximal amount of useful
information about the problem"

13

Accuracy and Precision for Binary Classifiers: Intuition

14

https://s3.amazonaws.com/media-p.slid.es/videos/1171991/5ocxMOYV/hive1a_minimal.mp4

"There's something
moving and it ain't us"

- Pvt. William Hudson

(Bill Paxton)

Motion Trackers: accurate but not precise

Accuracy High: Never wrong about presence or absence of
"something moving"
Precision Low: problematic lack of useful information

15

Mythbusters Infrared

A real FLIR camera circa 2008
16

Colonial Marines FLIR

17

https://s3.amazonaws.com/media-p.slid.es/videos/1171991/wPioJfLG/hive1b.mp4

"Maybe they don't show
up on infrared at all"

- Cpl. Dietrich
(Cynthia Dale Scott)

FLIR
Precise but not accurate

Precision high: (presumably), would show exactly where targets are
Accuracy Low: can't detect aliens

18

Accuracy and Precision in Unit Tests

Accuracy:

when there's a bug, alarms sound
when there's no bug, no alarms sound

Precision:

When the alarm sounds you know where to look, what
you're looking at, and what to be afraid of

19

Accuracy part 1: Completeness

Don't leave any place for bugs to hide

20

Goals for Completeness

Practically: we maximize accuracy by maximizing the chances of
finding a bug per test case.

We can't test it all, but can we stack the deck in our favor?

We have a finite number of tests
We have a vast number of inputs
How do we select our test cases?

21

Equivalence Partitioning

In principle, testing one value from each EC should exercise all paths
through the function.

An Equivalence Class (EC) is a set of inputs that will all produce the
same test result

Equivalence Partitioning is the act of identifying ECs.

22

Step 1: Equivalence Partitioning
int abs(int x) { return (x < 0) ? -x : x; }

INT_MIN INT_MAX

Domain:
[INT_MIN, INT_MAX]

x

abs(x)

Ra
ng

e
[0

, I
N

T_
M

AX
]

Co
do

m
ai

n:
[IN

T_
M

IN
, I

N
T_

M
AX

]

23

Step 1: Equivalence Partitioning

INT_MIN INT_MAX

Domain:
[INT_MIN, INT_MAX]

x

abs(x)

Co
do

m
ai

n:
[IN

T_
M

IN
, I

N
T_

M
AX

]
EC 1:

[0, INT_MAX]

N0EC 2:

[INT_MIN,0)

Z−

In principle, testing one value from each
should (and does) exercise all paths

through the function.

Ra
ng

e
[0

, I
N

T_
M

AX
]

int abs(int x) { return (x < 0) ? -x : x; }

24

Step 2: Boundary Conditions

For EC that are a range, check the boundaries
Places where behavior changes
Places where easy mistakes live (< vs <=)
Places next to these

int abs(int x) { return (x < 0) ? -x : x; }

25

Step 2: Boundary Conditions

std::numeric_limits<int>::min = -2147483648
std::numeric_limits<int>::max = +2147483647

Check INT_MAX: nothing new
Check 0: nothing new
Maybe, 1 : nothing new±
INT_MIN: whoops....

Signed integer range is not symmetric
abs(INT_MIN) is undefined behavior

int abs(int x) { return (x < 0) ? -x : x; }

EC1: [0, INT_MAX]
EC2: [INT_MIN, 0)

26

Error Cases are separate ECs

Equivalence classes:

1. Non-negative integer: [0, INT_MAX]
2. Negative integer: (INT_MIN, 0)
3. Invalid integer: INT_MIN

As written, abs(x) has a narrow contract. No point in testing EC 3
because it's Undefined Behavior

Don't test out-of-contract input

int abs(int x) { return (x < 0) ? -x : x; }

27

Wide and Narrow Contracts

What if we rewrite as a wide contract?

int abs(int x) {
 if (x == std::numeric_limits<int>::min())
 throw std::domain_error("Can't take abs of INT_MIN")
 return (x < 0) ? -x : x;
}

This wide contract makes INT_MIN a runtime error.

Now, EC 3 is a valid equivalence class we should test.

28

Equivalence Partitions

EC 3:
INT_MIN INT_MAX

Domain:
[INT_MIN, INT_MAX]

x

abs(x)

Ra
ng

e
[0

, I
N

T_
M

AX
]

Co
do

m
ai

n:
[IN

T_
M

IN
, I

N
T_

M
AX

]
EC 1:

[0, INT_MAX]

N0EC 2:

(INT_MIN,0)

Z−

29

Step 3: Interesting Conditions

"Interesting" values derive from studying
the algorithm and the code.

Interesting is decided by you. You wrote the code, you

know what's interesting.

0 is an interesting value. Make it an EC if you want to!
"Interesting" is in the eye of the beholder.

Consider testing values that look important to
reassure readers that this particular case is
handled.

30

Equivalence Partitions

EC 3:
INT_MIN INT_MAX

Domain:
[INT_MIN, INT_MAX]

x

abs(x)

Ra
ng

e
[0

, I
N

T_
M

AX
]

Co
do

m
ai

n:
[IN

T_
M

IN
, I

N
T_

M
AX

]
EC 1:

(0, INT_MAX]

N0EC 2:

(INT_MIN,0)

Z−

EC 4: 0
(boundary

or
interesting)

31

Is Equivalence Partitioning White Box?

Important point:

"Black Box" testing tests only observable behavior
"White Box" testing relies on implementation details

Should we derive ECs from knowledge of the

implementation details?

If Yes: EC definitions (and therefore unit tests) may be
coupled to implementation details.

If No: EC definitions decoupled from implementation but

may miss important corner cases
 32

"Black Box" ECs from output values

What input values produce these results?

EC1 : 0
EC 2: (0, INT_MAX)
EC 3: (INT_MIN, 0)
INT_MAX is in EC2
INT_MIN is a problem

x

abs(x)

Ra
ng

e
[0

, I
N

T_
M

AX
]

Domain:
[INT_MIN, INT_MAX]

Check the range rather than the domain

Three obvious range cases:

0
INT_MAX
Everything in between

33

Example: operations on sequences

template <Iterator I> auto sort(I begin, I end) -> void;

Equivalence classes for range size:

0 / empty range : always
1 element : always
Many elements: always

two elements? maybe

Equivalence classes for range contents:

{2,2,2} // all same
{1,2,3} // already sorted
{3,2,1} // reverse order

34

Multiple Input Parameters

auto FeedCamel(Camel& c, Feed& f, Motorcycle& m) {...}

Let C = set of ECs for Camels
Let F = set of ECs for Feed
Let M = set of ECs for Motorcycles

(in principle) Test Suite = C ⊗ F ⊗M

Do I have to do all of them?

Success cases: one test including each EC is good enough (unless they
interfere)
Error cases: only one error EC per test

35

Equivalence Paritioning Roundup

EP as a technique draws a lot of ire online

Lots of debate about language and definitions
I think a lot of dissapointment that it didn't live up to
expectations.

My take:

EP is an excellent tool for identifying possible test cases.

It doesn't tell you what to test
It doesn't provide answers

It does help you ask the right questions

36

Correctness: does the test correctly identify:

correct output as correct
incorrect output as incorrect
Correct Error handling

Correctness is part of Accuracy
also part of maintainability

Accuracy part 2: Correctness

37

Correctness 1: Brittle Tests

TEST(MyTest, Log)
{
 StartLogCapture();
 ...
 EXPECT_THAT(Logs() , HasSubstr("file.cc:421: Opened file"));
}

Maintenance problem: test "breaks" on a reformat

TEST(MyTest, Unordered)
{
 std::unordered_set<int> s {1,2,3,4,5};
 ...
 EXPECT_STREQ(to_string(s) , "1,2,3,4,5");
}

Maintenance problem: test "breaks" on a hash or
internal container change

38

Correctness 2: Too Much (computational) precision

3.141592653589793

float compute_pi() { return std::acos(-1); } // 1

Overspecifying "correct" produces false positives on correct code changes

TEST(Math, compute_pi) {
 auto answer = 3.14159274;
 EXPECT_NEAR(compute_pi() , answer , 1e-8);
}

../test/Track/test_track.cpp:23: Failure
The difference between compute_pi() and answer
is 8.6410206989739891e-08, which exceeds 1e-8

double compute_pi() { return std::acos(-1); } // 2

3.141592741012573

39

Correctness 2: Too Little Precision

3.142857142857143

double compute_pi() { return 22.0 / 7; } //

Underspecifying "correct" lets the bugs through

TEST(Math, compute_pi) {
 auto answer = 3.14159;
 EXPECT_NEAR(compute_pi() , answer , 2e-3);
}

"Correct" should contain only the information actually produced, or
the quality actually needed.

40

float compute_pi() { return std::acos(-1); }

TEST(Math, compute_pi)) {
 float correct_value = std::acos(-1);
 EXPECT_TRUE(compute_pi() == correct_value);
}

Beware of circular logic

You have just proven that "The code I wrote is the code I wrote" **

(this happens in science all the time)

Accuracy of this test isn't defined; it will always pass, so is not falsifiable

Accuracy part 3: Validity

** Dave Farley, "The 3 Types of Unit Test in TDD" https://youtu.be/W40mpZP9xQQ
YouTube channel: https://www.youtube.com/c/ContinuousDelivery 41

Accuracy pt 3: Validity
Contrast with two other similar situations

Value and error bound obtained from prototype or expert

TEST(Math, compute_pi) {
 EXPECT_NEAR(compute_pi(), 3.15149, 5e-6);
}

Reference to known (or at least suspected) correct value obtained
from reliable source

This is excellent, and frequently one of the first tests written

Beware floating point accuracy!
42

Accuracy pt 3: Validity

Value obtained by executing compute_pi() yesterday

TEST(Math, compute_pi) {
 EXPECT_EQ(compute_pi() , 3.141592741012573)
}

We haven't shown the code is correct
We have shown it hasn't changed behavior

This is an acceptance test, not a unit test

 Clare Macrae,
https://claremacrae.co.uk/

43

Accuracy

The result of your test matches reality of code

Test completely (Equivalence Partitioning)

Test Correctly (use no more information
than you have, use no less than you need)

Test Validity: no circular logic; write
falsifiable code and falsifiable tests

44

Precision
Precision:

Unit test results provide a maximum
amount of useful information:

How fast can we move from
"we know there's a problem"

to
"we know what and where the problem is"

45

Lack of Precision Is A Problem

46

https://s3.amazonaws.com/media-p.slid.es/videos/1171991/pzOU2lzl/last_stand.mp4

"That can't be, that's
inside the room"

- Ellen Ripley (Sigourney Weaver)

High accuracy: Motion Trackers detect bugs
High range precision: they really are 4 meters away

Low angular precision: ... but in what direction?

47

Precision pt 1: Clarity

First rule of precision:

Use a good unit test framework.

48

Precision pt 1: Clarity
TEST(Alien_Hive, team_safety)
{
 bool team_safety = false;
 ASSERT_TRUE(team_safety);
}

1
2
3
4
5

A passing test produces little
or no output
A failing test indicates

Test Suite
Test Case
Assertion that failed
Expected, and actual values
File and line number of failure

Demand this of your unit test framework; accept nothing less

Running main() from ../googletest/src/gtest_main.cc
[==========] Running 1 test from 1 test suite.
[----------] Global test environment set-up.
[----------] 1 test from Alien_Hive
[RUN] Alien_Hive.team_safety
../test/Track/test_track.cpp:12: Failure
Value of: team_safety
 Actual: false
Expected: true
[FAILED] Alien_Hive.team_safety (0 ms)
[----------] 1 test from Alien_Hive (0 ms total)

[----------] Global test environment tear-down
[==========] 1 test from 1 test suite ran. (0 ms total)
[PASSED] 0 tests.
[FAILED] 1 test, listed below:
[FAILED] Alien_Hive.team_safety

49

Precision part 2: Organization

TEST(Aliens_Threat_Model, Alien_Hive)
{
 ...
 std::vector<Alien> threat;
 EXPECT_TRUE(threat.empty()); // ???
 ...
}

1
2
3
4
5
6
7

Consider that line.

What are the chances it fails?
What should you do if it does?
What are the chances it fails but
everything else still works?

50

Is this more reasonable?

It may be reasonable for you to test other people's
code but not in your test suite
An isolated failure in our_custom_vector shows up in
the Alien Hive test case.

Avoid red herrings

 our_custom_vector<Alien> threat;
 EXPECT_TRUE(threat.empty()); // ???

TEST(Alien_Threat_Model, Alien_Hive)1
{2
 ...3

4
5

 ...6
}7

Precision part 2: Organization

51

// exern_test.cpp

TEST(Other_Teams_Stuff,
 our_custom_vector_sanity)
{
 our_custom_vector<int> vec;
 EXPECT_TRUE(vec.empty());
}

If only this fails,
everyone knows
where the bug is

If both tests fail (more likely), at
least some of the output points at

the bug

Organize test cases and test suites to point clearly at (or at least strongly
suggest) the problem

If our_custom_vector fails, what do our tests report?

TEST(Alien_Threat_Model, Alien_Hive)
{
 ...
 our_custom_vector<Alien> threat;
 ...
}

Precision part 2: Organization

52

Mocks:

A(nother) Tale of Two Cities

f
https://medium.com/@adrianbooth/test-driven-development-wars-detroit-vs-london-

classicist-vs-mockist-9956c78ae95

Adrian Booth, Test Driven Development Wars: Detroit vs London, Classicist vs Mockist

There are two competing schools of TDD:

Detroit / Classicist
London / Mockist

There are two competing schools of TDD:

Detroit / Classicist
London / Mockist

Maciej Falski, Detroit and London Schools of Test-Driven Developement
https://blog.devgenius.io/detroit-and-london-schools-of-test-driven-development-

3d2f8dca71e5

53

https://medium.com/@adrianbooth/test-driven-development-wars-detroit-vs-london-classicist-vs-mockist-9956c78ae95
https://blog.devgenius.io/detroit-and-london-schools-of-test-driven-development-3d2f8dca71e5

Classicist vs Mockist

Classicist

Mockist

TEST(Aliens, Alien_Hive)
{
 ...
 our_custom_vector<Alien> threat;
 EXPECT_TRUE(threat.empty()); // not needed: tested elsewhere
 ...
}

1
2
3
4
5
6
7

TEST(Aliens, Alien_Hive)
{
 ...
 MOCK_custom_vector<Alien> threat;
 EXPECT_TRUE(threat.empty()); // not needed: it's your mock
 ... // still tested elsewhere, right?
}

1
2
3
4
5
6
7 54

Test Doubles are accuracy / precision tradeoffs

Using Test Doubles improves precision:

Your class or test uses a Thing
If Thing fails, its tests fail and your tests fail (less precision)

Use a MockThing in your tests

If Thing fails, its tests fail and nothing else (more precision)

London / Mockist tests are precise; no red
herrings, no extraneous signals to sort

through

55

Using Test Doubles reduces accuracy:

Your class or test uses a Thing
Tests use real Things (more accurate)

Use a MockThing in your tests
Tests use non-real MockThings (less accurate)

Every difference between the Test Double and the Real
Thing is a gap the bugs can come through.

Plus, have you tested your Mocks?
Beware circular reasoning!

Don't let them in through the ceiling!

Test Doubles are accuracy / precision tradeoffs

56

Precision summary

57

https://s3.amazonaws.com/media-p.slid.es/videos/1171991/Yfnv95xB/last_stand-end.mp4

Humans and Confusion

Humans are not good at handling
contradictory sensory input.

This problem is much worse when we are
tired, angry, or scared.

Don't confuse the tired, angry, frightened humans

58

Summary

Good tests are accurate and precise

Accuracy: test results match reality

Bad Accuracy lets the bugs in: "Maybe they don't show up on infrared at all"

Precision: test results are useful

Bad Precision is confusing: "That can't be, that's inside the room"
59

Armor Up

There are some bugs out there 60

https://s3.amazonaws.com/media-p.slid.es/videos/1171991/sdd_PsQO/final.mp4

Credits

Editorial Search and Rescue:
Neil Sexton

Video Editing Assistance:

Nathan Paget
Steve Soule

Patience with Early Talk Prototypes:
Denver C++ Meetup

https://www.meetup.com/north-denver-metro-c-meetup/

SciTec is hiring
www.scitec.com/join

61

