

What’s this all about

Web cache for Tempesta FW (a hybrid of an HTTP accelerator & firewall)

● softirq (near real-time)

● designed for DDoS mitigation (in-memory)
● a lot of data (persistent)

Database data structures assessment
● lf_hash get performance regression since the bucket size won't

decrease
https://jira.mariadb.org/browse/MDEV-20630

● PostgreSQL dynamic hash tables (per bucket locks)

https://jira.mariadb.org/browse/MDEV-20630

Tail latency

e.g. CDN with a 1000 nodes with average request time ~20-50ms
https://tempesta-tech.com/blog/nginx-tail-latency

1 / 10,000 requests take more than 2-3 seconds

1k nodes with 100KRPS

10k users may observe no header image on your site

A sub-second task may take seconds on a busy server with 1 sec
secheduling

Data structure as a database

Shared cache (each CPU can process a client request to a particular
resource)

Hot path: lookup & insert

Lookups more than inserts (caching)

Deletions can be slow, but might block inserts

Update: delete + insert or per-entity lock + reference count

Lock-free & wait-free

Lock-free (this talk)
● guaranteed system-wide progress
● an operation completes after a finite number of steps
● waiter helps to finish a conflicting operation

Wait-free
● guaranteed system-wide throughput (no starvation)
● all operations complete after a finite number of steps
● no livelocking

Obstruction-free (e.g. transactional memory)
● abort & retry

Lock-free deletions are tricky

Intermediary/helping nodes might be concurrently accessed along with
the deleted node (insert can construct the whole path and just insert it)

Concurrent free() (e.g. a worker and eviction threads decide to
remove the same item)

Memory fragmentation and/or garbage collection

Solutions
● the upper layer responsibility (e.g. by reference counting)
● RCU
● Dummy nodes (split-ordered lists, skip trees)

Tempesta DB

Is part of Tempesta FW (a hybrid of a firewall and web-accelerator)

Linux kernel space (softirq – deferred interrupt context)

Can be concurrently accessed by many CPUs

In-memory database

Simple persistence by dumping mmap()’ed areas
=> offsets instead of pointers

Duplicate key entries (stale web responses)

Multiple indexes (e.g. URL or Vary for web cache)

Stored data

Mostly large string keys with or without ordering requirements

Large variable-size records

● web-cache (URL or Vary indexes, ordering for PURGE)

● duplicate key entries (stale responses)

Small fixed-size records

● client accounts (complicated keys, e.g. User-Agent + IP)

● session cookies (short string keys)
● filter rules (IP address)

● IP addresses and network masks

Trees vs hash tables

Trie (tree)
● ordering
● range queries

Hash table
● fast point queries
● need rehashing, which is bad for tail latency

Memory allocation: data & index blocks

There is no need for fast insertion if memory allocation is slow

Stored entries deletion may lead to memory fragmentation

Small allocation area, so compress pointers
Small is beautiful: Techniques to minimise memory footprint - Steven Pigeon -
CppCon 2019, https://www.youtube.com/watch?v=Dxy66x6v4HE

Split index and data blocks
● spacial locality: sequential accesses within a page
● data blocks are accessed after index, so keep index blocks together
● collision traverses data buckets, so keep them together

Binary trees

e.g. std::map RB-tree

Requires rebalancing, rotations involving many nodes

Hard to implement lock-free

Hard to implement with fine-grained locking

 75% lookups, 25% inserts

 Hash table with per bucket locks: 80ms avg

 std::map with big RW spin-lock: 217ms avg

Hash tables

e.g. std::unordered_map

Bucket chains may grow infinitely

Rehashing typically takes time and require a global lock
● great impact to tail latency!

Easy to implement fine-granular locks (per bucket)

Split-ordered lists

A lock-free extensible hash table
● tbb::concurrent_unordered_map
● MariaDB rw_trx_hash

Uses persistent dummy nodes => significant degradation after removal
https://jira.mariadb.org/browse/MDEV-20630

Erasing in tbb::concurrent_unordered_map requires a lock

Radix/patricia tree (trie)

Judy arrays & ART: 256-way nodes with adaptive compression
”Judy IV Shop Manual”, A.Silverstein, 2002
”The Adaptive Radix Tree: ARTful Indexing
for Main-Memory Databases”, V.Leis, 2013

● not cache conscious
● hard to make concurrent

Height depends on the key length

No reconstruction (e.g. rebalancing or rehashing)

Memory greedy on
uniformly distributed keys in a large space

Easy to make lock-free

Path compression

Per-character trie uses to many memory accesses
/blog/nginx-tail-latency
/blog/web-cache-poisoning

Path compression
”The Adaptive Radix Tree: ARTful Indexing for Main-Memory Databases”, V.Leis,
2013

Burst trie – no single child nodes

Burst trie

“Burst Tries: A Fast, Efficient Data Structure for String Keys”, S.Heinz, J.Zobel,
H.E.Williams, 2002

Collapses trie chains into buckets – better memory usage

1. use only string prefixes in a trie

2. resolve collisions by suffixes in a small bucket

3. once the bucket inefficient (several heuristics) – burst it

Adaptive: e.g. buckets with rare hits do not burst

Poor performance on the start

X86-64 caches

Operates with 64 byte units (cache lines)

Caches are small and shared
● associativity (8-way) can make them even smaller
● e.g. 24 cores/48 threads: L1 - 64KB (per core), L3 - 128MB (shared)
● access times: L1 ~ 1 cycle, L2 ~ 10 cycles, L3 ~ 50 cycles
● TLB cache: L1 ~ 1024 pages

Concurrent update from different CPUs is ~x2 slower (atomics)

NUMA remote access is ~x2 slower

Virtual memory is addressed by 4KB pages

Tree nodes live inside the radix tree

a.0

c.0

a.1

c.1

a b

c

Application Tree

X86-64 memory ordering

Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 3: System
Programming Guide, chapter 8.2

Neither loads nor stores are reordered with like operations

Stores are not reordered with earlier loads

Locked instructions have a total order (atomics)

Loads may be reordered with earlier stores to different locations

 x = y = 0

 CPU1 CPU2

 x = 1 y = 1
 r1 = y r2 = x

 allowed: r1 = 0 and r2 = 0

Hardware Transaction Memory (Intel TSX)

Several generations of Intel CPUs, not for AMD

A transaction may never succeed => just lock-elision

Only for low contended cache lines

Only for data in L1d cache and if 8-way associativity is enough

Makes sense for transactions smaller than 32 cache lines
https://natsys-lab.blogspot.com/2013/11/studying-intel-tsx-performance.html

(seems) doesn’t work with the modern spin-locks (e.g. MCS locks) (not
single integer)?

Cache conscious data structures

Node access is access to 1 cache line (L1-L3 data caches)

Page locality (TLB cache)

Use a cache line fully on each memory access

Examples of
cache conscious data structures

CSB+-tree – cache conscious B+-tree
”Making B + -Trees Cache Conscious in Main Memory” by J.Rao and K.A.Ross,
2000

● pointer to 1st child, all others are by offsets in contiguous memory
● expensive updates

FAST – binary tree with SIMD multi-node comparison
”FAST: Fast Architecture Sensitive Tree Search on Modern CPUs and GPUs”, C.Kim
et al, 2010

CST-tree – cache conscious T-tree
”Making T-Trees Cache Conscious on Commodity Microprocessors”, I.Lee, 2011

● group index and data blocks, use indexes instead of pointers

HAT-trie

“HAT-trie: A Cache-conscious Trie-based Data Structure for Strings”, N.Askitis,
R.Sinha, 2007

Cache-conscious burst trie
● intermediary nodes
● buckets as array hashes

”Cache-Conscious Collision Resolution in String Hash Tables”, N.Askitis,
J.Zobel, 2005

Hash Array Mapped Tree (HAMT)
”Ideal Hash Trees”, P.Bagwell, 2000

Can preserve order (by the cost of constant size)

Keys tradeoffs

Fixed-size hash values vs ordering (collision: keyi+1 != keyi+1)

Constant height (access time) vs infinite key length

Keys distribution is unknown, so perfect hashing is imposible

Memory optimized

Cache conscious Burst Hash Trie
● short offsets instead of pointers
● (almost) lock-free

lock-free block allocator for virtually contiguous memory

Burst Hash Trie: root

const size_t HTRIE_BITS = 4;
const size_t HTRIE_FANOUT = 1 << HTRIE_BITS;

// 2 ^ 31 * 64bytes = 128GB
const size_t HTRIE_DBIT = 1 << (sizeof(int) * 8 – 1);

struct HtrieNode {

 // 16 * 4 = 64 = 1 cache line on x86-64
 unsigned int shifts[HTRIE_FANOUT];
};

Burst HTrie: bucket creation

struct HtrieBucket {
 unsigned long col_map; // up to 63 collisions
 unsigned int next;
};

while (1) {
 node = htrie_descend(key);

 // Alloc and initialize the inserted bucket
 b = htrie_alloc_bucket();
 htrie_bckt_write_data(b, key, data, len, 0, rec);

 // Publish the new node
 unsigned int b_off = add2off(b);
 if (node->shifts[i].compare_exchange(0, b_off) == 0)
 return 0;

 // Somebody already inserted a bucket, rollback
 htrie_rollback_bucket(b);

}

Bucket with large/non-inplace data
(pointer stability in bursting buckets)

// No need to reallocate on the index
// insertion failure
o = htrie_alloc_data(dbh, len)));
rec = htrie_create_rec(dbh, o, key, data, &len);

while (1) {
 node = htrie_descend(key);

 // Alloc and initialize the inserted bucket
 b = htrie_alloc_bucket();
 htrie_bckt_write_data(b, key, data, len, 0, rec);
 // Publish the new node
 unsigned int b_off = add2off(b);
 if (node->shifts[i].compare_exchange(0, b_off)
 == 0)
 return 0;

 // Somebody already inserted a bucket, rollback
 htrie_rollback_bucket(b);

}

Bucket burst

retry: // ...descend and all the insertion code...
while (1) {
 // Allocate a new index and bucket nodes,
 // copy buckets data and link from the new index

 // Link the new index with the new & old buckets
 if (CAS(node->shifts[i], new_index))
 goto retry;
 while (1) {
 curr_map = CAS(bucket->col_map, old_map, new_map);
 if (curr_map = old_map)
 break;

 map = curr_map ^ map;
 // Copy records for the new collisions

 map = curr_map;

 }
}

Concurrent bucket bursts

o = htrie_alloc_index();
in = TDB_PTR(dbh, TDB_II2O(o));
htrie_bckt_move_records(b, map, in, &new_map);
if (node->shifts[i].compare_exchange(old_o, o)
 != old_o)
 goto retry;
// Now old bucket and the new one have the same data
// Other thread can burst old bucket & insert data
While (1) {
 curr_map = b->col_map.compare_exchange(map,
 new_map);
 if (curr_map == map) break;

 // Copy records, which we didn’t see
 map = curr_map ^ map;

 // Takes care about atomic collision maps
 htrie_bckt_move_records(b, map, in, &new_map);
 map = curr_map;
}

Reclaiming data
(Don’t delete empty index nodes - just 64B)

thread_local local_gen = 0;
atomic<long> global_gen;

htrie_insert() {
 local_gen = global_gen.load();
 // do the stuff
 local_gen = LONG_MAX;
}

htrie_remove() {
 // copy backet and CAS() the index

 bool sync = true;
 do {
 for_each_thread([](){
 if (local_gen >= global_gen.load()) {
 sync = false;

 });
 } while (!sync);
 // reclaim memory
}

Storing data in place vs metadata

Bursting a bucket storing data
● large copies
● a bucket can’t handle several big objects
● objects change their addresses

Metadata
● additional indirection layer (memory access)
● buckets can be smaller
● efficient copies

Extensions

High contention on the root node:
● we can use 8, 12 or more bits for the root

Radix tree is the same as patricia tree
● we can use the trie without the hash function
● non-constant time access
● text compression helps to reduce the trie height

Due to 31-bit offsets, Htrie can address 128GB only
● Data sharding as tries forest
● NUMA-aware scheduling

Thank you! Questions?

Availability: https://github.com/tempesta-tech/blog/tree/master/htrie

Tempesta FW: https://github.com/tempesta-tech/tempesta

 Alexander Krizhanovsky

 ak@tempesta-tech.com
 @a_krizhanovsky

mailto:ak@tempesta-tech.com

