
Generating Parsers in C
++ with Maphoon (2)

Hans de Nivelle

Nazarbayev University, Astana, Kazakhstan

Online, 15.07.2022

1

What is Parsing?

In computer science, nearly everything can be represented as a tree.

We are given an input as sequence of characters. The task of the

parser is to extract the tree structure. The resulting tree is called

abstract syntax tree.

2

Example of an AST

if(c >= ’A’ && c <= ’Z’) c += ’a’ - ’A’;

// If c is upper case, make it lower case.

if

&& +=

≥ ≤
c −

c ′A′ c ′Z ′

′a′ ′A′

3

Parsing

We have cut the input in bite-sized pieces, and we need to build a

tree from them.

We, as professors, torment our students with the following

definition:

A context-free grammar G = (V,Σ, R, S) is a quadruple consisting

of:

• A finite set of non-terminal symbols V.

• A finite set of terminal symbols Σ,

• A set of rules of form α → w, with α ∈ V and w a finite word

over V ∪ Σ,

• A start symbol S.

Unfortunately, this definition is not usable in practice.

4

Attribute Grammars

Definition: An attribute grammar has form G = (Σ, A,R, S, T), in

which

• Σ is the set of symbols. We don’t distinguish anymore between

terminal symbols and variable symbols.

• A is a function that attaches to each σ ∈ Σ a non-empty

attribute set A(σ).

• R is a set of rewrite rules.

• S ∈ Σ is the start symbol, T ⊆ Σ is the set of terminator

symbols. These are symbols that follow after a correct input

(e.g. EOF or ;).

We define Σ⊗A = { (σ, a) | σ ∈ Σ and a ∈ A(σ) }. These are the

valid symbols.

5

The formal notation may look a bit frightening, but it is totally

natural.

Here are a few examples of rewrite rules, for a Pascal-like language:

Stat → while Expr do Stat

→ do Stat while Expr

→ if Expr then Stat

→ if Expr then Stat else Stat

→ for id := Expr to Expr do Stat

σ(Stat) is the set of all possible ASTs that represent a statement.

Similarly, σ(Expr) is the set of all possible ASTs that represent an

expression.

6

Standard Example: Calculator

The calculator can evaluate simple expressions of form:

1 + 2 * 3;

--> 7

a := 1 + 1;

--> assigning a := 2

a - a * 4;

--> -6

We use the standard operators: +, -, *, /, where * and / take

priority over + and -.

It is possible to assign to variables using :=

7

The rewrite rules are (first attempt):

S → ǫ | S C

C → E ; | ident := E ;

E → E + E | E − E | E ∗E | E /E | − E | (E)

E → double | ident | (E) | ident(A)

A → E | A, E

S is the start symbol. It represents a complete session. C is a

single command.

8

Ambiguity

Problem: No control over evaluation order.

E ⇒ E + E ⇒ E + E ∗ E ⇒ · · · ⇒ double + double ∗ double

(The ∗ evaluated first.)

E ⇒ E ∗ E ⇒ E + E ∗ E ⇒ · · · ⇒ double + double ∗ double.

(The + evaluated first.)

When a same input word can be obtained in different ways by

applying rules of the grammar, this is called ambiguity. Ambiguity

is bad, because different derivations will result in different

meanings.

9

Solution: Split E into different symbols, representing the different

priority levels:

S → C | S C

C → E ; | ident := E ;

E → E + F | E − F | F

F → F ∗G | F /G | G

G → −G | H

H → double | ident | (E) | ident(A)

A → E | A, E

Rest I show in Maphoon syntax:

10

%startsymbol Session EOF

// startsymbol with terminator EOF.

%symbol EOF BAD

%symbol{ std::string } SCANERROR IDENT

%symbol SEMICOLON ASSIGN COMMA

%symbol{ double } DOUBLE

%symbol PLUS TIMES MINUS DIVIDES

%symbol LPAR RPAR

%symbol{ double } E F G H

%symbol{ std::vector<double> } Arguments

%symbol Session Command

%symbol COMMENT WHITESPACE EMPTY

Going back to the definition on slide 5, we now defined Σ, A, S, and

T.

11

Directions of Parsing

Given a sequence of tokens (with attributes), the parser constructs

a derivation of this sequence of tokens, and use this derivation to

attach a meaning to the input.

Parsing can be either top-down or bottom-up.

Maphoon constructs a bottom-up parser, but I will shortly discuss

top-down parsing.

12

Top-Down Parsing

With top-down parsing, the parser starts with the start symbol S,

and rewrites towards the given symbol sequence.

At each point during parsing, the parser knows which symbol it

needs to obtain, looks at the next symbol in the input, and decides

which rule must be applied.

For example, if one needs to obtain a Stat, and the next symbol is

while, the parser knows that rule Stat → while Expr do Stat

must be applied.

Major disadvantage of top-down parsing is that decisions must be

made at the beginning of rules. Rules that have common

beginnings are a problem.

13

Top-Down Parsing (2)

For example, if one needs Stat, and the next symbol is if , the

parser cannot select the rule.

The same problem occurs with the rules E → E + F | E − F | F

in the calculator.

The decision can be made only when + or − is encountered.

In order to solve this problem, the rules have to be merged into a

single rule with a regular expression to the right:

E → F (+F | − F)∗.

Top-down parsing can also be implemented by hand, this is called

recursive descent parsing.

The problems are the same.

14

Bottom-Up Parsing

The parser starts with the input word, and applies the rewrite rules

from right-to-left.

As far as I know, bottom-up parsing is always shift-reduce parsing.

The parser uses two variables: The parsestack (stack of symbols

with attributes), and a lookahead (optional symbol).

shift (Lookahead must be defined): Push the current lookahead to

the stack. Make the lookahead undefined.

reduce (The top of the stack must contain the right hand side of a

rule): Remove the right hand side from the stack, and replace

it by the left hand side of the rule. Compute the attribute of

the new symbol.

read (Lookahead must be undefined): Read a symbol from the

input source and put it in lookahead.

15

Bottom-Up Parsing: Computing the Attributes

When a rule is applied from right to left, one must compute the

attribute of the left hand side.

In order to do this, we attach code fragments to rules:

E => E:e PLUS F:f { return e + f; }

| E:e MINUS F:f { return e - f; }

| F:f { return f; }

;

The code fragments are usually called action code. It must return

the attribute of the left hand side (if it is not void).

16

Examples of Action Code

E => IDENT: id

{

if(memory. contains(id))

return memory. lookup(id);

else

{

errorlog. push_back(

std::string("variable ") +

id + " is undefined ");

return 0.0; // An arbitrary choice.

}

}

| DOUBLE : d { return d; }

;

17

Examples of Action Code (2)

E => IDENT:id LPAR Arguments:args RPAR

{

if(id == "sin" && args. size() == 1)

return sin(args[0]);

if(id == "pow" && args. size() == 2)

return pow(args[0], args[1]);

errorlog. push_back(

std::string("calling unknown function ") + id);

return 0.0; // An arbttrary choice.

}

;

18

Examples of Action Code (3)

Arguments => E:e

{

return { e };

}

| Arguments:a COMMA E:e

{

a. push_back(e);

return a;

}

;

19

Examples of Action Code (4)

Command => E:e SEMICOLON

{

if(errorlog. size())

{

printerrors(errorlog, std::cout);

errorlog. clear();

}

else

{

std::cout << "---> " << e << "\n";

}

}

20

Examples of Action Code (5)

Command => IDENT:id BECOMES E:e SEMICOLON

{

if(errorlog. empty())

{

std::cout << " assigning: ";

std::cout << id << " := " << e << "\n";

memory. assign(id, e);

}

else

{

printerrors(errorlog, std::cout);

errorlog. clear();

}

}

21

Making the Decisions

The hard part of bottom up parsing is deciding between shift and

reduce, in case where the stack contains the complete right side of a

grammar rule.

Compared to top-down parsing, bottom-up parsing has one big

advantage:

A decision whether to reduce has to be made only when the

complete right hand side has been read.

At this moment, we have more information.

22

Bottom-Up Parsing (Decision Making) (2)

Decisions can be made as follows (see e.g. the Dragon Book):

The state of the parser is called viable, if it is possible to continue

into a succesful parse.

A word is viable if there exists a viable state of the parser, in which

the parse stack contains this word.

Theorem: The set of viable words is regular. Hence it can be

recognized with a deterministic finite automaton (the prefix

automaton).

So how do we make the decisions? ⇒ Compute the prefix

automaton in advance, and never do anything that makes the parse

stack non-viable.

23

Maphoon

Maphoon reads the grammar and the action code.

It creates two files symbol.h and symbol.cpp containing the

symbol definition.

It also creates two files parser.h and parser.cpp containing a

runnable parser that correctly applies the action code when a rule

is reduced.

Every class that has correct life cycle operations (constructor,

assignment, destructor) can be used as attribute.

It is even better when attributes are movable.

In my view, bottom-up parsing is easier than top-down parsing if

one has the proper tools.

24

Beyond the Dragon Book: Adding Preconditions

Some languages (e.g. Prolog) allow to define operators at run time.

That means that we cannot specify the grammar in advance. The

approach on slide 5 will not work.

One could try to recompute the prefix automaton at runtime, but

that will not be easy, and it will be computationally expensive.

Instead, we use a simple, ambiguous grammar, and attach runtime

preconditions to rules.

A rule can only be reduced if its precondition evaluates to true.

25

Preconditions

Preconditions are similar to action code. It can const-ly see the

attributes of the right hand side of the rule, the lookahead, and

additional fields of the parser. It must return return bool.

The precondition decides if the reduction can happen.

26

Example from Prolog

Prefix => IDENTIFIER : id

%requires

{ return syntdefs. hasprefixdef(id) &&

canstartterm(lookahead. value()); }

%reduces

{ return syntdefs. prefixdef(id); }

;

Infix => IDENTIFIER : id

%requires

{ return syntdefs. hasinfixdef(id) &&

canstartterm(lookahead. value()); }

%reduces

{ return syntdefs. infixdef(id); }

;

27

Example from Prolog (2)

Term => Prefix:op Term:t

%requires

{ return canreduce(syntdefs, op, lookahead. value()); }

%reduces

{ return

new functional(function(op. str, 1), { t }); }

| Term:t1 Infix:op Term:t2

%requires

{ return canreduce(syntdefs, op, lookahead. value()); }

%reduces

{ return

new functional(function(op. str, 2), { t1, t2 });

}

28

Another Example: Context Sensitive Keywords

LeftRightStat => CHAR : c

%requires

{ char c1 = toupper(c);

return c1 == ’L’ || c1 == ’S’ || c1 == ’R’; }

%reduces

{

char c1 = toupper(c);

if(c1 == ’L’) return -1; // left

if(c1 == ’R’) return 1; // right

return 0; // stationary.

}

;

(This comes from a Turing-Machine simulator)

29

Error Handling

Shift-reduce parsing detects a syntax error at the earliest possible

point.

It is possible to accurately report the position of the error.

Shift-reduce parsing is pretty good at error recovery. I copied the

approach from Yacc, and it works well.

But shift-reduce parsing is not good at creating meaningful error

messages. This is a traditional weakness of bottom-up parsing.

I probably solved this problem.

30

Recovery

Recovery is done by throwing away symbols, until a

synchronization point is reached.

Synchronization points are defined by rules of form

Command => _recover_ SEMICOLON

{

if(debug)

std::cout << "recovered from syntax error\n\n";

} ;

After a syntax error, the parser throws away symbols until it

encounters a (;). After that, it reduces the rule, and starts a trial

period.

If a new error occurs during this time, the parser will treat it like a

failed recovery, instead of a new error.

31

Error Reporting

What should we say to the user?

(1))

1 2

f(,

f b

1 + *

)

32

Error Reporting (2)

In order to obtain an error message, we try to find out what is

expected, and we consider the current lookahead:

expectation lookahead message

unknown unknown ’syntax error’

unknown L ’unexpected L’

X unknown ’expected X’

X Y ’expected X instead of Y’

Expections are obtained by matching a restricted form of regular

expressions into the parse stack.

I show examples in code, because it is an empirical process.

33

Summary, Conclusions

I created tools for generating tokenizers and parsers. The parser

generator is similar to Bison/Yacc/CUP, but supports C++.

The tools fulfill my own needs. I hope they will fulfill the needs of

others too.

Theory is great, it is nice to implement, it can solve your problems,

but you have to be flexible.

Target group:

Tokenizer toolbox ⇒ There is no excuse for anyone.

Parser generator ⇒ Experimental languages, teaching.

Systems and code shown in this presentation can be downloaded

from www.compiler-tools.eu/

34

Comparison to that Other Language

Java has no variant, and no union. The only mechanism for

combining different types is inheriting from Object.

Exceptions in Java are annoying: You have to declare them, but if

you declare them and don’t use them, the compiler complains. This

is annoying during development.

There is no easy way for turning code on and off

(#if 0 ... #endif)

Java has a portable intermediate representation. Because of that,

there is no need to generate sources.

Java classes are very well documented on docs.oracle.com. (but

C++ has cppreference.com)

35

Thanks!

Thanks to Danel Batyrbek, Aleksandra Kireeva, Tatyana

Korotkova, Akhmetzhan Kussainov, Dina Muktubayeva, Cláudia

Nalon, and Olzhas Zhangeldinov.

I also thank Nazarbayev University for supporting this project

through the Faculty Development Competitive Research Grant

Program (FDCRGP), grant number 021220FD1651.

36

