


Single Instruction Multiple Data

XMM register 

SSE2

YMM register

AVX2

ZMM register

AVX512



Intrinsics

Intrinsic data types and functions store and operate on 
data meant for vectorised registers 

_m256d  ( 256 bits holds 4 doubles)

_mm256_add_pd(__m256d a, __m256d b)  element-wise 
add two  _mm256 



SIMD 
Wrapper

• SIMD wrapper hides complex intrinsic 
functions and data types under common 
names and operators and provides math 
operators and functions

• boost simd .. Eve

• std::simd

• VCL  Vector Class Library



𝐷𝑅3 Basics



𝐷𝑅3 Basics

•Large Vector Type

•Lambda utilities

•Filters & Views 



Vector VecXX



VecXX

Memory managed vector type

Supports math functions and operations

Contiguous, aligned and padded

Can change the scalar type and instruction set

Substitutable for scalar type so we drop into 
existing code to make it vectorised



VecXX Utility          Vec

Memory pool
aligned

pad

data

Vec<SIMD_TYPE> Math Operators and Functions

vec_A = vec_B+ vec_C

vec_A >= vec_B

vec_A = sin( vec_C)

data





Pros  & Cons of VecXX 

What’s Good?

• Easy to use. 

• Very good memory layout, contiguous, aligned, predictable

• Memory allocation fast  ( custom allocation )

What’s bad ?

• Traverses lots of memory to perform simple actions

• Need for custom re-writes of critical areas, or existing 3rd party library 
functions 



The Problem : low intensity operations define the 
interface  

We need to do more work but keep it open. A kind of user definable  callable 
that’s going to be easy to use and agnostic of the wrapper type.



The Problem : low intensity operations define the 
interface  

We need to do more work but keep it open. A kind of user definable  callable 
that’s going to be easy to use and agnostic of the wrapper type.

auto theAnswer  = []( auto x) { return expression_goes_here;};



When generic lambda functions are instantiated

with a good SIMD wrapper 

They have brutal performance characteristics.  



𝐷𝑅3 Lambda 
functions are 
generic

When we instantiate the lambda with a SIMD wrapper, 
we generate code that uses vectorised instructions. 

A lambda function will only be instantiated 

if the SIMD wrapper supports the function names and 
operations used.  

To change instruction sets, the generic lambda 
function doesn’t need to change we just change what 
type its instantiated with. 

When generic lambda functions are instantiated with a 
good SIMD wrapper have brutal performance 
characteristics.  



Essential 
Implementation
Utilities  take 
generic lambda’s 
and vecxx’s as 
arguments
They apply 
operations 
specified by lambda 
over a vector.

load data from memory into a register   Load

apply the lambda to the registerApply

store the results back to memory Store



𝐷𝑅3 Utilities

Transform

Branching

Filters and Views ( contiguous, 
aligned, indexed and by value )



Performance
&

Simplicity



𝐷𝑅3 Lambda 
Functions

Transform

Reduce/accumulate

TransformReduce



Approach

• transform   memcpy

• reduce max element

• transformReduce inner product

Write simple 
functions 

and compare 
with STL 

equivalents



• All compiled in same cpp file. So same project settings applied .



transform



transform

Moving packed doubles via zmm 
register



memcpy



Performance
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reduce



max element
reduce



std::max_element VC2019 
using ***sd (scalar double) instructions 
so not vectorised



Performance 
max element
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transformReduce



Sum of squares 
using 

inner_product



transformReduce sum squares

Both lambdas  fused into a single  vectorised fuse multiply add 
instruction         vfmadd231pd    !



Performance 
sum squares
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std::inner_prod DR3::reduce std::inner_prod_ffmath



Composability 
Joining lambdas together  
expression templates.





Filters and 
Views

A filter is a boolean lambda function, returns true 
if an element should be copied to a view.

View is contiguous and appropriately aligned, so 
elements can be further transformed and filtered

View elements also have an index to the position 
in the original filtered source vector

Views can be filtered ( but retain index to their 
source vector)

Views can be transformed by lambda’s



Filter to View



𝐷𝑅3 Utilities 

Views

Contiguous,

Aligned,

Indexed,

By value 



VecView

aligned

pad

data

VecView<SIMD_TYPE>

data

index

Memory pool Index

Memory pool data

Operators and Functions 

filter ,transform , write back

auto vecView_A = filter(vec_A,isEvenLambda)

vecView_B =transform(vecView_A, square)

vecView_B.write(vec_A) 



Branching

select

transformSelect

filterTransform



select



transformSelect



filterTransform



Select & 
transformSelect

more complex 
test condition

odd or even 
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Selection rate between constant values  for Vector Size

for loop binarySelectionBetweenConst DR3, binary select



transformSelect

• Deep inner loop using vectorised AVX512, including FMA



Standard for loop

• Using scalar  double  instructions  ending in sd



Branching  
examples



Branching with greater than as the 
conditional
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Selection rate against vector size  for constants

for loop const

0.00E+00

1.00E+09

2.00E+09

3.00E+09

4.00E+09

5.00E+09

4
0

0

1
0

0
0

1
6

0
0

2
2

0
0

2
8

0
0

3
4

0
0

4
0

0
0

4
6

0
0

5
2

0
0

5
8

0
0

6
4

0
0

7
0

0
0

7
6

0
0

8
2

0
0

8
8

0
0

9
4

0
0

1
0

0
0

0

1
0

6
0

0

1
1

2
0

0

1
1

8
0

0

1
2

4
0

0

1
3

0
0

0

1
3

6
0

0

1
4

2
0

0

1
4

8
0

0

1
5

4
0

0

1
6

0
0

0

1
6

6
0

0

1
7

2
0

0

1
7

8
0

0

1
8

4
0

0

1
9

0
0

0

1
9

6
0

0

Se
le

ct
io

n
 R

at
e

number of elements  in vector

Selection rate against vector size  for branches with 
linear functions

for loop

select linear function

Branching 
Rates with 
simple 
condition
oper >

Y = 𝜋

Y = 𝑥 ∗ 𝜋 + 𝑐
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selection rate against vector size  for branches with moderately heavy calls

for loop
filterTransform
DR3 transformSelect
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Selection rate against vector size  for branches with very heavy function calls  

for loop

filter transform

transformSelect

y= exp
sin 𝑥

20
+

1

1+exp( 𝑥 sin 3.1𝑥 +
12.2

𝑥
)



Equi-probable branching

• Branchless, evaluate  lambda  for both sides of the branch. Blend 
results together  masked move   results conditionally.

• Simple case, constant , linear , light weight polynomials.

• How expensive does a branch need to be, before we filter and 
evaluate separately?  

y= exp
sin 𝑥

20
+

1

1+exp( 𝑥 sin 3.1𝑥 +
12.2

𝑥
)



Objective

• Try out different branching strategies on a real 
problem.





Example Φ−1



Inverse Cumulative Normal 
Distribution Function



Why Φ−1

• Important for simulation of normally distributed random numbers

• Generate a set of uniformly distributed random number in the range 0.0->1.0. 
Transform them to normally distributed number  using Φ−1.

• Classic approach is to divide a function into different approximation regions and 
branch to the function which maps best for the input value. There may be mapping 
before and after the branching.

• It is a useful example for branching and perhaps writing custom special functions.



The 
function 
Φ−1

-3

-2

-1

0

1

2

3

0
.0

1

0
.0

4

0
.0

7

0
.1

0
.1

3

0
.1

6

0
.1

9

0
.2

2

0
.2

5

0
.2

8

0
.3

1

0
.3

4

0
.3

7

0
.4

0
.4

3

0
.4

6

0
.4

9

0
.5

2

0
.5

5

0
.5

8

0
.6

1

0
.6

4

0
.6

7

0
.7

0
.7

3

0
.7

6

0
.7

9

0
.8

2

0
.8

5

0
.8

8

0
.9

1

0
.9

4

0
.9

7

Inverse cumulative normal distribution function  



Approach

• Consider two approximation schemes

• Acklam - central region + upper and lower region 6th order rational 
polynomial  10 digits  

• Wichura241 - central region two upper and two lower regions.  8th

order rational polynomial – 16 digits



Acklam’s Algorithm
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Wichura Algorithm
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Implementation Approaches

• Complex Single Pass

• Sparse Update

• Filter to Views

• Transform-Filter , Transform-write



Complex Single Pass 

Use hi region lambda
Calculate whole register

Blend outer region results in to appropriate target register lanes

Calculate central approximation value for registers
If not all values calculated with hi/low region lambda

Use low region lambda
Calculate whole register



Sparse Update

Use hi region lambda
Calculate whole register

Blend outer region results in to appropriate target register lanes

2) Scan for registers with values that should be calculated with region lambda hi

1)  Apply central region lambda 

3) Scan for registers with values that should be calculates with low region lambda and update as 
in previous stage



Filter to Views

Write transform results to indexed  register lanes

Filter values from registers with values in hi or low regions

Apply central region lambda transform to all elements 

Filter values to View for hi and low regions

Filter to low region view
and hi region view

Hi view Low view

Transform low view



Transform-Filter and  Transform-Write

Transform view values and write directly 
to memory index

Filter values from registers with values
in hi or low regions

Apply central region lambda transform to all elements and filter to view 

Hi view Low view



Coding Implementation 
Approach



Example Code  



Expanding Lambdas



Relative Performance Table

Processor W2123 W2123 W2123 W2123 4114 4114 4114 4114

Instruction set AVX512 AVX512 AVX2 AVX2 AVX512 AVX512 AVX2 AVX2

compiler ICC VS2019 Vs2019 ICC ICC VC2019 ICC VS2019

Implementations

10 digit Acklam implementation

Multiple Sparse Passes with FMA 5.83E+08 1.92E+08 4.26E+08 5.45E+08 2.92E+08 9.62+07 4.31E+08 3.58+08

Complex Single Pass with FMA 6.5E+08 1.65E+08 3.21E+08 6.66E+08 3.46E+08 1.36E+08 5.68E+08 2.58+08

Filter To Views and transform 8.47E+08 6.56E+08 5.98E+08 5.00E+08 3.49E+08 3.3E+08 4.25E+08 2.98+08

Filter To Views and transform  with FMA 9.44E+08 6.63E+08 6.85E+08 7.36E+08 4.6E+08 3.39E+08 5.99E+08 3.57+08

Transform-filter +Transform-Write  with 

FMA 9.7E+08 6.57E+08 6.84E+08 7.45E+08 4.6E+08 3.38E+08 6.15E+08 3.64+08

16 digit implementation

Transform-filter + Transform-Write  with 

FMA (WS241) 6E+08 2.96E+08 3.20E+08 3.79E+08 2.88E+08 2.41E+08 3.75E+08 1.65+08

Intel short vector math library 2.61E+08 4.96E+08 2.13E+08 2.14E+08 2.15E+08 3.8E+08 1.62E+08 1.66+08

transform 1.67E+08 9.84E+07 1.00E+08 1.63E+08 1.38E+08 7.86+07 1.30E+08 7.87+07

Table 1: Maximum Observed Single-threaded double precision calculation through-put for Φ-1 per second. For different 
implementations, execution hardware, compiler, and intrinsic vector instruction set.



Roof Line analysis and inner loop assembly 

• 2/3 of time in first stage transform whole vector with central 
approximation and filter to view outer region  values

• 1/3 of time processing outer region  values



Central Lambda WS241
AVX2



Outer Region Lambda WS241
AVX2



Micro architecture for AVX2 version



AVX2 Acklam- main region a bit quicker



Φ−1

• We can create our own vectorised math functions that are very 
performant.

• We can make our own trade offs on the approximation accuracy 

• We get faster code if we traverse and move less memory

• Filtering to contiguous, indexed view can be useful for handling 
branch conditions

• Predicting if a function will make the chip hot enough to slow down is 
not a good game for software engineers.

• Using SIMD types with generic lambdas creates very fast code.



Its not all about 
instruction set

• We Cheated

• SVML  takes a _m512d  with 8 doubles   0.0->1.0 
and returns a _m512d of  transformed.

• We take a vector of arbitrary length and structure 
our evaluations

• The act of selecting a direction to vectorise in is 
choosing your inner loop (loop interchange)

• Exploiting how you sequence your calculations and 
how you lay out the data is down to you. 

• Its the other 90% of going faster! (Mike Acton)



Resources

• code available on  https://github.com/andyD123/DR3

• Contact andreedrakeford@hotmail.com

https://github.com/andyD123/DR3

