

Single Instruction Multiple Data

XMM register

SSE2

YMM register

AVX2

ZMM register

AVX512

Intrinsics

Intrinsic data types and functions store and operate on
data meant for vectorised registers

_m256d (256 bits holds 4 doubles)

_mm256_add_pd(__m256d a, __m256d b) element-wise
add two _mm256

SIMD
Wrapper

• SIMD wrapper hides complex intrinsic
functions and data types under common
names and operators and provides math
operators and functions

• boost simd .. Eve

• std::simd

• VCL Vector Class Library

𝐷𝑅3 Basics

𝐷𝑅3 Basics

•Large Vector Type

•Lambda utilities

•Filters & Views

Vector VecXX

VecXX

Memory managed vector type

Supports math functions and operations

Contiguous, aligned and padded

Can change the scalar type and instruction set

Substitutable for scalar type so we drop into
existing code to make it vectorised

VecXX Utility Vec

Memory pool
aligned

pad

data

Vec<SIMD_TYPE> Math Operators and Functions

vec_A = vec_B+ vec_C

vec_A >= vec_B

vec_A = sin(vec_C)

data

Pros & Cons of VecXX

What’s Good?

• Easy to use.

• Very good memory layout, contiguous, aligned, predictable

• Memory allocation fast (custom allocation)

What’s bad ?

• Traverses lots of memory to perform simple actions

• Need for custom re-writes of critical areas, or existing 3rd party library
functions

The Problem : low intensity operations define the
interface

We need to do more work but keep it open. A kind of user definable callable
that’s going to be easy to use and agnostic of the wrapper type.

The Problem : low intensity operations define the
interface

We need to do more work but keep it open. A kind of user definable callable
that’s going to be easy to use and agnostic of the wrapper type.

auto theAnswer = [](auto x) { return expression_goes_here;};

When generic lambda functions are instantiated

with a good SIMD wrapper

They have brutal performance characteristics.

𝐷𝑅3 Lambda
functions are
generic

When we instantiate the lambda with a SIMD wrapper,
we generate code that uses vectorised instructions.

A lambda function will only be instantiated

if the SIMD wrapper supports the function names and
operations used.

To change instruction sets, the generic lambda
function doesn’t need to change we just change what
type its instantiated with.

When generic lambda functions are instantiated with a
good SIMD wrapper have brutal performance
characteristics.

Essential
Implementation
Utilities take
generic lambda’s
and vecxx’s as
arguments
They apply
operations
specified by lambda
over a vector.

load data from memory into a register Load

apply the lambda to the registerApply

store the results back to memory Store

𝐷𝑅3 Utilities

Transform

Branching

Filters and Views (contiguous,
aligned, indexed and by value)

Performance
&

Simplicity

𝐷𝑅3 Lambda
Functions

Transform

Reduce/accumulate

TransformReduce

Approach

• transform memcpy

• reduce max element

• transformReduce inner product

Write simple
functions

and compare
with STL

equivalents

• All compiled in same cpp file. So same project settings applied .

transform

transform

Moving packed doubles via zmm
register

memcpy

Performance

0

20

40

60

80

100

120

140

160

8
0

0

3
2

0
0

5
6

0
0

8
0

0
0

1
0

4
0

0

1
2

8
0

0

1
5

2
0

0

1
7

6
0

0

2
0

0
0

0

2
2

4
0

0

2
4

8
0

0

2
7

2
0

0

2
9

6
0

0

3
2

0
0

0

3
4

4
0

0

3
6

8
0

0

3
9

2
0

0

4
1

6
0

0

4
4

0
0

0

4
6

4
0

0

4
8

8
0

0

5
1

2
0

0

5
3

6
0

0

5
6

0
0

0

5
8

4
0

0

6
0

8
0

0

6
3

2
0

0

6
5

6
0

0

6
8

0
0

0

7
0

4
0

0

7
2

8
0

0

7
5

2
0

0

7
7

6
0

0

Tr
an

sf
er

 r
at

e
 G

B
 p

er
 s

ec
o

n
d

Size of vector in bytes

Transfer rates for memcpy and transform

memcpy

transform

reduce

max element
reduce

std::max_element VC2019
using ***sd (scalar double) instructions
so not vectorised

Performance
max element

0.00E+00

2.00E+00

4.00E+00

6.00E+00

8.00E+00

1.00E+01

1.20E+01

1.40E+01

1.60E+01

8
0

0

1
4

0
0

2
0

0
0

2
6

0
0

3
2

0
0

3
8

0
0

4
4

0
0

5
0

0
0

5
6

0
0

6
2

0
0

6
8

0
0

7
4

0
0

8
0

0
0

8
6

0
0

9
2

0
0

9
8

0
0

1
0

4
0

0

1
1

0
0

0

1
1

6
0

0

1
2

2
0

0

1
2

8
0

0

1
3

4
0

0

1
4

0
0

0

1
4

6
0

0

1
5

2
0

0

1
5

8
0

0

1
6

4
0

0

1
7

0
0

0

1
7

6
0

0

1
8

2
0

0

1
8

8
0

0

1
9

4
0

0

B
ill

io
n

s
o

f
el

em
en

ts
 p

ro
ce

ss
ed

 p
er

 s
ec

o
n

d
size of vector (nume elements)

Rate of processing elements in max element

std::max_element DR3::reduce

transformReduce

Sum of squares
using

inner_product

transformReduce sum squares

Both lambdas fused into a single vectorised fuse multiply add
instruction vfmadd231pd !

Performance
sum squares

0.E+00

1.E+09

2.E+09

3.E+09

4.E+09

5.E+09

6.E+09

7.E+09

4
0

0

1
,0

0
0

1
,6

0
0

2
,2

0
0

2
,8

0
0

3
,4

0
0

4
,0

0
0

4
,6

0
0

5
,2

0
0

5
,8

0
0

6
,4

0
0

7
,0

0
0

7
,6

0
0

8
,2

0
0

8
,8

0
0

9
,4

0
0

1
0

,0
0

0

1
0

,6
0

0

1
1

,2
0

0

1
1

,8
0

0

1
2

,4
0

0

1
3

,0
0

0

1
3

,6
0

0

1
4

,2
0

0

1
4

,8
0

0

1
5

,4
0

0

1
6

,0
0

0

1
6

,6
0

0

1
7

,2
0

0

1
7

,8
0

0

1
8

,4
0

0

1
9

,0
0

0

1
9

,6
0

0

el
em

en
t

p
ro

ce
ss

in
 r

at
e

 p
er

 s
ec

o
n

d

number of elements in vector

Sum of squares calculation rate against vector size

std::inner_prod DR3::reduce std::inner_prod_ffmath

Composability
Joining lambdas together
expression templates.

Filters and
Views

A filter is a boolean lambda function, returns true
if an element should be copied to a view.

View is contiguous and appropriately aligned, so
elements can be further transformed and filtered

View elements also have an index to the position
in the original filtered source vector

Views can be filtered (but retain index to their
source vector)

Views can be transformed by lambda’s

Filter to View

𝐷𝑅3 Utilities

Views

Contiguous,

Aligned,

Indexed,

By value

VecView

aligned

pad

data

VecView<SIMD_TYPE>

data

index

Memory pool Index

Memory pool data

Operators and Functions

filter ,transform , write back

auto vecView_A = filter(vec_A,isEvenLambda)

vecView_B =transform(vecView_A, square)

vecView_B.write(vec_A)

Branching

select

transformSelect

filterTransform

select

transformSelect

filterTransform

Select &
transformSelect

more complex
test condition

odd or even
0.00E+00

5.00E+08

1.00E+09

1.50E+09

2.00E+09

2.50E+09

3.00E+09

3.50E+09

4
0

0

1
0

0
0

1
6

0
0

2
2

0
0

2
8

0
0

3
4

0
0

4
0

0
0

4
6

0
0

5
2

0
0

5
8

0
0

6
4

0
0

7
0

0
0

7
6

0
0

8
2

0
0

8
8

0
0

9
4

0
0

1
0

0
0

0

1
0

6
0

0

1
1

2
0

0

1
1

8
0

0

1
2

4
0

0

1
3

0
0

0

1
3

6
0

0

1
4

2
0

0

1
4

8
0

0

1
5

4
0

0

1
6

0
0

0

1
6

6
0

0

1
7

2
0

0

1
7

8
0

0

1
8

4
0

0

1
9

0
0

0

1
9

6
0

0

El
em

en
t

se
le

ct
io

n
 r

at
e

p
er

 s
ec

o
n

d

number of elements in vector

Selection rate between constant values for Vector Size

for loop binarySelectionBetweenConst DR3, binary select

transformSelect

• Deep inner loop using vectorised AVX512, including FMA

Standard for loop

• Using scalar double instructions ending in sd

Branching
examples

Branching with greater than as the
conditional

0.00E+00

2.00E+09

4.00E+09

6.00E+09

8.00E+09

1.00E+10

1.20E+10

4
0

0

1
0

0
0

1
6

0
0

2
2

0
0

2
8

0
0

3
4

0
0

4
0

0
0

4
6

0
0

5
2

0
0

5
8

0
0

6
4

0
0

7
0

0
0

7
6

0
0

8
2

0
0

8
8

0
0

9
4

0
0

1
0

0
0

0

1
0

6
0

0

1
1

2
0

0

1
1

8
0

0

1
2

4
0

0

1
3

0
0

0

1
3

6
0

0

1
4

2
0

0

1
4

8
0

0

1
5

4
0

0

1
6

0
0

0

1
6

6
0

0

1
7

2
0

0

1
7

8
0

0

1
8

4
0

0

1
9

0
0

0

1
9

6
0

0

Se
le

ct
io

n
 R

at
e

number of elements in vector

Selection rate against vector size for constants

for loop const

0.00E+00

1.00E+09

2.00E+09

3.00E+09

4.00E+09

5.00E+09

4
0

0

1
0

0
0

1
6

0
0

2
2

0
0

2
8

0
0

3
4

0
0

4
0

0
0

4
6

0
0

5
2

0
0

5
8

0
0

6
4

0
0

7
0

0
0

7
6

0
0

8
2

0
0

8
8

0
0

9
4

0
0

1
0

0
0

0

1
0

6
0

0

1
1

2
0

0

1
1

8
0

0

1
2

4
0

0

1
3

0
0

0

1
3

6
0

0

1
4

2
0

0

1
4

8
0

0

1
5

4
0

0

1
6

0
0

0

1
6

6
0

0

1
7

2
0

0

1
7

8
0

0

1
8

4
0

0

1
9

0
0

0

1
9

6
0

0

Se
le

ct
io

n
 R

at
e

number of elements in vector

Selection rate against vector size for branches with
linear functions

for loop

select linear function

Branching
Rates with
simple
condition
oper >

Y = 𝜋

Y = 𝑥 ∗ 𝜋 + 𝑐

y=
(((𝑥+𝑎 𝑥+𝑏)𝑥+𝑐)𝑥+𝑑)𝑥+𝑒

(((𝑥+𝑎 𝑥+𝑏)𝑥+𝑐)𝑥+𝑑)𝑥+𝑒

0.00E+00

5.00E+07

1.00E+08

1.50E+08

2.00E+08

2.50E+08

3.00E+08

3.50E+08

4.00E+08

4.50E+08

5.00E+08

4
0

0

1
0

0
0

1
6

0
0

2
2

0
0

2
8

0
0

3
4

0
0

4
0

0
0

4
6

0
0

5
2

0
0

5
8

0
0

6
4

0
0

7
0

0
0

7
6

0
0

8
2

0
0

8
8

0
0

9
4

0
0

1
0

0
0

0

1
0

6
0

0

1
1

2
0

0

1
1

8
0

0

1
2

4
0

0

1
3

0
0

0

1
3

6
0

0

1
4

2
0

0

1
4

8
0

0

1
5

4
0

0

1
6

0
0

0

1
6

6
0

0

1
7

2
0

0

1
7

8
0

0

1
8

4
0

0

1
9

0
0

0

1
9

6
0

0

Se
le

ct
io

n
 r

at
e

number of elements in vector

selection rate against vector size for branches with moderately heavy calls

for loop
filterTransform
DR3 transformSelect

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

4
0

0

1
0

0
0

1
6

0
0

2
2

0
0

2
8

0
0

3
4

0
0

4
0

0
0

4
6

0
0

5
2

0
0

5
8

0
0

6
4

0
0

7
0

0
0

7
6

0
0

8
2

0
0

8
8

0
0

9
4

0
0

1
0

0
0

0

1
0

6
0

0

1
1

2
0

0

1
1

8
0

0

1
2

4
0

0

1
3

0
0

0

1
3

6
0

0

1
4

2
0

0

1
4

8
0

0

1
5

4
0

0

1
6

0
0

0

1
6

6
0

0

1
7

2
0

0

1
7

8
0

0

1
8

4
0

0

1
9

0
0

0

1
9

6
0

0

Se
le

ct
io

n
 R

at
e

elements in vector

Selection rate against vector size for branches with very heavy function calls

for loop

filter transform

transformSelect

y= exp
sin 𝑥

20
+

1

1+exp(𝑥 sin 3.1𝑥 +
12.2

𝑥
)

Equi-probable branching

• Branchless, evaluate lambda for both sides of the branch. Blend
results together masked move results conditionally.

• Simple case, constant , linear , light weight polynomials.

• How expensive does a branch need to be, before we filter and
evaluate separately?

y= exp
sin 𝑥

20
+

1

1+exp(𝑥 sin 3.1𝑥 +
12.2

𝑥
)

Objective

• Try out different branching strategies on a real
problem.

Example Φ−1

Inverse Cumulative Normal
Distribution Function

Why Φ−1

• Important for simulation of normally distributed random numbers

• Generate a set of uniformly distributed random number in the range 0.0->1.0.
Transform them to normally distributed number using Φ−1.

• Classic approach is to divide a function into different approximation regions and
branch to the function which maps best for the input value. There may be mapping
before and after the branching.

• It is a useful example for branching and perhaps writing custom special functions.

The
function
Φ−1

-3

-2

-1

0

1

2

3

0
.0

1

0
.0

4

0
.0

7

0
.1

0
.1

3

0
.1

6

0
.1

9

0
.2

2

0
.2

5

0
.2

8

0
.3

1

0
.3

4

0
.3

7

0
.4

0
.4

3

0
.4

6

0
.4

9

0
.5

2

0
.5

5

0
.5

8

0
.6

1

0
.6

4

0
.6

7

0
.7

0
.7

3

0
.7

6

0
.7

9

0
.8

2

0
.8

5

0
.8

8

0
.9

1

0
.9

4

0
.9

7

Inverse cumulative normal distribution function

Approach

• Consider two approximation schemes

• Acklam - central region + upper and lower region 6th order rational
polynomial 10 digits

• Wichura241 - central region two upper and two lower regions. 8th

order rational polynomial – 16 digits

Acklam’s Algorithm

-3

-2

-1

0

1

2

3

0
.0

1

0
.0

3

0
.0

5

0
.0

7

0
.0

9

0
.1

1

0
.1

3

0
.1

5

0
.1

7

0
.1

9

0
.2

1

0
.2

3

0
.2

5

0
.2

7

0
.2

9

0
.3

1

0
.3

3

0
.3

5

0
.3

7

0
.3

9

0
.4

1

0
.4

3

0
.4

5

0
.4

7

0
.4

9

0
.5

1

0
.5

3

0
.5

5

0
.5

7

0
.5

9

0
.6

1

0
.6

3

0
.6

5

0
.6

7

0
.6

9

0
.7

1

0
.7

3

0
.7

5

0
.7

7

0
.7

9

0
.8

1

0
.8

3

0
.8

5

0
.8

7

0
.8

9

0
.9

1

0
.9

3

0
.9

5

0
.9

7

0
.9

9

Use central approximation lambda

Use Lower
Region Lambda

Use Upper
Region Lambda

0.0243
0.0243

Wichura Algorithm

-3

-2

-1

0

1

2

3

0
.0

1

0
.0

3

0
.0

5

0
.0

7

0
.0

9

0
.1

1

0
.1

3

0
.1

5

0
.1

7

0
.1

9

0
.2

1

0
.2

3

0
.2

5

0
.2

7

0
.2

9

0
.3

1

0
.3

3

0
.3

5

0
.3

7

0
.3

9

0
.4

1

0
.4

3

0
.4

5

0
.4

7

0
.4

9

0
.5

1

0
.5

3

0
.5

5

0
.5

7

0
.5

9

0
.6

1

0
.6

3

0
.6

5

0
.6

7

0
.6

9

0
.7

1

0
.7

3

0
.7

5

0
.7

7

0
.7

9

0
.8

1

0
.8

3

0
.8

5

0
.8

7

0
.8

9

0
.9

1

0
.9

3

0
.9

5

0
.9

7

0
.9

9

Use central approximation lambda

Use Lower
Region Lambda

Use Upper
Region Lambda

0.075
0.075

Extreme Edge Lambda
0.000000000013

Extreme Edge Lambda
0.000000000013

Implementation Approaches

• Complex Single Pass

• Sparse Update

• Filter to Views

• Transform-Filter , Transform-write

Complex Single Pass

Use hi region lambda
Calculate whole register

Blend outer region results in to appropriate target register lanes

Calculate central approximation value for registers
If not all values calculated with hi/low region lambda

Use low region lambda
Calculate whole register

Sparse Update

Use hi region lambda
Calculate whole register

Blend outer region results in to appropriate target register lanes

2) Scan for registers with values that should be calculated with region lambda hi

1) Apply central region lambda

3) Scan for registers with values that should be calculates with low region lambda and update as
in previous stage

Filter to Views

Write transform results to indexed register lanes

Filter values from registers with values in hi or low regions

Apply central region lambda transform to all elements

Filter values to View for hi and low regions

Filter to low region view
and hi region view

Hi view Low view

Transform low view

Transform-Filter and Transform-Write

Transform view values and write directly
to memory index

Filter values from registers with values
in hi or low regions

Apply central region lambda transform to all elements and filter to view

Hi view Low view

Coding Implementation
Approach

Example Code

Expanding Lambdas

Relative Performance Table

Processor W2123 W2123 W2123 W2123 4114 4114 4114 4114

Instruction set AVX512 AVX512 AVX2 AVX2 AVX512 AVX512 AVX2 AVX2

compiler ICC VS2019 Vs2019 ICC ICC VC2019 ICC VS2019

Implementations

10 digit Acklam implementation

Multiple Sparse Passes with FMA 5.83E+08 1.92E+08 4.26E+08 5.45E+08 2.92E+08 9.62+07 4.31E+08 3.58+08

Complex Single Pass with FMA 6.5E+08 1.65E+08 3.21E+08 6.66E+08 3.46E+08 1.36E+08 5.68E+08 2.58+08

Filter To Views and transform 8.47E+08 6.56E+08 5.98E+08 5.00E+08 3.49E+08 3.3E+08 4.25E+08 2.98+08

Filter To Views and transform with FMA 9.44E+08 6.63E+08 6.85E+08 7.36E+08 4.6E+08 3.39E+08 5.99E+08 3.57+08

Transform-filter +Transform-Write with

FMA 9.7E+08 6.57E+08 6.84E+08 7.45E+08 4.6E+08 3.38E+08 6.15E+08 3.64+08

16 digit implementation

Transform-filter + Transform-Write with

FMA (WS241) 6E+08 2.96E+08 3.20E+08 3.79E+08 2.88E+08 2.41E+08 3.75E+08 1.65+08

Intel short vector math library 2.61E+08 4.96E+08 2.13E+08 2.14E+08 2.15E+08 3.8E+08 1.62E+08 1.66+08

transform 1.67E+08 9.84E+07 1.00E+08 1.63E+08 1.38E+08 7.86+07 1.30E+08 7.87+07

Table 1: Maximum Observed Single-threaded double precision calculation through-put for Φ-1 per second. For different
implementations, execution hardware, compiler, and intrinsic vector instruction set.

Roof Line analysis and inner loop assembly

• 2/3 of time in first stage transform whole vector with central
approximation and filter to view outer region values

• 1/3 of time processing outer region values

Central Lambda WS241
AVX2

Outer Region Lambda WS241
AVX2

Micro architecture for AVX2 version

AVX2 Acklam- main region a bit quicker

Φ−1

• We can create our own vectorised math functions that are very
performant.

• We can make our own trade offs on the approximation accuracy

• We get faster code if we traverse and move less memory

• Filtering to contiguous, indexed view can be useful for handling
branch conditions

• Predicting if a function will make the chip hot enough to slow down is
not a good game for software engineers.

• Using SIMD types with generic lambdas creates very fast code.

Its not all about
instruction set

• We Cheated

• SVML takes a _m512d with 8 doubles 0.0->1.0
and returns a _m512d of transformed.

• We take a vector of arbitrary length and structure
our evaluations

• The act of selecting a direction to vectorise in is
choosing your inner loop (loop interchange)

• Exploiting how you sequence your calculations and
how you lay out the data is down to you.

• Its the other 90% of going faster! (Mike Acton)

Resources

• code available on https://github.com/andyD123/DR3

• Contact andreedrakeford@hotmail.com

https://github.com/andyD123/DR3

